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Abstract: Power systems may encounter disturbances during operation as a result of switching
of various components, etc. Such perturbations include transformer tap-changing action, load
variations, and line outages due to various types of faults of which an earth fault is the most common.
Stability analysis of a transmission system is necessary for us to determine the stability state of the
system so that appropriate control measures can be implemented to guarantee system stability. This
article presents the use of eigenvalue obtained from the system-linearized eigenvectors to analyze the
stability state of the system. The choice of the eigenvalue principle is based on the strength of accuracy
of the method to determine the actual state of the system providing adequate data for easy solution
to the problem. The node admittance parameters computed from the line parameters is applied to the
eigenvalue–eigenvector model to determine the system stability state. The state of the eigenvalue is
used as an input to a control system, which utilized static volt-ampere reactive (VAR) compensators
(SVC) to automatically stabilize the non-stable buses in the transmission network. The 6 × 6 nodal
admittance matrix is formed and fed to the developed eigenvalue–eigenvector model via MATLAB
in order to compute the right and left eigenvectors and the diagonal or eigenvalue of the network
under steady-state and contingency condition. After this, the system stability state is determined, and
necessary control actions by the SVC are implemented to guarantee system security. The developed
model was tested on the 6 bus Eastern Grid Nigerian Transmission Network and validated using
a 41 bus network of the same country. The compensated model showed considerable efficiency in
improving the transient stability state of the transmission networks in terms of ease of operation,
seamless integration into existing control system, and efficient utilization of SVS to compensate for
reactive power imbalances. The results from the step response graph of the compensated model
shows performance accuracy as the system regained stability in less than 0.5 s, which is a significant
improvement over the uncompensated model.

Keywords: transmission network; transient stability; eigenvalue analysis; eigenvector; compensation

1. Introduction

Owing to diverse loads with various short circuit capacities scattered in the power sys-
tem, operation disturbances are almost inevitable. Sudden loss of generators, high-capacity
line outage, or heavy short circuits resulting from equipment breakdown or lightning
strikes constitutes large disturbances encountered in the power system. Small burdens
occur due to load variations and equipment switching such as tap-changing transformer
actions. All these cause the power system to experience instability or transient state which
is of important note to power system engineers [1]. It is paramount that the power system
maintain synchronism. The large size of transmission network makes the associated tran-
sient fizzle out quickly; therefore, it is usually neglected. Consequently, the consideration
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and emphasis of many transient stability studies are on the distribution network and gener-
ator oscillations. However, a further assessment of the effect of small oscillation or any form
of transient in the transmission network has necessitated further dimensions in transient
analysis and advancement in technologies capable of damping out small oscillation or
compensating variations. Optimal placement and utilization of flexible alternating current
transmission system (FACTS) devices have been considered for transmission network
transient stability [2–4]. A comparative study of unifying the power flow controller (UPFC)
and interline power flow controller (IPFC) shows the effectiveness of these devices in
stabilizing transient in transmission networks [2–4]. Modal or eigenvalue investigation of
small-signal power system stability was swiftly analyzed and presented in [5]. The study
analyzed the insecurity issues of an inter-area mode swing and suggested a power system
stabilizer (PSS) location based on the result of the analysis. It was suggested that the use
of high-voltage direct current (HVDC) and FACTS devices improves system dynamics
and stability with their ability to change the power flow directly and indirectly within
milliseconds. The effect of small disturbances on system stability was investigated in [6]
to decide the best position for PSS, to reinstate system stability by evaluating the eigen-
value and eigenvectors of the linearized differential and algebraic equation of the system.
The results suggested optimal placement of PSS for transient stability. Halder et al. [7]
presented a novel non-linear control scheme for thyristor-controlled series capacitors (TC-
SCs), formulated by the zero dynamic design approach for transient stability analysis of
a multi-machine power system. The results showed that such a model is more effective
in terms of performance characteristics under different loading conditions when applied
to a 14-areas, 24-machines, and 203-buses model. The effect of an adaptive neuro-fuzzy
inference system (ANFIS)-based UPFC in a wind–diesel system and doubly fed induction
generator DFIG-based wind turbine system using a small signal model was examined
in [8]. The authors carried out simulation in MATLAB with different wind power input
and a 2% step increase in load demand. The result of the analysis illustrated the efficiency
and effectiveness of their approach and its impact on transient behavior of the micro-grid.
Madruga et al. [9] suggested a methodology that would be suitable for distribution network
transient analysis using a simple distribution network model. Different disturbance types
and buses were selected for application with the adjustment of stability control systems.
This method is suitable for unbalanced networks and demonstrated a single-pole switching
using a real network as a case study. The small signal stability of a large power system
using Krylov subspace technique was examined by [10].

Furthermore, different approaches have been adopted in transient stability analysis
considering response time and performance accuracy. An algorithm based on the implicitly
restarted Arnoldi method coupled with the dynamic switching approach was adapted and
implemented a transmission network. The result of their analysis showed proper conver-
gence to the sought eigenvalues, though with poor damping. Cho et al. [11] developed
a novel approach capable of dealing with time-domain simulation for dynamic stability
studies and operation of large-scale power systems. They further proposed a new model to
overcome the low-voltage problem, which provided a good performance and convergence
when the terminal voltage is below some predefined value. In comparison to commercial
tools, the solution was found to be numerically well conditioned by the introduction of
ZIP model algorithm. Marchiori et al. [12] presented a methodology to analyze an electric
power system’s transient stability for first swing using a neural network based on adaptive
resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The
proposed neural network was applied to a multi-machine electric power system composed
of 10 synchronous machines, 45 buses, and 73 transmission lines. In comparison with a
ARTMAP fuzzy-type model, it provided a faster and a more accurate solution. The solution
allows us to approach several topologies of an electric system at the same time; therefore,
it is an alternative to real-time transient stability of electric power systems. Additionally,
Izumi et al. [13] analyzed the transient stability of power systems using sum of squares
programming, considering machine inertia and damping coefficients as uncertain parame-
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ters, using polytopic representation for uncertain parameters and a concept from the field
of robust control. The method proves that the sum of square programming is feasible in
this context and, hence, was used to solve the analyses problem of robust transient stability
using a numerical example. Xu et al. [14] studied the method of analyzing electric network
resonance stability (ENRS), with the main objective of establishing a systematic approach to
solving the problem. The s-domain nodal admittance matrix (NAM) of the electric network
was introduced and used to transform the judgment of ENRS into the zero-point solution
of the determinant of the s-domain NAM. First, it was proven that the zero points of the
determinant of the s-domain NAM are equivalent to the system eigenvalues. Then, they
further identified the dominant resonance region and determined the key components
related to resonance nodes with reference to the eigenvalues of the system.

The use of eigenvectors corresponding to the power system oscillatory modes was
used to determine the relative motions of the machines at this mode and to find out which
machines were swinging with and against each other in [15]. A hybrid BBO-DE with an
eigenvalue analysis-based optimization problem was presented in [16]. The proposed
algorithm was tested on an IEEE system with 10 generators and 19 load centers considering
2.0 s fault time and 2.50 s clearing time. The results obtained determined which machine is
the candidate for power system stabilizer (PSS) placement. In [17], a comparative report of
eigenvalue tracking (ET), participation factor (PF), and residual (RES) was presented, as
well as methods for determining PSS placement among the generators in order to achieve
stable operation. It was noted that ET methods showed better performance than the other
methods compared.

The motivation behind this work is that small signal oscillation is usually overlooked
in transmission network owing to the idea that when such transient occurs, it dies out on
its own without regulations because of the large nature of transmission networks. These
neglected small signal oscillations do exit and, over time, cause a breakdown of network
components. To identify the existence of these transient in a transmission network system,
the eigenvalue principle, as the most classical mathematical approach, is appreciated for its
high accuracy and has been used in several studies to determine such small oscillation in
the distribution network or for optimal placement of FACTS devices [15–17]. This article
proposes the utilization of the eigenvalue principle for clear cut details of the stability state
of the transmission network in order to provide the needed control measures as efficiently
as possible. As compared to other methods, the integration of eigenvalues into the space
state for effective control is easy, and the idea of regulating the use of VAR compensation
makes it more efficient than traditional methods of permanently placing a FACTS device in
the system without adequate regulation.

A further review of the already existing literature shows that most research work
carried out on power system stability majorly focused on the generators and the buses at
which they are connected, with reference to local and inter-area oscillation of generators. In
this article, we present transmission network stability analysis using eigenvalue calculated
from the system linearized eigenvectors. The node admittance parameters computed
from the line parameters is applied to the eigenvalue–eigenvector model to determine
the system stability state, and the automated compensation scheme (SVS) is incorporated
into the system to improve its transient stability by providing the required reactive power
compensation. This is an extension of transmission network stability analysis based on
eigenvalue carried out in [18]. The eigenvalue model developed in this article is multi-
machine compliant and operates in real time, utilizing obtained data at the supervisory
control and data acquisition (SCADA) to compute the system eigenvalue with which it
performs automatic compensation of the transmission network. The significance of this
proposed model is the performance accuracy of the model in determining the system steady
state and quick response time in restoring stability. The sequence of this paper is such that
Section 2 presents model formulation that involves eigenvalue analysis and modification
to include VAR compensation, Section 3 details application in case studies, while Section 4
presents and discusses the results, and Section 5 concludes the study.
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2. Materials and Methods

For the analysis of balanced conditions, a single-phase representation of the three-
phases model is used. Without the balanced steady-state representation of the transmission
network, stability analysis of large practical power systems would be difficult. Electro-
magnetic transient programs (EMTP) are used for complex transient stability analysis
involving generators, stators, and network transients [19]. For conventional transient
stability analysis, the network representation is similar to that for power-flow analysis. For
the purpose of this analysis, nodal admittance matrices shall be used. In loads modeling,
dynamic loads are represented as induction and synchronous motors, and they are treated
as synchronous machines. Static loads are represented as part of the network equations.
Network loads with invariable impedance characteristics are the easiest to handle and are
incorporated in the node admittance matrix. Nonlinear loads are modeled as a polynomial
or exponential function of bus voltage magnitude and frequency [1]. This is represented
as a current injection at the appropriate node in the network equation. Figure 1 shows a
classic power system network in modular form.

Figure 1. Sample nodal network in modular form.

The value of the node current injected ÎL into the network is the sum of the branch
currents iL1 and iL2.

ÎL = iL1 + iL2 = −PL −QL
ˆV∗L

(1)

where V̂∗L is the conjugate of the load bus voltage, PL and QL are segments of the active and
reactive components of the load, which vary as nonlinear functions of VL and Frequency
deviation. For an inductive load, QL is positive.

The overall network/load representation comprises a large sparse nodal admittance
matrix equation with a structure similar to that of the power-flow problem. The network
equation is written in matrix form as:

ÎL = YNV̂ (2)

The node admittance matrix YN is symmetrical, except for dissymmetry introduced
by phase-shifting transformers. Within the time frame of transient stability simulations,
transformer taps and phase-shift angles do not change. Therefore, the elements of the
matrix remain constant except for change introduced by network switching operations
or external loads. The effect of generators, nonlinear static loads, dynamic loads, and
other devices such as HVDC converters and regulated VAR compensators are reflected as
boundary conditions providing additional relationships between voltages V̂ and currents Î
at the respective nodes. In contrast to power-flow analysis, tie line power-flow control,
limits on generator reactive power output, and the slack bus make up for the unknown
losses and need not be considered in transient stability analysis [1].
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For (kth) number of buses, Ybus can be expressed as

1
Zbus

=
1

r± jx
= Ybus =



Y11 Y12 . . . Y1i
Y21 Y22 . . . Y2i
Y31 Y32 . . . Y3i

...
... . . .

.

...

Yk1 Yk2 . . . Ykk

 (3)

The off diagonal elements of the matrix are called mutual admittances, while the
diagonal elements are called self-admittances. r± jx represent the branch resistances and
reactance, respectively. Equation (4) defines the mutual admittance and expressed it as the
negative of the admittance of the line between buses 1 and k, while Equation (5) defines the
self-admittance as the sum of all the admittances connected to the bus under consideration.

Yi1 = Y1i = −yi1 = −y1i (4)

Yii =
n

∑
i = 0
i 6= 1

yii (5)

2.1. Eigenvalue Analysis

Equation (2) can be written in steady-state space form as:

Ax = x̂ (6)

In order to obtain the solution of Equation (6), a scalar parameter λ called the eigen-
value is introduced such that Equation (6) becomes

Ax = λx (7)

where A = [ak1]an n × n square matrix, x is an n × 1 vector, and λ is a scalar parame-
ter [1,20]. Therefore, the solution x = 0 for λ is indeed not useful and, thus, is neglected.

For non-trivial solutions, i.e., x 6= 0, the values of λ are known as the eigenvalues and
the characteristics values or underlying roots of the matrix A, and the matching solutions
of Equation (7) are called eigenvectors or attribute vectors of A. When written as separate
equations we have

A.x− λx = 0 (8)

(A− λI)x = 0 (9)

It is noteworthy that the unit matrix I was introduced so that λ can be deducted from
matrix A. Now, for Equation (9) to have a non-trial solution, the determinant of |A− λI|
must be equal to zero. Hence

|A− λI| =

∣∣∣∣∣∣∣∣∣
(a11 − λ) a12 · · · a1i

a21 (a22 − λ) · · · a2i
...

... . . .
...

ak1 ak2 . . . (akk − λ)

∣∣∣∣∣∣∣∣∣ = 0 (10)

Expansion of Equation (10) gives the characteristics equation. The n solutions of
λ = λ1, λ2, λ3, . . . .λn are eigenvalues of A.

2.2. Modified Eigenvalue with VAR Compensation Model

From the general form of state-space representation of a linear time-invariant sys-
tem [21] shown in Equations (11) and (12) whose closed-loop system block diagram is



Energies 2021, 14, 5289 6 of 19

shown in Figure 2, we derive the eigenvalue transmission network-compensated mathe-
matical model based on double-stage state feedback control law.

.
x(t) = Ax(t) + Bu(t) (11)

y(t) = Cx(t) + Du(t) (12)

where
.
x(t) is the input variable vector, Ax(t) is the state space variable of the input state,

Bu(t) is the input variable gain parameter, while y(t) is the output variable vector, Cx(t)
is the state space variable of the output state, Du(t) is the output feed-forward gain, and
x(t0) = x0 is the initial condition of the input variable.

Figure 2. Closed-loop system block diagram.

With the application of state feedback control law of the form (13), the unit input
signal u(t) is

u(t) = −Kx(t) + r(t) (13)

With Kx(t) as feedback control state and r(t) as biasing input signal.
The new network state of the transmission network at time (t) represented by Equa-

tions (11) and (12) becomes

.
x(t) = (A− BK)x(t) + Br(t) (14)

This features a constant state feedback gain matrix K of dimension m × n and a new
external reference input r(t) having the same dimension m × 1 as the open-loop input u(t)
and the same physical features.

With reference to eigenvalue formulation developed in this article in Section 2.1, we
derive the eigenvalue transmission network compensated model as represented in Figure 3
as follows

u(t) = −Iv(t) + r(t) (15)

i(t) = (YN − λI)v(t) + Br(t) (16)

y(t) = Cv(t) + Du(t) (17)
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Figure 3. Closed-loop system block diagram of eigenvalue-compensated transmission network.

To implement the automatic compensation of the transmission network, the output
y(t) is fed into the SCADA system. The SCADA system, as the meaning implies, is a
supervisory control and data acquisition system; hence, it is where eigenvalue processor
signal is computed utilizing the output data feed in from the network. This unit modifies
the output control signal as follows

y(t) = (C− DI)v(t) + Dr(t) + Er(t) (18)

where Er(t) represents SVC input to the system to obtain a stable output as represented in
Figure 4.

Figure 4. Closed-loop system block diagram continuation.

Additionally, the frequencies of oscillation given by the imaginary part divided by 2π
produced values in the range of 1 to 2 Hz, the flicker causative frequency. To this effect, we
propose a voltage swing control system, which could monitor the resultant eigenvalues
computed based on the condition of a given power system transmission network and
actuate the necessary compensation scheme, in this case, SVC. The proposed model as
discussed in Section 2.2 is illustrated in modular form in Figure 5.
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Figure 5. A flow chart of transmission network transient analysis and automated compensation.

The transmission network parameters are read in real time using SCADA, then the
eigenvalues are computed and the real and the imaginary part extracted. The eigenvalue
processor will determine if the values are negative or positive and perform the necessary
actuation operation. The installed static VAR compensators are automatically switched
in and out of the network based on the transient state of the network determined by the
eigenvalue model result.

2.3. Application to 330 kV Nigerian Eastern Grid Network (EG-N)

The Nigerian prototype Eastern Grid Network is as shown in Figure 6. The network is
made of 6 buses and 3 generators. The external loads connected to the bus are not incorporated
into the analysis. Double line circuits were treated as parallel circuits to determine their
equivalent reactance. A resistance component of the network data was also neglected.

Figure 6. Nigerian 330 kV Eastern Grid Network [22].
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For the rationale of eigenvalue analysis, we contrast Equation (2) ÎL = YNV̂ and (6)
Ax = x̂ and derive the network nodal admittance matrix Y from data obtained from the
Nigerian transmission company, Oshogbo, as presented in Table 1.

Table 1. Network data [22].

S/NO LINE-FROM LINE-TO TYPE R X

1 Ugwuaji (6) New Haven (4) Double 0.0394 0.303
2 Onitsha (5) New Haven (4) Double 0.039 0.331
3 Okpai (1) Onitsha (5) Double 0.0394 0.303
4 Delta PS (3) Onitsha (5) Single 0.039 0.331
5 Onitsha (5) Alaoji (2) Single 0.039 0.331

Let ÎL = x̂, V̂ = x, and YN = A. Then, it follows that Equation (9) holds true for

(YN − λI)V̂ = 0 (19)

Writing Equation (19) in determinant form gives

|YN − λI| =

∣∣∣∣∣∣∣∣∣
(y11 − λ) y12 · · · y1i

y21 (y22 − λ) · · · y2i
...

... . . .
...

yk1 yk2 . . . (ykk − λ)

∣∣∣∣∣∣∣∣∣ = 0 (20)

The network admittance YN can be obtained as shown below:

y11(Okpai) = ∑[2(y15)] = 2
(

1
0.0394 + j0.303

)
= 0.844− j6.491 (21)

y22(Alaoji) = ∑[y25] =
1

0.039 + j0.331
= 0.351− j2.980 (22)

y33(Delta PS) = ∑[y35] =
1

0.039 + j0.331
= 0.351− j2.98 (23)

y44(New Haven) = ∑[2(y45) + 2(y46)] = 1.546 + j0.531 (24)

y55(Onitsha) = ∑[y53 + 2(y51) + y52 + y54] = 2.248 + j18.411 (25)

y66(Ugwuaji) = ∑[2(y64)] = 0.844− j6.491 (26)

YN =



y11 y12 y13 y14 y15 y16
y21 y22 y23 y24 y25 y26
y31 y32 y33 y34 y35 y36
y41 y42 y43 y44 y45 y46
y51 y52 y53 y54 y55 y56
y61 y62 y63 y64 y65 y66

 (27)

Therefore,

YN =

∣∣∣∣∣∣∣∣∣∣∣∣

0.841− j6.491 −0 −0 −0 −0.422 + j3.245 −0
−0 0.351− j2.980 −0 −0 −0.351 + j2.980 −0
−0 −0 0.351− j2.980 −0 0.351 + j2.980 −0
−0 −0 −0 1.546 + j0.531 −0.351 + j2.980 −0.422 + j3.245

−0.422 + j3.245 −0.351 + j2.980 −0.351 + j2.980 −0.351 + j2.980 2.248 + j3.411 −0
−0 −0 −0 −0.422 + j3.245 −0 0.844− j6.491

∣∣∣∣∣∣∣∣∣∣∣∣
(28)
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The 6 × 6 matrix of Equation (21) was coded into the MATLAB workplace command
prompt, and the right eigenvector (V = ÎL), the eigenvalues (D = λ), and the left eigenvector
(W = V̂) were computed and the results are presented in the next section.

3. Result of Transient Analysis of 6 Bus Eastern Nigerian Network

The term right eigenvector, eigenvalues, and left eigenvector are built in variables,
which MATLAB assigns to vector matrices. These terms are synonymous with the variables
used in the analysis as represented in Tables 2–4.

Table 2. Right eigenvector (V = ÎL).

0.6263 + 0.0000i −0.4117 + 0.0341i 0.6374 + 0.0000i 0.1304 + 0.0500i 0.0686 − 0.0470i −0.0000 + 0.0000i
0.1439 + 0.0023i −0.0434 − 0.0036i −0.2375 − 0.0895i 0.5578 + 0.0000i −0.3253 − 0.0196i −0.7070 + 0.0000i
0.1439 + 0.0023i −0.0434 − 0.0036i −0.2375 − 0.0896i 0.5577 − 0.0002i −0.3252 − 0.0197i 0.7072 + 0.0000i
0.3095 + 0.0049i 0.3149 + 0.0069i −0.2480 − 0.0387i 0.2660 + 0.1319i 0.7955 + 0.0000i −0.0000 + 0.0001i
0.6007 − 0.0867i −0.1549 + 0.0098i −0.5659 − 0.0452i −0.4925 − 0.1449i −0.1599 + 0.1238i −0.0000 − 0.0001i
0.3155 + 0.0503i 0.8380 + 0.0000i 0.2811 + 0.0214i −0.0693 − 0.0416i −0.3266 − 0.01923i 0.0000 − 0.0000i

Table 3. Eigenvalues (D = λ).

0.8856 + 9.6615i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.6589 + 7.7072i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 1.4455 + 3.6402i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.4350 − 5.5199i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.4046 − 1.4450i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.3505 − 2.9800i

Table 4. Left eigenvector (W = V̂).

0.6263 + 0.0000i −0.4084 + 0.0624i 0.6374 + 0.0000i 0.1304 − 0.0500i 0.0777 + 0.0297i −0.0000 − 0.0000i
0.1439 − 0.0023i −0.0414 + 0.0136i −0.2375 + 0.0896i 0.5578 + 0.0000i −0.3119 + 0.0946i −0.7071 − 0.0000i
0.1439 − 0.0023i −0.0414 + 0.0136i −0.2375 + 0.0896i 0.5577 + 0.0002i −0.3117 + 0.0948i 0.7072 + 0.0000i
0.3022 + 0.0672i 0.3149 − 0.0069i −0.2502 − 0.0200i 0.2894 − 0.0665i 0.7955 + 0.0000i −0.00005 − 0.0001i
0.6007 + 0.0867i −0.1530 + 0.0264i −0.5659 + 0.0452i −0.4925 + 0.1450i −0.1843 − 0.0832i −0.0000 + 0.0001i
0.3186 + 0.0244i 0.8380 + 0.0000i 0.2784 + 0.0445i −0.0770 + 0.0243i −0.3266 + 0.0192i 0.0000 + 0.0000i

After the steady-state investigation of the eigenvalue of the transmission network,
branch 4 Delta PS to Onitsha was marked out of service due to contingency and the
eigenvalue of the network reinvestigated. Figure 7 depicts Nigerian 330 kV Eastern Grid
Network with Delta PS to Onitsha line out of service. This is indicated with the red color
of the line as against Figure 6 without any line out of service.
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Figure 7. Nigerian 330 kV Eastern Grid Network with Delta PS to Onitsha line out of service [22].

With branch 4 out of service, the resultant network admittance becomes YNnew and
the corresponding eigenvalues and eigenvectors of the network became altered as (29) and
the right eigenvector is represented in Table 5:

YNnew =

∣∣∣∣∣∣∣∣∣∣∣∣

0.841 + j6.491 −0 −0 −0 −1.595 + j1.227 −0
−0 0.351− j2.980 −0 −0 −0.351 + j2.980 −0
−0 −0 −0 −0 −0 −0
−0 −0 −0 1.546 + j0.531 −0.351 + j2.980 −0.447 + j3.246

−1.595 + j1.227 −0.351 + j2.980 −0 −0.351 + j2.980 1.897 + j15.425 −0
−0 −0 −0 −0.447 + j3.246 −0 0.844 + j6.491

∣∣∣∣∣∣∣∣∣∣∣∣
(29)
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Table 5. Right eigenvector (V = ÎLnew).

0.6433 + 0.0000i −0.4509 − 0.0588i −0.5892 + 0.0438i 0.1166 + 0.0747i 0.1046 − 0.0347i 0.0000 + 0.0000i
0.1389 + 0.0062i −0.0455 − 0.0123i 0.2788 + 0.0880i 0.7983 + 0.0000i −0.4501 − 0.2611i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i
0.3240 + 0.0085i 0.3025 − 0.0036i 0.3142 + 0.0261i 0.2630 + 0.2250i 0.7437 + 0.0000i 0.0000 + 0.0000i
0.5712 − 0.0615i −0.1667 − 0.0193i 0.6107 + 0.0000i −0.4082 − 0.2155i −0.2618 + 0.1022i 0.0000 + 0.0000i
0.3597 + 0.0479i 0.8193 + 0.0000i −0.3051 − 0.0030i −0.0728 − 0.0739i −0.2912 − 0.0151i 0.0000 + 0.0000i

4. Discussion

The eigenvalues obtained in the two analyses shown in Tables 3 and 6 clearly indicated
two oscillatory modes by virtue of complex conjugate pairs of eigenvalues recorded.
This corresponds to regions of either overvoltage or under voltage in cases of positive
eigenvalues. It can be observed that all the eigenvalues contain a positive real part, which
is indicative of increasing amplitude oscillation as shown in Figure 8. This continuous
increasing amplitude of the state signal indicates transient instability of the system; thus,
the power system network requires compensation to adequately damp out the oscillation
or stabilize the voltage imbalance. Table 7 depicts left eigenvector results.

Table 6. Eigenvalues (D = λnew).

0.7766 + 9.4127i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.7023 + 7.6908i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 1.5247 + 3.1782i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.3352 − 4.4092i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.4912 − 1.8285i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.3500 − 2.9800i

Table 7. Left eigenvector W = V̂new).

0.6433 + 0.0000i −0.4509 + 0.0589i −0.5892 − 0.0438i 0.1166 − 0.0747i 0.1046 + 0.0348i 0.0000 + 0.0000i
0.1389 − 0.0062i −0.0455 + 0.0123i 0.2788 − 0.0880i 0.7983 + 0.0000i −0.4501 + 0.2611i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i
0.3240 − 0.0085i 0.3025 + 0.0036i 0.3142 − 0.0262i 0.2629 − 0.2250i 0.7437 + 0.0000i 0.0000 + 0.0000i
0.5712 + 0.0615i −0.1667 + 0.0193i 0.6107 + 0.0000i −0.4082 + 0.2155i −0.2618 − 0.1022i 0.0000 + 0.0000i
0.3597 − 0.0479i 0.8193 + 0.0000i −0.3051 + 0.0030i −0.0729 + 0.0739i −0.2912 + 0.0151i 0.0000 + 0.0000i

Figure 8. Step response of uncompensated 6 bus Nigerian 330 kV Eastern Grid Network.
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The results of the application of the modified eigenvalue operation to include VAR
compensation improve the step response of the 6 bus Nigerian 330kV Eastern Grid Network
as depicted in Figure 9.

Figure 9. Step response of compensated 6 bus Nigerian 330 kV Eastern Grid Network.

The step response plot of Figure 9 indicates that the system regained stability between
2 and 3 s of network disturbance, a significant improvement on the response and stability
time of the uncompensated network.

4.1. Model Validation

The proposed model is applied to 41 bus 330 kV Nigerian transmission networks
shown in Figure 10, to validate the model after testing it on six nodes of the Eastern Grid
Network. Table 8 contains the 41 bus dynamic parameters used for this analysis recorded
during the network simulation.

Table 8. The 41 bus Nigerian network parameters [22].

p.u Impedance, Pos. Seq., 100 MVA Base

To Bus R X Z Y B

Alaoji (27) 0.06474585 0.4979186 0.5021105 5.691642 3.812
Alaoji (27) 0.06474585 0.4979186 0.5021105 5.691642 3.812

Alagbon (35) 1.520248 11.687 11.78547 0.1976278 0.315475
Lekki (34) 2.160444 6.849719 7.182352 0.02099785 0.010406

Geregu PS (4) 0.1780237 1.259084 1.271607 12.1923 3.49
Geregu PS (4) 0.1780237 1.259084 1.271607 12.1923 3.49

Lokoja (14) 0.08542856 0.54748 0.554105 6.258172 3.812
Lokoja (14) 0.08542856 0.54748 0.554105 6.258172 3.812

Ikot-Ekpene (29) 6.678131 51.35249 51.7849 0.1976329 0.661289
Ikot-Ekpene (29) 6.678131 51.35249 51.7849 0.1976329 0.661289

Osogbo (11) 0.2648103 1.872887 1.891516 18.13604 3.49
Egbin PS (1) 0.7807162 5.521666 5.576586 53.46886 3.49

Omotosho Phase II (5) 0.2670356 1.888626 1.907411 18.28845 3.49
Onitsha (8) 0.3079924 1.973809 1.997694 22.56236 3.812
Onitsha (8) 0.3079924 1.973809 1.997694 22.56236 3.812

Ajaokuta (13) 0.4383834 2.809437 2.843434 32.1143 3.812
Ajaokuta (13) 0.4383834 2.809437 2.843434 32.1143 3.812

Calabar SS (31) 0.03979173 0.3060125 0.3085888 3.497989 3.812
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Table 8. Cont.

p.u Impedance, Pos. Seq., 100 MVA Base

To Bus R X Z Y B

Maiduguri (6) 0.5785771 3.41002 3.458755 33.02081 3.49
Benin (7) 0.3831956 3.252249 3.274747 31.49267 3.49

Aladja (33) 0.06631954 0.5100209 0.5143146 5.829981 3.812
Aladja (33) 0.06631954 0.5100209 0.5143146 5.829981 3.812

OkeAro (10) 0.1254451 0.9647173 0.9728392 11.02756 3.812
OkeAro (10) 0.1254451 0.9647173 0.9728392 11.02756 3.812
Ikeja West (9) 0.2220386 1.884481 1.897517 18.24809 3.49

Aja (32) 0.0337218 0.2593326 0.2615159 2.964397 3.812
Aja (32) 0.0337218 0.2593326 0.2615159 2.964397 3.812

Osogbo (11) 0.1936008 1.643125 1.654491 15.91095 3.49
Damaturu (23) 0.3560475 2.518199 2.543245 24.3846 3.49

Yola (25) 0.5340711 4.532758 4.564113 43.89228 3.49
Katampe (Abuja) (16) 0.1335178 1.133189 1.141028 10.97307 3.49

Ayede (12) 0.1713478 1.45426 1.464319 14.0821 3.49
Olorunsogo (26) 0.1713478 1.45426 1.464319 14.0821 3.49
Calabar PS (30) 1.08814 8.367511 8.437966 0.1976373 0.266954

Osogbo (11) 0.3493716 2.965179 2.98569 28.71286 3.49
Osogbo (11) 0.3493716 2.965179 2.98569 28.71286 3.49
Jebba TS (40) 0.01798496 0.1383107 0.1394752 1.581012 3.812
Jebba TS (40) 0.01798496 0.1383107 0.1394752 1.581012 3.812
Jebba TS (40) 0.01798496 0.1383107 0.1394752 1.581012 3.812
Jebba TS (40) 0.01798496 0.1383107 0.1394752 1.581012 3.812
Shiroro (38) 0.8252314 7.003886 7.052335 67.82108 3.49
Shiroro (38) 0.8252314 7.003886 7.052335 67.82108 3.49
Gamo (36) 0.1557707 1.322054 1.3312 12.80191 3.49

Gombe (22) 0.5897036 5.00492 5.039541 48.46439 3.49
Markudi (19) 18.38644 14.158 1426.061 0.1976314 3.470309
Markudi (19) 18.38644 14.158 1426.061 0.1976314 3.470309

Jos (20) 0.4383834 3.720639 3.746376 36.02824 3.49
Jebba TS (40) 0.180249 1.529806 1.540388 14.81364 3.49
Jebba TS (40) 0.180249 1.529806 1.540388 14.81364 3.49
B-Kebbi (41) 0.6898419 5.854812 5.895312 56.69419 3.49

Calabar SS (31) 0.03979173 0.3060125 0.3085888 3.497989 3.49
Gwagwalada (15) 0.3560475 3.021838 3.042742 29.26152 3.49

Ikeja West (9) 0.06272255 0.4823587 0.4864196 5.513779 3.812
Ikeja West (9) 0.06272255 0.4823587 0.4864196 5.513779 3.812

Ayede (12) 0.1335178 1.133189 1.141028 10.97307 3.49
Ikeja West (9) 0.3560475 3.021838 3.042742 29.26152 3.49

New Haven (17) 0.2136285 1.813103 1.825645 17.55691 3.49
Alaoji (27) 0.3070909 2.606336 2.624365 25.23806 3.49

Ikeja West (9) 0.5711668 4.847596 4.881128 46.94096 3.49
Benin (7) 0.1183635 0.9102575 0.9179209 10.40503 3.812
Benin (7) 0.1183635 0.9102575 0.9179209 10.40503 3.812

Aladja (33) 0.2069526 1.756444 1.768594 17.00826 3.49
Kaduna (21) 0.2136285 1.813103 1.825645 17.55691 3.49
Kaduna (21) 0.2136285 1.813103 1.825645 17.55691 3.49

Gwagwalada (15) 0.3204427 2.719655 2.738467 26.33537 3.49
Katampe (Abuja) (16) 0.3204427 2.719655 2.738467 26.33537 3.49

Markudi (19) 55.41132 42.61437 42.97312 0.1976234 1.905037
Markudi (19) 55.41132 42.61437 42.97312 0.1976234 1.905037

New Haven (17) 0.01573684 0.1210219 0.1220408 1.383385 3.812
New Haven (17) 0.01573684 0.1210219 0.1220408 1.383385 3.812
Ikot-Ekpene (29) 58.99809 4.537237 45.75434 0.1976468 1.965717
Ikot-Ekpene (29) 58.99809 45.37237 45.75434 0.1976468 1.965717
Ikot-Ekpene (29) 58.99809 45.37237 45.75434 0.1976468 1.965717
Ikot-Ekpene (29) 58.99809 45.37237 45.75434 0.1976468 1.965717

Jalingo (24) 0.3115415 2.644109 2.662399 25.60383 3.49
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Figure 10. Compensated 41 bus Nigerian 330 kV transmission network [22].

4.2. Result and Discussion of Transient Analysis of 41 Bus Nigerian Network

First, the 41 bus admittance matrix was computed. The result of eigenvalues com-
puted from the 41 bus network parameter after compensation recorded in the MATLAB
workspace indicate that the majority of the network nodes now has negative eigenval-
ues, which represents a more stable operation in the case of all real negative eigenvalues.
Figures 11 and 12 showed the uncompensated and the compensated 41 bus time response
model representing the system state at the time of simulation.

Figure 11. Step response of uncompensated 41 bus Nigerian 330 kV network.
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Figure 12. Step response of compensated 41 bus Nigerian 330 kV network.

The amplitude of oscillation is damped out after the first maximum overshoot in the
case of a compensated model but continues to increase and oscillate with a frequency of
about 2 to 3Hz in the case of the uncompensated model. It can also be observed that the
41 bus system regained stability between 1.5 and 2.5 s of network disturbance, a slight
improvement in transient stability performance of the system under consideration.

5. Conclusions

Small signal oscillation is usually overlooked in transmission networks owing to the
idea that when such transient occurs it dies out on its own without regulations because
of the large nature of transmission networks. This neglected small-signal oscillation does
exit and, over time, causes a breakdown of network components. To identify the existence
of the transient in the transmission network system, the eigenvalue principle, as the most
classical mathematical approach, is appreciated for high accuracy and has been used in
several studies to determine such small oscillation in a distribution network or for optimal
placement of FACTS devices. The proposed method utilized the eigenvalue principle for
clear-cut details of the stability state of transmission network in order to provide the needed
control measures as efficiently as possible. As compared to other methods, the integration
of eigenvalues into the space state for effective control is easy, and the idea of regulating the
use of VAR compensation makes it more efficient than traditional methods of permanently
placing a FACTS device in the system without adequate regulation. This paper presents a
stability analysis of a power system transmission network using a modified eigenvalue
principle fed into a control system that triggers an SVS-compensating device to provide
quick reactive power compensation to enable the system to regain stability in cases of
transient instability. The result of this analysis identified small signal voltage swing in the
network and, thus, gives a clear indication of the existence of such small signal voltage
variation despite being considered less applicable to the transmission system and should
be given some engineering attention. In lieu of that, this study further presents a control
scheme, which utilizes the results of eigenvalues computed from the network linearized
state space parameter to compensate the power line adequately to counter the effect of
small signal voltage swing inherent in the system. The model developed was tested on a
6 bus Eastern Grid Nigerian Transmission Network and validated using a 41 bus network
of the same country. The developed model showed considerable efficiency in improving the
transient stability state of the transmission networks in terms of ease of operation, seamless
integration into existing control system, and efficient utilization of SVS to compensate for
reactive power imbalances. The results from the step response graph of the compensated
model shows performance accuracy as the system regained stability in less than 0.5 s,
which is a significant improvement of the uncompensated model.
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Abbreviations

ANFIS Adaptive neuro-fuzzy inference system
ART Adaptive resonance theory
ARTMAP Adaptive resonance theory mapping
BBO-DE Biography-based optimization differential evolution
BCA BR and the QR algorithms subroutines of bulge-chasing algorithms
CPU Central processing unit
DFIG Doubly fed induction generator
EG-N Eastern Grid Network
EMTP Electromagnetic transient programs
ENRS Electric network resonance stability
ET Eigenvalue tracking
FACTS Flexible alternating current transmission system
HVDC High-voltage direct current
IPFC Interline power flow controller
MATLAB Matrix laboratory
NAM Nodal admittance matrix
PF Participation factor
PSS Power system stabilizer
RES Residual
SCADA Supervisory control and data acquisition
SVC Static VAR compensator
SVS Static VAR system
TCSCs Thyristor-controlled series capacitors
TSAT Transient security assessment tool
UPFC Unified power flow controller
VAR Volt-ampere reactive
ZIP Impedance current power
Symbols, Parameters and Variable
λ Eigenvalue of the state (scalar quantity)
Kx(t) Feedback control state
−K Feedback control gain matrix
I Unit matrix used for normalization
Du(t) Output feed-forward gain
Cx(t) State space variable of the output state
Bu(t) Input variable gain parameter
Ax(t) State space variable of the input state
A State space square matrix
y(t) Output variable vector
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x(t0) = x0 Initial condition of input variable
x State of the network (nx1 vector quantity)
v(t) Instantaneous voltage state
u(t) Unit input signal
r± jx Nodal resistance and reactance variable
r(t) Biasing input signal
Er(t) Compensating input variable
[W] Left eigenvector matrix
[V] Right eigenvector matrix
[D] Eigenvalue matrix
yii Self-admittance of the network
.
x(t) Input variable vector
v0 Initial voltage state
iL1 Branch current
Yi1 Mutual admittance of the network
YN System admittance or admittance of the power system network
V̂ Voltage vector
QL Reactive power injected into or absorbed from the node
PL Real power injected into or absorbed from the node
V∗L Complex conjugates of the node voltage due to current injection
ÎL Current injected into the node
ÎL Current vector
Zbus Nodal impedance variable
Ybus Nodal admittance variable
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