Modelling and Simulation of the Performance and Combustion Characteristics of a Locomotive Diesel Engine Operating on a Diesel–LNG Mixture
Abstract
:1. Introduction
2. Methodology for Simulating Locomotive Engine Indicators
3. The Analysis of Research Results
4. Conclusions
5. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament Directorate General for Communication CO2 Emissions from Cars: Facts and Figures (Infographics); European Parliament: Brussels, Belgium, 2019.
- Couch, P.; Leonard, J.; Chiang, H. Demonstration of a Liquid Natural Gas Fueled Switcher Locomotive at Pacific Harbor Line, Inc.; TIAX LLC: Irvine, CA, USA, 2010; p. 20. [Google Scholar]
- Jasminská, N.; Brestovič, T.; Puškár, M.; Grega, R.; Rajzinger, J.; Korba, J. Evaluation of hydrogen storage capacities on individual adsorbents. Measurement 2014, 56, 219–230. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Powering a Climate-Neutral Economy: An EU Strategy for Energy System Integration; European Commission: Luxembourg, 2020; Volume COM(2020), p. 299. [Google Scholar]
- Souto, J.L.P.; Ferrera, M.; Leclerq, N.; Matchett, M.; Magnusson, I.; Lebrato, J.; Ribas, X. LNG Blue Corridors. LNG Trucks Euro V Technical Solutions; European Commission: Luxembourg, 2014; p. 64. [Google Scholar]
- European Commission; Directorate-General for Mobility and Transport. State of the Art on Alternative Fuels Transport Systems in the European Union Update 2020; European Commission: Luxembourg, 2020; ISBN 978-92-76-16371-8. [Google Scholar]
- Association of American Railroads. Available online: https://www.aar.org/wp-content/uploads/2020/06/AAR-Sustainability-Fact-Sheet.pdf (accessed on 26 June 2021).
- Pritchard, J.A. The potential of the railway to reduce greenhouse gas emissions. In Proceedings of the Energy Efficiency First: The Foundation of a Low-Carbon Society, Belambra Presqui’le de Giens, France, 7–11 June 2016; ECEEE: Stockholm, Sweden, 2011; pp. 941–950. [Google Scholar]
- European Environment Agency. Rail and Waterborne: Best for Low Carbon Motorised Transport; Publications Office: Luxembourg, 2021. [Google Scholar]
- Carvalhaes, B.B.; Rosa, R.D.A.; D’Agosto, M.d.A.; Ribeiro, G.M. A method to measure the eco-efficiency of diesel locomotive. Transp. Res. Part Transp. Environ. 2017, 51, 29–42. [Google Scholar] [CrossRef]
- Statistics Lithuania Railway Transport Indicators. 2020. Available online: https://www.stat.gov.lt/en_GB/web/guest/gelezinkeliu-transporto-rodikliai (accessed on 9 July 2021).
- The Canadian Natural Gas Vehicle Alliance. Available online: https://cngva.org/wp-content/uploads/2017/12/Economic-and-Environmental-Benefits-of-Natural-Gas-Fuel-for-the-Rail-Sector-in-Canada-Final-Report.pdf (accessed on 31 May 2021).
- Barta, D.; Brezáni, M.; Kalina, T. LNG as alternative fuel for railway transport. Bezp. Ekol. 2016, 17, 64–67. [Google Scholar]
- Li, J.; Wu, B.; Mao, G. Research on the performance and emission characteristics of the LNG-diesel marine engine. J. Nat. Gas Sci. Eng. 2015, 27, 945–954. [Google Scholar] [CrossRef]
- Stefana, E.; Marciano, F.; Alberti, M. Qualitative risk assessment of a Dual Fuel (LNG-Diesel) system for heavy-duty trucks. J. Loss Prev. Process Ind. 2016, 39, 39–58. [Google Scholar] [CrossRef]
- Gritsenko, D. Explaining choices in energy infrastructure development as a network of adjacent action situations: The case of LNG in the Baltic Sea region. Energy Policy 2018, 112, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Tario, J.; Grainer, M.; Cheshier, G.; Roy, B. Compressed Natural Gas Short Line Locomotive Study; New York State Energy Research and Development Authority: New York, NY, USA, 2016; p. 74. [Google Scholar]
- Arteconi, A.; Polonara, F. LNG as vehicle fuel and the problem of supply: The Italian case study. Energy Policy 2013, 62, 503–512. [Google Scholar] [CrossRef]
- Plakhotnik, V.N.; Onyshchenko, J.V.; Yaryshkina, L.A. The environmental impacts of railway transportation in the Ukraine. Transp. Res. Part Transp. Environ. 2005, 10, 263–268. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Xia, Y.; Wang, D.; Xu, Y.; Du, G. Combustion phase of a diesel/natural gas dual fuel engine under various pilot diesel injection timings. Fuel 2021, 289, 119869. [Google Scholar] [CrossRef]
- Millo, F.; Accurso, F.; Piano, A.; Caputo, G.; Cafari, A.; Hyvönen, J. Experimental and numerical investigation of the ignition process in a large bore dual fuel engine. Fuel 2021, 290, 120073. [Google Scholar] [CrossRef]
- Shu, J.; Fu, J.; Liu, J.; Zhang, L.; Zhao, Z. Experimental and computational study on the effects of injection timing on thermodynamics, combustion and emission characteristics of a natural gas (NG)-diesel dual fuel engine at low speed and low load. Energy Convers. Manag. 2018, 160, 426–438. [Google Scholar] [CrossRef]
- Abagnale, C.; Cameretti, M.C.; De Simio, L.; Gambino, M.; Iannaccone, S.; Tuccillo, R. Numerical simulation and experimental test of dual fuel operated diesel engines. Appl. Therm. Eng. 2014, 65, 403–417. [Google Scholar] [CrossRef]
- AVL BOOST v 2011.2. AVL BOOST Users Guide; AVL: Graz, Austria, 2011.
- Vibe, I.I. Brennverlauf und Kreisprozess von Verbrennungsmotoren; VEB Verlag Technik: Berlin, Germany, 1970. [Google Scholar]
- Кузьмич, В.Д.; Бoрoдулин, И.П.; Пахoмoв, Э.А. Теплoвoзы: Оснoвы Теoрии и Кoнструкция: Учеб. Для Техникумoв; Транспoрт: Мoсква, Russia, 1991. [Google Scholar]
- Osipov, S.I. Podvižnoj Sostav i Osnovy Tjagi Poezdov; Transport: Moscow, Russia, 1990; ISBN 978-5-277-00919-2. [Google Scholar]
- Bari, S.; Hossain, S.N. Performance of a diesel engine run on diesel and natural gas in dual-fuel mode of operation. Energy Procedia 2019, 160, 215–222. [Google Scholar] [CrossRef]
- Feroskhan, M.; Ismail, S.; Reddy, M.G.; Sai Teja, A. Effects of charge preheating on the performance of a biogas-diesel dual fuel CI engine. Eng. Sci. Technol. Int. J. 2018, 21, 330–337. [Google Scholar] [CrossRef]
- Mansor, W.N.W. Dual Fuel Engine Combustion and Emissions—An Experimental Investigation Coupled with Computer Simulation. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2014. [Google Scholar]
- Yousefi, A.; Guo, H.; Birouk, M. Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions. Fuel 2019, 235, 838–846. [Google Scholar] [CrossRef]
- Wei, L.; Geng, P. A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Process. Technol. 2016, 142, 264–278. [Google Scholar] [CrossRef]
- Zheng, Z.; Xia, M.; Liu, H.; Shang, R.; Ma, G.; Yao, M. Experimental study on combustion and emissions of n-butanol/biodiesel under both blended fuel mode and dual fuel RCCI mode. Fuel 2018, 226, 240–251. [Google Scholar] [CrossRef]
- Huang, H.; Lv, D.; Zhu, J.; Zhu, Z.; Chen, Y.; Pan, Y.; Pan, M. Development of a new reduced diesel/natural gas mechanism for dual-fuel engine combustion and emission prediction. Fuel 2019, 236, 30–42. [Google Scholar] [CrossRef]
- Papagiannakis, R.G.; Hountalas, D.T. Experimental investigation concerning the effect of natural gas percentage on performance and emissions of a DI dual fuel diesel engine. Appl. Therm. Eng. 2003, 23, 353–365. [Google Scholar] [CrossRef]
- Cheenkachorn, K.; Poompipatpong, C.; Ho, C.G. Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas). Energy 2013, 53, 52–57. [Google Scholar] [CrossRef]
- Karim, G.A. Dual-Fuel Diesel Engines; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-0-429-06976-5. [Google Scholar]
- Stiesch, G. Modeling Engine Spray and Combustion Processes; Springer: Berlin, Germany, 2003; ISBN 978-3-662-08790-9. [Google Scholar]
- Ghadikolaei, M.A.; Cheung, C.S.; Yung, K.-F. Study of Performance and Emissions of Marine Engines Fueled with Liquefied Natural Gas (LNG). In Proceedings of the 7th PAAMES and AMEC, Hong Kong, China, 13–14 October 2016. [Google Scholar]
- Sinay, J.; Puškár, M.; Kopas, M. Reduction of the NOx emissions in vehicle diesel engine in order to fulfill future rules concerning emissions released into air. Sci. Total Environ. 2018, 624, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Egúsquiza, J.C.; Braga, S.L.; Braga, C.V.M. Performance and gaseous emissions characteristics of a natural gas/diesel dual fuel turbocharged and aftercooled engine. J. Braz. Soc. Mech. Sci. Eng. 2009, 31, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Liu, R.; Zhang, Z.; Yang, C.; Zhou, G.; Dong, S.; Liu, W. Comparison of combustion and emission characteristics of a diesel engine fueled with diesel and methanol-Fischer-Tropsch diesel-biodiesel-diesel blends at various altitudes. Fuel 2019, 243, 52–59. [Google Scholar] [CrossRef]
- Park, D.; Yoon, Y.; Kwon, S.-B.; Jeong, W.; Cho, Y.; Lee, K. The effects of operating conditions on particulate matter exhaust from diesel locomotive engines. Sci. Total Environ. 2012, 419, 76–80. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Model of locomotive | TEP70 BS |
Year of production | 2004 |
Manufacturer | Kolomna Locomotive Works, Russia |
Weight, t | 131 |
Engine power, kW | 2940 |
Nominal engine speed, rpm | 1000 |
Engine code | 2A-5D49 |
Piston diameter, mm | 260 |
Stroke, mm | 260 |
Number of cylinders | 16 |
Engine volume, liter | 220.8 |
Specific fuel consumption, g/(kW·h) | 211 |
Compression ratio | 1:13.4 |
Max. in-cylinder pressure, MPa | 13 |
Turbocharger pressure, kPa | 180 |
Exhaust temperature, °C | 600 |
Parameter | Value |
---|---|
Fuel injection angle, ° | −10 |
Duration of fuel injection, ° | 44.01 |
Combustion intensity shape parameter | 1.5 |
Parameter | Diesel Fuel | Methane |
---|---|---|
Molar mass, kg/mol | 0.100206 | 0.016043 |
Lower heating value, MJ/kg | 42.83 | 50.04 |
Air/fuel ratio | 15.17 | 17.23 |
Total carbon content of the fuel | 0.839 | 0.748 |
Heat of vaporisation, J/kg | 2.75·105 | 5.13·105 |
Fuel Mixture | Lower Heating Value, MJ/kg | Air/Fuel Ratio |
---|---|---|
D | 42.80 | 15.18 |
D90 + LNG10 | 43.55 | 15.38 |
D70 + LNG30 | 44.99 | 15.79 |
D40 + LNG60 | 47.16 | 16.40 |
D10 + LNG90 | 49.32 | 17.02 |
Parameter | Value |
---|---|
Engine power, kW | 2940.5 |
Engine torque, Nm | 27,951 |
PM emission, g/(kW·h) | 0.17018 |
CO2 emission, g/(kW·h) | 673.87 |
NOx emission, ppm | 1448.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipskis, I.; Pukalskas, S.; Droździel, P.; Barta, D.; Žuraulis, V.; Pečeliūnas, R. Modelling and Simulation of the Performance and Combustion Characteristics of a Locomotive Diesel Engine Operating on a Diesel–LNG Mixture. Energies 2021, 14, 5318. https://doi.org/10.3390/en14175318
Lipskis I, Pukalskas S, Droździel P, Barta D, Žuraulis V, Pečeliūnas R. Modelling and Simulation of the Performance and Combustion Characteristics of a Locomotive Diesel Engine Operating on a Diesel–LNG Mixture. Energies. 2021; 14(17):5318. https://doi.org/10.3390/en14175318
Chicago/Turabian StyleLipskis, Imantas, Saugirdas Pukalskas, Paweł Droździel, Dalibor Barta, Vidas Žuraulis, and Robertas Pečeliūnas. 2021. "Modelling and Simulation of the Performance and Combustion Characteristics of a Locomotive Diesel Engine Operating on a Diesel–LNG Mixture" Energies 14, no. 17: 5318. https://doi.org/10.3390/en14175318
APA StyleLipskis, I., Pukalskas, S., Droździel, P., Barta, D., Žuraulis, V., & Pečeliūnas, R. (2021). Modelling and Simulation of the Performance and Combustion Characteristics of a Locomotive Diesel Engine Operating on a Diesel–LNG Mixture. Energies, 14(17), 5318. https://doi.org/10.3390/en14175318