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Abstract: Mobile systems such as smartphones require accurate estimation of the battery-related
features including the remaining energy and operating time, especially as the the power consumption
of user applications is growing continuously these days. We present an energy-aware smartphone
application design framework that considers the battery’s state of charge (SOC), energy depletion
rate, as well as the service quality of the target application. We use a verified-accurate battery energy
estimation method in an Android-OS-based mobile computing system. The battery model considers
the rate-capacity effect. We apply regression-based models for the power estimation of the major
subsystems in the smartphone, and then aggregate the result to yield the whole system’s power. We
first determine the quality of service for the location device (GPS), the display device (LCD), and
the overall system (application). Then, we control the error rate of the GPS and the brightness of
the display to acquire the maximum service quality of the system for a given car trip. We show the
advantage of the proposed method with a case study of a trip. In this case, the smartphone guides a
user’s car trip using its GPS navigation capabilities; to do this, we propose an adaptive algorithm
that exploits our improved SOC estimation and considers the car’s variable velocity. This proposed
adaptive power and service quality control of the GPS application improves the quality of service
in this example case and ensures there is enough remaining battery for the trip to be completed.
In contrast, conventional approaches to this task provide a lower quality of service and run out of
battery before the trip finishes. In conclusion, if a trip plan is provided, an application using our
method delivers the maximum quality of service, such as system endurance time, location error, and
display brightness.

Keywords: smartphone; phone service; battery life; energy-aware design; system-level power model;
GPS; service quality

1. Introduction

Modern high-performance mobile computing systems are increasingly consuming
more power. These applications simultaneously support various functionalities, including
the display, audio, GPS, wireless communication, and higher computing capability with
only limited energy stored in the batteries. However, the increases in the energy density of
batteries has been much slower, and it merely satisfies the expectations of the users. As a
result, it has become critical to utilize the precious energy stored in these batteries. Accurate
power modeling and estimation is the starting point of power and energy management.

Extensive studies have been conducted on the power analysis and modeling of mo-
bile embedded systems. Among the models, parameterized power models based on the
system parameters are considered a convenient approach to use in a run-time manner.
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A measurement-based power estimation model was introduced in [1], where the sys-
tem activity parameters were collected and evaluated from the viewpoint of the system
power consumption. These coefficients of the system power equation were derived by
regression analysis.

There have been several efforts to provide system-level power estimation models for
smartphone platforms [1], including some battery-information-based models [2,3]. These
models are based on the component activities within the system. For accurate online esti-
mation of the battery SOC, combining particle swarm optimization and extended Kalman
filter [4], co-estimating load current and SOC without a physical sensor [5], and diagnosing
of internal short circuit of the battery [6] have been intensively studied. The dependencies
between the system energy models on hardware architectures and configurations were
studied in [2]. The possible usage patterns were analyzed at the same time to suggest
personalized models for battery-powered mobile systems. An on-chip bus performance
monitoring unit was introduced to generate the system power consumption model in [7].
A run-time, feedback-based, full-system energy estimation model for battery powered
devices was introduced [8]. A power consumption model for wireless applications with
OS-level parameters was constructed [9].

In practice, commercial smartphones are usually equipped with built-in battery volt-
age sensors. Then, it utilize previously explained battery discharge behavior models to
calculates the lifetime. It is a straightforward method that has been introduced for earlier
smartphones [3]. It was claimed that the proposed method achieves accurate enough result
up to commercial level. An improved method considering the rate capacity effect and
battery internal loss was introduced [10].

We introduce an energy-aware application design framework for Android-OS-based
mobile systems considering the practical aspects of battery behavior. As a case study, we
explored the design through a GPS application from the perspective of service quality and
service time based on a battery capacity loss estimator and power consumption model
using the Android kernel, which produced accurate subsystem activity data in our prior
work [10]. As a trade-off exists between battery lifetime and service quality of the GPS
application considering the locating resolution and trip coverage [11,12]. A trade-off
between the locating resolution and power consumption was considered when designing
the sensor node application in [13,14]. In [15–17], a sensor-GPS hybrid location technique
was studied. It also an intensively studied topic for electric- or GPS-based autonomous
vehicles [18,19].

We consider the other major power consumers in these mobile systems, including the
display. We finally construct an adaptive algorithm to maximize the battery lifetime by
adjusting the GPS location precision and display brightness according to velocity variations
during the trip. The remainder of this paper is organized as follows: We introduce the
structure of the proposed method in Section 2. Then, we show that the proposed adaptive
power and service quality control of the GPS improves the quality of service in Section 3.
We present the formulated service quality optimization problem and its solution method
in Section 4. The experimental results are provided in Section 5, and the conclusions
in Section 6. Note that the detailed power estimation model on the Odroid-A platform is
introduced in Appendices A and B.

2. Energy-Aware Application Design Framework

Figure 1 shows the proposed application design framework to optimize the service
quality of GPS applications. In the framework, the system power consumption and the
battery SOC of the target platform are estimated using the system and battery models
constructed in our previous work [10]. The models are described in Appendices A and B.
We characterized the internal battery by measurement as we charged and discharged
the battery in constant-current and pulse-current situations. We also considered a rate-
capacity effect for accurate modeling. We present the modeled battery parameters in
Appendix A. We also performed a regression analysis for the power consumption of each



Energies 2021, 14, 5333 3 of 15

component of the target smartphone and extract the coefficient of the power model. The
components of the target smartphone and their coefficients are described in Appendix B.
We built a service quality model of the GPS application to maximize the satisfaction of the
smartphone user. Since higher performance requires more power, if we set a smartphone in
high-performance mode, its battery depletes faster. However, a typical user prefers to have
a running smartphone with reduced performance rather than one that is completely turned
off. Thus, it may be better to limit performance to make smartphones last last in certain
cases. We regard the locating accuracy and display image quality as the performance of the
GPS application. The GPS module has a trade-off relationship between its locating accuracy
and power consumption. Like the GPS module, the brightness (and thus the dynamic
range) of the display device is also proportional to the power consumption in general [20].
We therefore designed the GPS application to balance locating accuracy, display image
quality, and service time with the objective of maximizing the service quality.

Target 
platform

Battery energy 
model

GPS application
service quality

optimize

Power 
profile

Activity 
profile

GPS 
module 
analysis

Battery 
characteriza

tion

Battery 
profile

Service quality 
model

Application 
simulator

Display 
module 
analysis

Figure 1. Energy-aware application design framework.

3. Adaptive Control of Service Quality and Power Consumption

Mobile devices should remain turned on until they are connected to wall power.
sSometimes, they cannot remain on because the energy capacity of mobile devices’ batteries
is limited. Limiting the performance of mobile devices can save the remaining energy of
the batteries. In general, it could be beneficial to limit the performance of the device to
prolong operation time since users prefer using mobile devices with limited performance
rather than being unable to use them. We suggest an energy-aware application that limits
the performance of GPS and reddisplays to make mobile devices work longer.

3.1. Service Quality of GPS Module

When its host system has a limited energy budget, a GPS application should have
lower power consumption remaining enough accuracy. Note that in this paper, lifetime
denotes a duration lasting until the system is turned off because of battery depletion. Under
certain circumstances, lifetime is more important than locating accuracy. For example, if
a user is in an emergency in a strange area, a longer service time is required. If a user
travels on a long-distance trip, the required accuracy may be less. Note that the locating
accuracy may be critical such in systems such as aeronautical navigation systems, but we
do not target that system here. We evaluated the the service quality of a GPS application
considering both the locating accuracy and service time. Table 1 explains the symbols used
in this work. Faster GPS tracking of an object increases the error. S longer fixing period
of the GPS also results in increased error. We model the maximum locating error of the
GPS [10] as:

ε = v · t f ix + ε0 (1)

where v, t f ix, and ε0 are the velocity of tracking object, th fixing period of the GPS, and
the fundamental GPS error, respectively. Figure 2a,b shows that tshe longer t f ix has larger
error per Equation (1). We normalized the error when we evaluated the service quality
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error of th GPS application. We also considered service time when we evaluated the quality
of service. If the installed battery of the mobile device is not depleted until a given trip is
finished, the normalized trip coverage (Coverage) is the maximum. We set the maximum
value of Coverage to 1, and we set Coverage proportional to the covered trip time if the
internal battery is depleted before the trip is complete; thus, we formulate the normalized
trip coverage as:

Coverage =
{

tservice/ttrip (tservice ≤ ttrip),
1 (otherwise),

(2)

where tservice and ttrip are the service time and the given trip time, respectively. We calculate
the energy used when the GPS application is running from Equations (A4) and (A5).
We denote the power consumption of the other devices as Eother. The used energy is
estimated as:

∆EGPS = ∆t(CGPS
o f f XGPS

o f f + CGPS
sleepXGPS

sleep + CGPS
activeXGPS

active)

+∆Eother + Eloss, (3)

Table 1. Nomenclature.

Symbol Description Symbol Description

ε maximum locating error of the GPS v velocity of GPS tracking object
t f ix fixing period of the GPS ε0 fundamental GPS error

tactive duration of the ACTIVE state of the GPS tgoo f f duration of the SLEEP state of the GPS
ttotal period of one GPS activation cycle Coverage normalized trip coverage

tservice service time (battery lifetime) ttrip given trip time

∆EGPS
energy used in the GPS module in a

certain period ∆t time period

CGPS
o f f , CGPS

sleep, CGPS
active power coefficients of the GPS XGPS

o f f
duration ratio of the OFF state of the

GPS

XGPS
sleep duration ratio of the SLEEP state of the GPS XGPS

active
duration ratio of the ACTIVE state of

the GPS

∆Eother
energy used by other devices in

the smartphone Eloss internal energy loss of the battery

vOC open-circuit voltage of the battery Qlcd quality of service of LCD

Xlcd
brit brightness of the LCD Qservice

quality of service of the
application (system)

ω1, ω2, ω3 Weight values to calculate Qservice Rtotal battery internal resistance

time

GPS 
activity

tfix

time

GPS 
activity

tfix

ε
ε

(a)

(b)

(c) ttrip = 
8 h 20 min

Figure 2. GPS service quality model: (a) smaller locating error with a shorter fix period, (b) larger
locating error with a longer fix period, and (c) total trip path and its estimation time.
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The Android API requestLocationUpdate() supports various fixing periods of the GPS.
We analyze power consumption and duration depending on the state of the GPS, as shown
in Figure 3. We model the state duration ratio proportional to ttotal as:

ttotal = t f ix + tactive + tgoo f f ,

XGPS
active = tactive/ttotal ,

XGPS
sleep = tgoo f f /ttotal ,

XGPS
o f f = 1− XGPS

active − XGPS
sleep. (4)

We assume that t f ix is always longer than tgoo f f or tactive. tactive and tgosleep are the
time duration of the ACTIVE state and SLEEP state, respectively. The tservice in Equation (2)
is obtained by dividing the battery capacity by ∆EGPS.
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(b)

Figure 3. The GPS consumes a different amount of power depending on its state. (a) GPS power
consumption has a typical pattern based on its state. (b) GPS state analysis. After initialization, it
consumes meagre power when it enters the OFF state.

3.2. Display Image Quality

Display devices are some of the major power consumers in mobile electronics. An
LCD is not a self-illuminating device; therefore, the light intensity is determined by the
backlight intensity and its transmissive efficiency. The backlights of LCDs have been
implemented with CCFL or LED. Nowadays, LED backlights are more popular due to their
low power consumption, long lifetime, and excellent stability.

The light intensity from an LED backlight is basically proportional to the current that
flows through the device, where the number of emitted photons per time is the same as the
number of charges per time, in other words, the current. The LED has an internal resistance
and a threshold voltage in the equivalent circuit model. We need to supply enough voltage
to flow the required current to illuminate the device as we want. Therefore, theoretically,
the power consumption of the backlight is proportional to the square of the maximum
required light intensity.

However, the LCD consumes power linearly proportional to brightness because the
relationship between physical light intensity and human-perceived brightness is nonlinear.
Thus, the brightness value of the image data is tuned by a gamma table. The power
consumption becomes proportional to the brightness after the gamma tuning is applied,
as shown in Figure 4. This figure shows the measured power consumption and the plot
produced by the model when we change the brightness parameter in the Android OS.
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Figure 4. LCD brightness and power consumption.

The maximum brightness determines the dynamic range of the display, which is
directly related to the displayed image quality. We normalize the displayed image quality
using the maximum brightness by:

Qlcd =
Xlcd

brit

max(Xlcd
brit)

(5)

where max(Xlcd
brit) is the maximum brightness.

3.3. Adaptive Energy-Aware Service Quality Control

In practice, the velocity of a vehicle changes over time. Figure 5a shows the speed
limit along the route from San Diego to Sacramento. Different speed limits are applied in
residential areas urban freeways, and rural freeways. We assume that the velocity changes
randomly within the speed limit. We model the trip in a discrete manner using t f ix intervals.
The next fixing time interval, ti+1

f ix , is determined at each fixing time, as shown in Figure 5b.
We define the combined service quality Qservice as a weighted sum of the GPS trip

coverage, GPS location error, and displayed image quality, which is given by:

Qservice = ω1 · Coverage + ω2 ·
1
ε
+ ω3 ·Qlcd (6)

where ω1,2,3 represent the weight values, and the definition of each service quality metric
is presented in Sections 3 and 3.2.
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Figure 5. Variable velocity and fixing time interval: (a) the speed limit along the trip and (b) each
fixing time interval.

4. Problem Formulation

We maximize the service quality for the given trip time, power model, and battery
model. The problem statement is as follows:

Problem 1. Determine (ti
f ix, Xlcd,i

brit ) to maximize Qservice for a given trip time, power model, and
battery model.
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This problem can be regarded as an integer programming problem where (ti
f ix,Xlcd,i

brit )
is regarded as a tuple of discrete values. If the velocity profile is given in advance, we can
find the global sub-optimum by using a branch-and-bound algorithm or integer-linear
programming. Otherwise, we should make a decision considering service time as well as
the service quality in a heuristic way. The decisions made at each epoch are dependent
on each other through a nonlinear dependency among the battery internal resistance
Rtotal , battery output voltage vOC, and battery SOC. The current battery status and energy
consumption are dependent on the previous decision.

We propose the heuristic algorithm presented in Algorithm 1 based on a relaxed
solution in a continuous domain with iterative hill climbing. The location determines the
velocity at any given point during the trip. We assume that the driver obeys the speed
limit, then the velocity at the ith decision epoch varies with the upper and lower speed
limit. The SOC of the battery is also discretely calculated using Equations (A3)–(A5), where
∆t is determined by ti

f ix.

Algorithm 1: Adaptive service quality and power control algorithm with vari-
able velocity.

Input: Trip distance Dtrip, battery capacity Capacity, speed limit limit()
Output: (ti

f ix, Xlcd,i
brit )

Data: Voltage variance of remaining charge in the battery (vSOC),
Open circuit voltage of battery (vOC),
Power consumption of each device (P),

Set vSOC = 1

while Remaining trip time tremain = 1
vi

[
Dtrip −∑i−1

n=1 tn
f ixvn

]
> 0 and vSOC > 0 do

Obtain vi, vi
OC with the models

Obtain minimum power budget P∗ = Capacity · vSOC/tremain
Obtain P∗lcd and P∗gps for maximum Qservice by linear programming where

P∗lcd ≥ P0
lcd + Pctrl

lcd , Pmin
gps ≤ P∗gps < Pmax

gps , and P∗lcd + P∗gps = P∗

Set ti
f ix = b tactiveCGPS

active+tgo f f CGPS
active

P∗gps−CGPS
sleep

c and Xlcd,i
brit = b P∗lcd−P0

lcd−Pctrl
lcd

Clcd
brit

c

if Qservice(ti
f ix − 1, Xlcd,i

brit ) > Qservice(ti
f ix, Xlcd,i

brit ) then

if Qservice(ti
f ix + 1, Xlcd,i

brit ) > Qservice(ti
f ix, Xlcd,i

brit + 1) then
ti

f ix = ti
f ix − 1 and goto 1

end
Else Xlcd,i

brit = Xlcd,i
brit + 1

goto 1 else if Qservice(ti
f ix, Xlcd,i

brit + 1) > Qservice(ti
f ix, Xlcd,i

brit ) then

Xlcd,i
brit = Xlcd,i

brit + 1 and goto 1
end
else

Set i = i + 1 and goto 1
end

end
end
Return (ti

f ix, Xlcd,i
brit )

5. Experimental Methods

We set up an environment to extract the coefficients for the system power consumption
model with Hardkernel’s [21] Odroid-A platform. We measured the current of the Odroid-A
platform using shunt resistors and Texas Instrument’s INA194 [22] current sense amplifier.
We collected the measured current data with National Instrument’s [23] DAQPad-6016
and LabView. Agilent’s E3631 [24] provided the power of the Odroid-A platform and the
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current measurement module. We double-checked the measurement data using a digital
multimeter. Figure 6 shows the experiment setup. We present the battery and target system
power model in Appendices A and B. All the coefficients extracted from the experiments
are listed in Table A3.

Figure 6. Experimental setup.

5.1. Accurate Energy Budget Considering Battery Internal Loss

We first show why we should consider battery internal loss for power-related calcu-
lations of mobile devices using an example case shown in Figure 2c. We assume that we
travel the 523 mile road from Sacramento to San Diego with a fixed velocity of 60 mph.
The estimated trip time is 8 h and 20 min when we check with Google maps. The battery
and target system model used in this calculation are presented in Appendices A and B. In
this example comparison, we simplify the energy consumption other than GPS as 3.5231
J. We also assume that tactive and tgoo f f are 10 and 5 s, respectively. We depict that the
GPS application’s quality of service Qservice depends on t f ix. Coverage and (1− ε) are the
estimated normalized trip coverage and the normalized accuracy, respectively. Figure 2a
shows a higher Qservice than Figure 2b, but it is unrealistic since there is no mobile device
that does not use a battery. In other words, if the battery internal loss is not taken into
account, the wrong power budget is expected, which makes the mobile device’s usage
time prediction wrong as shown in Figure 7. For example, if we set t f ix to 80 without
considering the internal battery loss, it seems that the mobile device can run until the trip
is finished as shown in Figure 7a. However, this is not true. If we consider the realistic
conditions, Figure 7b shows that the battery depletion forces the mobile device off when
t f ix is 80.
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Figure 7. The maximum Qservice is different under different assumptions: (a) slightly higher maxi-
mum Qservice since it does not consider internal battery loss (not a practical case); (b) a more realistic
case considering battery internal loss.

5.2. Adaptive Power and Service Quality Control of a GPS Application with Variable Velocity

The behaviors of (t f ix, Xlcd
brit) with the proposed adaptive control method in the battery

SOC estimation and power estimation only case are illustrated in Figure 8. We randomly
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generated a velocity within the upper and lower speed limit range for each time slot for
the experiment. We used 2.2139 J for ∆Eother, while the other simulation parameters were
the same as in Section 5.1.

Figure 8 shows the advantage of adaptive control. The battery SOC would be ex-
hausted earlier than the trip end time when we fix t f ix and Xlcd

brit using only the average
velocity, as shown in Figure 8a. Figure 8b,c shows that the algorithm tends to decrease
t f ix and Xlcd

brit at high velocities in order to maintain the location accuracy. t f ix and Xlcd
brit

increase when the velocity is low, and sufficient locating accuracy can be achieved with a
relatively long t f ix. Unless we consider the rate-capacity effect of the battery, the phone
also fails to complete the trip, as shown in Figure 8b, even if we control t f ix and Xlcd

brit. The
proposed algorithm with the battery estimation completes the trip while achieving better
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(c) Adaptive service quality and power control with battery estimation
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(b) Adaptive service quality and power control only with power estimation
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Figure 8. Behavior of (t f ix, Xlcd
brit) for (a) fixed values with average velocity, (b) service quality control

only with power estimation, and (c) with battery estimation.
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We integrate Qservice over time to compare the results, which is given by:∫ tend

t=0
Qservicedt. (7)

We set all weight values, ω1,2,3, to 1 in this experiment. The integrated Qservice for a
fixed value was 31.38 over time, where 8.9% of the trip was not covered by GPS service
time. The integrated Qservice of adaptive control in the power estimation only case was 33.61
over time where 4% of the trip was not covered by the GPS service time. The proposed
adaptive control method with battery SOC estimation achieved a 34.53 integrated Qservice
score, where the full trip was covered by the GPS service time. The proposed algorithm
with the battery estimation achieved a 10.3% and 2.7% Qservice improvement compared
with the fixed case and power estimation only cases, respectively.

6. Conclusions

This paper introduced a mobile GPS application design using accurate power esti-
mation and accurate remaining battery charge estimation. The application considers the
power consumption of the units of the mobile device such as the CPU, cellular, Wi-Fi, LCD,
audio, GPS, vibration motor, and more. We more accurately calculated the power con-
sumption of certain units such as the cellular, Wi-Fi, and GPS components by considering
their states. We verified our model by comparing it with real platform measurements using
commercially available devices. The result showed that our model provides a much more
accurate duration time estimation of mobile devices that use a battery.

We performed a service quality and battery lifetime tradeoff analysis. The results
showed that our power-aware design framework helps to achieve maximum service quality
while ensuring the task will be completed. We also proposed an adaptive algorithm that
deals with velocity variations during a trip monitored by GPS. The proposed adaptive
control method that uses our battery SOC estimation ensured that the mobile device
fully covers the trip while achieving a 10.3% Qservice improvement compared with the
same task where a fixed velocity was assumed. In a future study, we hope to extend the
proposed battery-aware GPS control design framework to electric vehicles with GPS-based
navigation or autonomous driving. We want to increase the accuracy of the estimation
given the recent progress in battery SOC estimation, sensor fusion technique, and traffic
prediction in future work. We will also compare the evaluation results with conventional
techniques and hybrid approaches.
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Abbreviations

GPS Global Positioning System
OS Operating System
SOC State of Charge
QOS Quality of Service
OC Open Circuit
API Application Programming Interface
LCD Liquid Crystal Display
CCFL Cold Cathode Fluorescent Lamp
LED Light Emitting Diode
CPU Central Processing Unit
TFT Thin Film Transistor
VM Vibration Motor

Appendix A. Battery Model

There are many analytical battery models based on electrochemical knowledge [25–29].
However, the complicated analytical battery models are not easy to use for estimating a
handheld device’s battery SOC in a real-time environment. Thus, we used circuit-based
battery models such as [30–32]. We adopt the battery model from [10]. We measured the
internal resistance of the target battery as about 100 mΩ, which is not negligible in [10]. In
this section, the constructed equivalent circuit model and its parameters are introduced to
prevent the overestimation of the remaining battery SOC.

Appendix A.1. Battery Circuit Model

In our previous work [10], we adopted an equivalent circuit battery model from [30] .
The equivalent circuit model is depicted in Figure A1. This model enables the run-time
and real-time estimation of battery SOC. The remaining charge in the battery is modeled as
a capacitor Cb, which shows the voltage variance vSOC based on the remaining charge in
the battery. vSOC is expressed as follows:

vSOC = Cb/Cb, f ull × 1 V, (A1)

where Cb, f ull is the capacity of the battery and Cb is the currently stored charge. The open-
circuit voltage of a relaxed battery (vOC) only relates to its SOC. Thus, vOC is calculated
by using vSOC. We ignore the internal capacitance (Cts and Ctl) of the battery in the hand-
held device since the typical charge/discharge current is relatively small. The internal
resistances Rs, Rts, and Rtl are also simplified as Rtotal using the heuristic. We model the
battery using vOC and Rtotal as follows:

vOC =b11eb12vSOC + b13vSOC
4 + b14vSOC

3 + b15vSOC
2 + b16vSOC + b17,

Rtotal =b21eb22vSOC + b23, (A2)

where b11–b17 and b21–b23 are coefficients extracted by experiments. We also consider
the battery discharge current ib, since there is the rate capacity effect where a larger
amount of battery discharge current decreases the battery discharging efficiency η(ib). We
approximate η(ib) as (ib)

−kd using Peukert’s law [33]. We also extract kd by measurement.
KPL6072196 Li-ion cell coefficients, b11–b17, b21–b23, and kd are denoted in Table A1.
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isd Cb ib/h(ib)

vSOC
Rs Rts Rtl

CtlCts vCC
vOC ib

Figure A1. Li-ion battery equivalent circuit model.

Table A1. Extracted parameters of the battery models.

Coeff. Value Coeff. Value Coeff. Value

b11 −0.265 b12 −61.649 b13 −2.039
b14 5.276 b15 −4.173 b16 1.654
b17 3.356 b21 −0.043 b22 −14.275
b23 0.154 kd 0.019

Appendix A.2. Remaining Charge Estimation

We calculate the remaining battery SOC by subtracting the consumed energy ∆E from
the previous state’s battery SOC:

E(t + ∆t) = E(t)− ∆E. (A3)

The consumed energy ∆E is calculated as:

∆E = ∆t(Pcpu + Plcd + Pgps + Paudio + Pcellular + Pw f + Pvm) + Eloss. (A4)

The power-consuming unit of the smartphone when the GPS application is running
consists of a CPU (Pcpu), display (Plcd), positioning (Pgps), audio (Paudio), cellular (Pcellular),
Wi-Fi (Pwi f i), and vibration motor (Pvm). The energy consumption in a certain period (∆t) is
calculated by ∆tΣP + Eloss as in Equation (A4), where Eloss denotes the internal energy loss
of the battery. Eloss is derived from Equation (A2) by summing the ohmic and rate-capacity
effect loss as follows:

Eloss = ∆t(i2bRtotal + ib · vOC · (1/η(ib)− 1)). (A5)

Appendix B. Target Platform Model

Hardkernel’s [21] Odroid-A platform is a high-end smart device development plat-
form that has similar functionalities to Samsung Galaxy S2. We used Odroid-A platform
model from [10]. The component units, which compose the Odroid-A platform, are listed
in Table A2. We used the activity profiler of Android OS to extract the activity of each unit.

Table A2. The units composing the target platform.

Components Model Descrpition

Processor Exynos4210 Dual-core CPU
cellular module F5521GW G + GPS module

Wi-Gi GB8632 Wi-Fi + bluetooth module
Display LP101WH1 1366 × 768 TFT LCD

Audio codec MAX98089 Full-featured codec
Vibration motor DMJBRK36S Vibration motor

Battery KPL6072196 10 Ah Lithium polymer

Appendix B.1. CPU

We model the power consumption of the CPU using its execution frequency and uti-
lization as:

Pcpu = Ccpu
f reqXcpu

f req(Xcpu
kernel + Xcpu

user) + Pcpu
0 , (A6)
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where Ccpu
f req and PCPU

0 are coefficients. The CPU execution frequency is denoted in Xcpu
f req.

The CPU utilization of kernel and user program are denoted by Xcpu
kernel and Xcpu

user, respectively.

Appendix B.2. Cellular Module

The power consumption of the cellular module heavily depends on its running state,
which consists of IDLE, FACH, and DCH. Thus, we use the time use rate of each state
within a certain period of time.

Pcellular = Xcellular
on (Ccellular

idle Xcellular
idle + Ccellular

f ach Xcellular
f ach + Ccellular

dch Xcellular
dch ), (A7)

where Xcellular
on is 1 when the cellular module is activated, or 0 otherwise. The use rates

of each state are denoted by Xcellular
idle , Xcellular

f ach , and Xcellular
dch when Ccellular

idle , Ccellular
f ach , and

Ccellular
dch are the coefficients, respectively.

Appendix B.3. Wi-Fi Module

The Wi-Fi module’s power consumption also heavily depends on its running state.
Unlike the cellular module, it only has LOW and HIGH running states, representing its
wireless link speed. It is modeled using the time use rate of each state as:

Pw f = Xw f
on (Cw f

lowXw f
low + Cw f

highXw f
high). (A8)

We assume that the Wi-Fi module only consumes power when it is turned on (Xw f
on ).

Xw f
low and Xw f

high are the time uss of each state. Cw f
low and Cw f

high are the coefficients.

Appendix B.4. Display

The LCD consists of a display device and its control module. The control module
always consumes electricity even the display is fully turned off. The display device typically
consumes electricity proportional to its brightness. The constant value Plcd

ctrl denotes the
consumed electricity of the control module. As a fully turned off display device does not
consume electricity at all, we set a variable Xlcd

on to represent this. When the display device
is at full brightness, it consumes much more electricity than when it is at other brightness
levels. Thus, we use the time utilization rate when it is in full brightness or not (Xlcd

f ull and

Xlcd
brit, respectively). We consequently model the LCD as:

Plcd = Plcd
ctrl + Xlcd

on (Clcd
f ullX

lcd
f ull + Clcd

britX
lcd
brit) + Plcd

0 , (A9)

where Clcd
brit, Clcd

f ull , and Plcd
0 are the coefficients.

Appendix B.5. Audio Device

We assume that the audio device does not consume power at all when it is not activated
(Xaud

on is 1 or 0). Otherwise, it consumes power proportional to the volume. We model audio
devices as:

Paud = Xaud
on (Caud

vol Xaud
vol + Caud

on ), (A10)

Xaud
vol , Caud

vol , and Caud
on are coefficients.

Appendix B.6. GPS Module

As with a cellular module, the GPS module has OFF, SLEEP, and ACTIVE states. Each
state consumes a different amount of power. Thus, we adopt the time utilization rate for
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each state (Xgps
o f f , Xgps

sleep, and Xgps
active). The GPS module does not consume power when it is

inactive (Xgps
on is 1 or 0). Thus, we describe the power model of GPS as:

Pgps = Xgps
on (Cgps

o f f Xgps
o f f + Cgps

sleepXgps
sleep + Cgps

activeXgps
active), (A11)

where Cgps
o f f , Cgps

sleep, and Cgps
active are the coefficients.

Appendix B.7. Vibration Motor

The vibration motor consumes different amounts of power depending on its vibration
strength and patterns. Still, we assume it consumes average constant power when activated
since its vibration strength and patterns are typically fixed. We describe the power model
of vibration motor as:

Pvm = Cmotor
on Xmotor

on , (A12)

where Cmotor
on is the coefficient. Xmotor

on denotes whether the motor is activated or not. We
finally present the extracted coefficients of the Android system power model in Table A3.

Table A3. The extracted coefficients of the Android system power model.

Component Coeff. Value Coeff. Value

Processor Ccpu
f req 0.00642 Pcpu

0 0.332

Cellular Ccellular
idle 0.011 Ccellular

dch 0.672

Ccellular
f ach 0.322

Wi-fi Cw f
high

0.020 Cw f
low

0.740

Display
Clcd

birt 0.004 Plcd
0 0.224

Clcd
f ull 1.307 Plcd

ctrl 0.067

Audio Caud
on 0.024 Caud

vol 0.00009

Vibration motor Cvib
on 0.003

GPS CGPS
o f f 0.011 CGPS

active 0.212

CGPS
sleep 0.069
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