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Abstract: Storing renewable energy in chemicals, like hydrogen, can bring various benefits like high
energy density, seasonal storability, possible cost reduction of the final product, and the potential
to let renewable power penetrate other markets and to overcome their intermittent availability.
In the last year’s production of this gas from renewable energy sources via electrolysis has grown
its reputation as one feasible solution to satisfy future zero-emission energy demand. To extend
the exploitation of Renewable Energy Source (RES), small-scale conversion plants seem to be an
interesting option. In view of a possible widespread adoption of these types of plants, the authors
intend to present the experimental characterization of a small-scale hydrogen production and storage
plant. The considered experimental plant is based on an alkaline electrolyser and an air-driven
hydrogen compression and storage system. The results show that the hydrogen production-specific
consumption is, on average, 77 kWh/kgH2. The hydrogen compressor energy requirement is,
on average, 15 kWh/kgH2 (data referred to the driving compressed air). The value is higher than
data found in literature (4.4–9.3 kWh/kgH2), but the difference can be attributed to the small size of
the considered compressor and the choice to limit the compression stages.

Keywords: alkaline electrolysis; hydrogen production; hydrogen storage; hydrogen compression;
power to gas

1. Introduction

The transition from traditional carbon-based non-renewable energy sources to re-
newable ones is one of the most discussed and urgent themes of our times. Renewable
energy installed power capacity in 2019 grew more than 200 GW, establishing a record
for the largest increase of capacity deployed in a year [1]. Although over a five-year
span Renewable Energy Sources (RES) represented less than one-third of the global en-
ergy growth, their installation rate was anyway higher than fossil fuel-based plants and
nuclear ones. While renewable energy sources are progressing in the power generation
sector, the transportation and industrial sectors continue to depend highly on traditional
carbon-based fuels.

One of the main reasons for the difficulty of penetration of RES in these sectors is the
fact that most of them, such as solar or wind, are not entirely and directly dispatchable as
they are intermittent and therefore unable to meet load requirements, especially if highly
variable. To overcome these obstacles, Energy Storage Systems (ESS) must be employed.

Among the different energy storage systems, storing renewable energy in chemicals,
like hydrogen, can bring various benefits like high energy density, seasonal storability,
possible cost reduction of the final product, and the potential to expand renewable power
exploitation. In the last years, the production of this gas from renewable energy sources
via electrolysis has grown its reputation as one feasible solution to satisfy future zero-
emission energy demand. This production process is often called Power-to-Gas [2,3] and is
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considered the most cost-efficient solution for long-term energy storage [4]. It is beneficial
because it can connect electrical power and gas networks and can help the diffusion of
zero-emission energy sources in sectors like heat production, transportation, and heavy
industries [5]. In this context, water electrolysis can be the key enabling technology for
this type of energy storage. Alkaline, Proton Exchange Membrane (PEM), and the latest
solid oxide electrolysers are the main commercially accessible technologies today on the
market [6].

Alkaline Electrolyser Cells (AEC) have been in commercial use in industrial application
since the 1920s and can be considered as the most mature electrolyser technology available
today. An alkaline solution of sodium hydroxide (NaOH) or potassium hydroxide (KOH)
in water is utilized as electrolyte while electrodes are in most cases manufactured of steel
covered with a nickel coat. AEC is a mature technology and these types of electrolysers
have been working even for decades [7,8]. Alkaline electrolysers with kilowatt scale have
been integrated to get up to megawatt capacities, letting them be considered as the main
option for the production of large quantities of hydrogen [9]. Their working principle is
illustrated in Figure 1.

Figure 1. Alkaline Electrolyser Cell (AEC) working principle. Reprinted from ref. [9] with permission.
Copyright 2013 FuelCellToday.

When a DC voltage is applied between the two electrodes of an AEC (typically
between 1.8–2.0 V), water molecules in contact with the cathode acquire electrons to form
hydroxide (OH−) ions and release H2 molecules according to the Hydrogen Evolution
Reaction (HER):

2 H2O + 2e− → H2 + 2 OH− (1)

The OH− ions migrate through the electrolyte to the anode where, with the release of
electrons, H2O and O2 are produced according to the Oxygen Evolution Reaction (OER):

2 OH− → 1⁄2 O2 + H2O + 2e− (2)

In the AEC the recombination of the hydrogen and oxygen produced at the electrodes
is avoided by a separator (typically made of ceramic material), placed between the two
electrodes. Typical hydrogen output pressure is between 1 bar g and 30 bar g.

Regarding electrolyser’s efficiency, report [10] specifies the state-of-the-art values of
large-scale alkaline electrolysers and the future targets set by the European Community.
These values are shown in Table 1.
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Table 1. Large scale electrolyser current and future objectives for electrical energy consumption per
each kilogram of hydrogen produced at nominal capacity [10].

Electricity Consumption @ Nominal Capacity [kwh/kgh2]

State-of-the-Art FCH 2JU Target

2012 2017 2020 2024 2030

57 51 50 49 48

Studies [11,12] helped the authors to compare different alkaline electrolysers models
available on the market. With reference to Table 2, the average specific energy consumption
is 57.6 kWh/kgH2. The data shown in Table 2 confirm the value presented in Table 1 taking
into account the smaller size of the models.

Table 2. List of electrolysers available on the market (not exhaustive) and key performance metrics of devices with similar
capacity and output pressure to the one considered in this article. Most of the data are elaborated from [11,12], in all the
other cases data are derived from product data sheets.

Company Country Type Model Capacity
[Nm3/h]

H2 Output
Pressure [bar g]

H2
Purity

[%]

Electrical
Consumption
[kWh/kgH2]

HHV
Efficiency [%]

Acta Italy AEM EL1000 1 29 99.94 53.2 74%

Angstrom Advanced [13] USA PEM HGH170000 10 4 99 to
99.9999 64.5 1 61.4% 2

Elogen (ex AREVA H2 Gen) France PEM ELYTE 10 10 30 99.999 47.8–60.0 1 65.6–82.4% 4

Enapter (ex Acta) Italy AEM EL 2.1 0.5 35 99.9 53.3 1 73.9% 4

Erredue Italy PEM SIRIO 200 2 15 (Opt. 30) 99.99 53.3 1 73.9% 4

GreenHydrogen [14] Denmark PEM HyProvide P1 1 50 >99.995 61.2 1 64.9% 2

H-TEC SYSTEMS Germany PEM EL30/144 3.6 29 N/A 55.4 71.1%
Idroenergy Italy Alkaline mod. 8.0 5.33 4 >99.5 62.5 3 63.0% 4

ITM Power UK PEM HGAS3SP 3.2 N/A 99.999 N/A N/A
Nel Hydrogen [15] Norway PEM H6 6 15 (Opt. 30) 99.9995 75.5 1 52.2% 4

Pure Energy Centre UK Alkaline 4Nm3 4 Up to 12 >99.3 62 63% 4

Sagim [16] France Alkaline M5000 5 7 99.9 55.6 1 70.8% 2

Teledyne Energy Systems USA Alkaline NH–450 450 10 N/A 65.6 1 60.2% 2

1 Data obtained by conversion from kWh/Nm3 to kWh/kg using a hydrogen density of 0.09 kg/Nm3; 2 Data obtained by conversion from
an efficiency given on an LHV basis; 3 Data calculated by authors from production rates and maximum electrical consumption stated in
data sheets; 4 Data calculated by authors from the electrical consumption.

Since hydrogen has a low volumetric energy density, work must be applied to re-
duce its storage volume. The most widespread hydrogen storage systems are 200 bar g
pressure gas cylinders. However, light-weight composite cylinders are being studied and
manufactured for small capacities and can tolerate pressures up to 800 bar g.

Mechanical compressors are normally used to compress hydrogen [17,18], and the
reciprocating type is the most widespread technology. Reciprocating compressors are best
suited for plants characterized by moderate flows and high pressures and can bring to
high efficiencies particularly when a multi-stage configuration is employed. In addition,
they offer good flexibility in size and capacity. Oil-free reciprocating compressors are
preferred because they can bring good performances and high-purity compressed gas [19].

In literature, different works deal with hydrogen production, compression, and storage
systems, especially when considering hydrogen refueling stations.

In [20], in order to study the effect of combining different renewable energy sources
with energy storage on grid stability, the characterization of a hydrogen production and stor-
age system composed of a 1.33 Nm3/h alkaline electrolyser and an air-driven reciprocating
compressor is presented. In particular, the study focuses on the system control strategy.

The development of a hydrogen refueling station design tool is described in [21]:
a Simulink model is created consisting of an electrolyser, a compressor, a storage tank,
a dispensing unit, and a vehicle that consumes the hydrogen fuel. Simulation results in
terms of time predictions to refill storage tanks and station operational cost are compared
with three different existing hydrogen refueling stations.
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In [22], a data collection and analysis on different existing hydrogen refueling stations
is presented. Amongst the different presented data, average electrolyser and hydrogen
compression performances are shown. However, no data is available regarding hydrogen
refueling station design in terms of electrolyser and compressor technology.

In [23], the compression section of a hydrogen refueling station has been studied:
experimental data from over 20,000 compression cycles were used to build a simulation
tool of an air-driven hydrogen booster. This equipment is used to increase the hydrogen
pressure from 200 to 500 bar g. Some interesting data on compressor-specific energy
consumption are presented.

In [24], a hydrogen compression system powered by renewable energy sources
is described. The system has a specific energy consumption that varies from 4.4 to
9.3 kWh/kgH2. However, compression ratios considered are different from the study
presented in this article because the hydrogen compression system described in [24] is
characterized by an inlet pressure decreasing from 200 to 120 bar g, and outlet pressure of
the storage of 450 bar g.

Report [25] is focused on compressor’s efficiency in hydrogen refueling stations.
The report highlights a specific energy consumption of about 10 kWh/kgH2 for the consid-
ered pressure range (4.6 to 200 bar g).

In this article, a small-size hydrogen production and storage plant is described and
the experimental data presented. The hydrogen production section of the plant is based
on an alkaline electrolyser capable of 5 Nm3/h, while the hydrogen compression and
storage section is composed of an air-driven reciprocating compressor and 200 bar g gas
cylinders. The aim of the work is to assess the energy performance of the electrolyser and
the compression system in order to evaluate the overall system energy efficiency in terms
of specific energy consumption. The goal is to increase the experimental data available
about hydrogen production and storage plants of this capacity. This size of plants in the
future could be very interesting from a commercial point of view; enabling for household
application and small or medium industries the possibility to store the renewable energy
that they produce when not immediately used.

2. Test Rig Description

As previously mentioned, the considered plant is composed of an alkaline electrolyser
capable of 5 Nm3/h, an air-driven hydrogen compressor, and a 200 bar g storage. In order
to produce the required compressed air to drive the hydrogen compressor a screw-type air
compressor is also included.

A Piping and Instrumentation Diagram (P&ID) of the plant complete with the identifi-
cation codes of the main components and instruments is shown in Figure 2.

Figure 2. Piping and Instrumentation Diagram (P&ID) of the testing facility.
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2.1. Process Flow

The process flow of the test facility can be summarized as follows:

• Water is treated and appropriately demineralized using a water treatment system
(FZ/001DE) in order to reduce its conductivity below the limit imposed by the elec-
trolyser manufacturer;

• Demineralized water goes then to the electrolyser where is converted into hydrogen
and oxygen. The electrolyser hydrogen production internal pressure is precisely
controlled and limited by an external back-pressure regulator (H2/001BP);

• The produced hydrogen fills a set of buffer cylinders (FZ/001HBA), with a geometric
volume of 50 l, interposed between the electrolyser and an air-driven hydrogen
compressor (FZ/001HC). The buffer cylinders (FX/001HBA) are filled at a pressure of
about 5 bar g. The purpose of these “low-pressure” buffer systems is to ensure smooth
and continuous operation of the electrolyser and of the hydrogen compressor;

• The oxygen produced in the electrolysis reaction, which for the purpose of the project
is considered a by-product, is suitably vented to the atmosphere in a safe location;

• Hydrogen pressure is then raised up to 200 bar g by an air-driven hydrogen recipro-
cating compressor (FZ/001HC);

• Flow of compressed hydrogen is then stored in high-pressure cylinders with a geo-
metric volume of 50 l (FZ/001HBB).

2.2. Main Components Data
2.2.1. Alkaline Electrolyser (FZ/001EL)

The industrial alkaline electrolyser used in the testing facility (FZ/001EL) is a stand-
alone unit provided with a built-in electrical power system which, at the same time,
supplies the generator balance of the plant and converts from AC to DC the electrical
power required for the operation of two alkalines (NaOH electrolyte) stacks.

An integrated PLC-based process control system provides local monitoring of the
hydrogen production process and controls the correct operation of the generator and of the
water pumps that extract process water from the reservoir tank (FZ/001WT), pressurize it,
and distribute it to the stacks.

The electrolyser includes hydrogen and oxygen separators to separate electrolytes
from the hydrogen and the oxygen outlet streams.

The hydrogen output section of the unit includes a zeolites-based gas purification
system for removing any traces of unwanted reactant from the hydrogen stream. Hydrogen
generated by the unit reaches the purity of 99.999% and is therefore suitable for high
purity applications, such as PEM Fuel Cell feeding. The hydrogen purification system
uses regenerative cartridges to increase the time interval between maintenance stops of
the plant. The electrolyser automatically manages cartridges regeneration when required
while guaranteeing a continuous production of hydrogen by using part of the produced
gas stream.

Downstream the gas purification a drying unit reduces and controls the humidity
content of the hydrogen outlet flow. The alkaline electrolyser is provided with a built-in
closed-loop cooling system with water/glycol mixture circulation. The cooling system
includes a radiator (FZ/001RF) and an active air fan.

As indicated in Figure 2, the electrolyser is connected with the air compression system
(FZ/001AC) for activation of the pneumatic valves involved in the internal controls. Con-
nection with a nitrogen bottle is provided for possible purging operations during start-up
and maintenance activities.

The main data of the alkaline electrolyser (FZ/001EL) are shown in Table 3.
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Table 3. Technical data of the alkaline electrolyser (FZ/001EL).

Quantity Unit Value

Deionized water inlet [l/h] 4.7 max.

Hydrogen outlet [Nm3/h] 5.3 max.
[bar g] 5 max.

Oxygen outlet [Nm3/h] 2.5 max.
[bar g] 5 max.

Compressed air [m3/h] 1
[bar g] 5 to 8

2.2.2. Compressed Air Package (FZ/001AC)

The main data of the electric-driven air compressor included in the air compressed
package (FZ/001AC) are shown in Table 4.

Table 4. Technical data of the air compressor.

Quantity Unit Value

Output pressure [bar g] 10 max.
Air flow [m3/min] 1.59

Efficiency at full load [%] 89

2.2.3. Reciprocating Air-Driven Hydrogen Compressor (FZ/001HC)

The main data of the reciprocating air-driven hydrogen compressor (FZ/001HC),
hereafter also called booster, are shown in Table 5. An air-driven hydrogen booster has been
chosen for this study because it is safer than an electrically driven one, especially when
considering hazardous areas.

Table 5. Technical data of the air driven hydrogen compressor (booster) (FZ/001HC)

Quantity Unit Value

Compression stages - 2
Inlet pressure [bar g] 2 to 5

Max. discharge pressure [bar g] 200
Drive air pressure [bar g] 2.8 to 10.3

2.3. Field Instrumentation

The experimental plant has been designed including field instrumentation and dedi-
cated automation and monitoring system for plant and components characterization.

The monitoring and control system is based on an electronic controller including a
real-time processor, a Field Programmable Gate Array (FPGA), and I/O modules. The I/O
modules are directly connected to field instrumentation, and the controller itself is then
connected to a host PC on which the user interface has been developed. Both controller
and host PC can be connected to the internet for remote system monitoring and control.

Figure 3 shows the automation system overview page developed for the test plant,
including the real-time monitoring of the main process parameters and process vales control.
Other pages of the user interface are dedicated to graphs of the monitored quantities and the
display of calculated and statistical data of the system. The electrical power measurements
were made with a portable power analyser.



Energies 2021, 14, 5347 7 of 17

Figure 3. Hydrogen production and storage plant automation system main page.

2.3.1. Hydrogen Line

Instrumentation providing analog input to the automation system controller is in-
stalled on the four branches that make up the hydrogen piping system:

1. Between the electrolyser and the low-pressure buffer;
2. Upstream the low-pressure buffer;
3. Upstream the hydrogen compressor;
4. Hydrogen compressor delivery side, upstream the high-pressure storage.

On each branch, hydrogen pressure and temperature are monitored through dedi-
cated transmitters. These instruments are indicated respectively with suffix PT (Pressure
Transmitter) and TT (Temperature Transmitter–IEC751 class A Pt100 sensors) in the P&I
diagram of Figure 2. Hydrogen flowrate from the electrolyser is then monitored by the
automation system through a dedicated flowmeter (H2/001FT) installed downstream the
back-pressure regulator.

2.3.2. Compressed Air Lines

Compressed air line between the compressed air package and the hydrogen com-
pressor is interfaced with the automation system for pressure monitoring via the pressure
transmitter CA/001PT, and for monitoring and regulating the flow via the controller
CA/001FC. The accuracy of the main instruments used is presented in Table 6.
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Table 6. Main metrological characteristics of the instrumentation.

Component Feature Value

Hydrogen flowmeter (H2/001FT), Accuracy ±0.5% Rd plus ± 0.1% FS
Repeatability <0.2% Rd

Pressure transmitter H2/001PT,
H2/002PT, H2/003PT

Accuracy ±0.50% FS
Repeatability <0.1% FS

Pressure transmitter (CA/001PT)
Linearity error ≤±0.5% FS
Repeatability ≤±0.1% FS

Air flow meter/controller
(CA/001FC) Accuracy ±(0.5% Rd plus 0.5% FS)

Portable network analyser Voltage accuracy 0.1% of Vnom
Ampere accuracy ±(0.5% Rd plus 5% counts)

3. Methods Used for Carrying Out Tests and Results Obtained
3.1. Hydrogen Production Efficiency Characterization
3.1.1. Purpose of the Test

The tests aimed at evaluating the efficiency at two hydrogen flow rates: the full flow
rate and a reduced flow rate. To change the flow rate the back pressure regulator was set at
two values: 4.6 bar g and 4.2 bar g respectively.

3.1.2. Test Procedure

At the end of the set-up and warm–up phase, the hydrogen production is started, and
the data listed in Table 7 are recorded.

Table 7. Quantities measured during the hydrogen production efficiency test with unit of measure-
ment, instrument used for the survey and reference to the position on the P&ID of Figure 2.

Quantity Unit Instrument P&I Reference

Electrolyser H2 outlet flow rate [Nm3/h] Flow meter H2/001FT
Electrolyser H2 outlet pressure [bar g] Electrolyser display PT

Electrolyser power consumption [kW] Power analyser -
Ambient temperature [◦C] Weather station -

Ambient pressure [hPa] Weather station -

The plots over time of the hydrogen flow rate (in blue) and of the electrical power
absorbed by the electrolyser (in orange) during the tests performed at 4.6 and 4.2 bar g
output pressure are shown in Figures 4 and 5. The two figures show trends recorded by
the automation system during the tests for a duration of about 30 min. It is possible to
observe as, in both tests, sudden changes in flow rate occur for a few seconds at intervals
of about three minutes. This phenomenon is related to the electrolyser internal hydrogen
purification unit which, as anticipated in Section 2.2.2, uses a part of the hydrogen produced
to periodically clean the filter cartridges.
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Figure 4. Plot over time of the electrical power absorbed and of the hydrogen outlet flowrate during
test 4.6 bar g.

Figure 5. Plot over time of the electrical power absorbed and of the hydrogen outlet flowrate during
test 4.2 bar g.

3.1.3. Electrolyser Efficiency Calculation

The electrolyser efficiency (in percentage) is evaluated with Equation (3) as the ratio
between the power available in the produced hydrogen (referred to LHV (Lower Heating
Value)) and the electrical power absorbed by the electrolyser:

ηel =
PH2

Pel;in
× 100 [%] (3)

The average power associated with the hydrogen produced by the electrolyser (PH2)
is calculated with Equation (4):

PH2 = ρH2 ×
.

V
3600

× LHV [kW] (4)
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The meaning of the quantities shown in the above formulas, the corresponding unit
of measurement, and the methodology used to calculate them are summarized in Table 8.

Table 8. Quantities used for the calculation of the electrolyser production efficiency, unit of measure-
ment and methodology used for the calculation.

Quantity Unit Formula, Calculation Method or Value

PH2 [kW] Equation (4)
LHV [MJ/kg] 120 1

.
V [Nm3/h]

Flow rate measured by the H2/001FT flowmeter referred to
normal conditions: 101.325 Pa, 0 ◦C

ρH2 [kg/m3] 0.0899 2

Pel;in [kW]
The average electrical input power in the electrolyser is

obtained as an average of the input power values provided
from the power analyser

1 IEC 62282-3-200–Stationary fuel cell power systems–Performance test method.; 2 National Institute for Standards
and Technology (NIST)–Reference Fluid Thermodynamic and Transport properties Database (REFPROP).

3.1.4. Test Results: Hydrogen Production Efficiency

The results of the tests performed with the electrolyser operating at 4.6 and 4.2 bar g
output pressure are summarized in Table 9.

Table 9. Test results for tests with electrolyser operating at 4.6 and 4.2 bar g output pressure.

Quantity Unit Average
@ 4.6 Bar g

Average
@ 4.2 Bar g

Electrolyser H2 outlet flow rate [Nm3/h] 2.52 5.53
Electrolyser H2 outlet pressure [bar g] 4.6 4.2

Electrolyser power consumption [kW] 21.2 38.6
Ambient temperature [◦C] 25 25

Ambient pressure [hPa] 1017 1017
Electrolyser efficiency 1 [%] 36 43

Specific Energy Consumption 1 [kWh/kg] 93 77
1 Including hydrogen used for filter cartridges regeneration.

Moving from part load operation to design load operation (design flow rate) the
electrolyser efficiency is increased from 36% to 43%.

It should also be noted that, for the unit under test, the calculated specific energy
consumption, id est the kW per hour needed to make one kg of hydrogen available at
the electrolyser output, is in line with the data reported in the manufacturer’s technical
specification and is also higher than the available data referred to large scale alkaline
electrolysers considering both the state-of-the-art of this technology and the future targets
set by the European Community shown in Table 1 of the introduction section.

The result of our study can be compared with different electrolysers available on the
market, as per data given in Table 2 that can be found in the introduction. When the average
value of the specific energy consumption for alkaline electrolysers (57.6 kWh/kgH2) is
compared to the authors’ experimental data (77 kWh/kgH2) it is evident that the tested
system has, even in this case, a lower efficiency. As above mentioned, part of the hydrogen is
used for the regeneration of the cartridge of the hydrogen purification system and so this flow
is lost and brings to a decrease in efficiency. Therefore, we can conclude that the experimental
value of the efficiency is at least in line with one of the models presented in Table 2.

3.2. Hydrogen Production and Storage Plant Overall Characterisation
3.2.1. Purpose of the Test

The purpose of this test is to characterize the performance of the whole test plant in
terms of specific energy consumption. After having characterized the hydrogen production
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system in Section 3.1, in this test hydrogen is produced at 4.6 bar g and then compressed at
200 bar g.

The test was carried out with the electrolyser operating at the nominal output pressure
of 4.6 bar g because this condition is the one that assures the best performance of the
hydrogen booster. The test has been carried out with the air-driven hydrogen booster
operating at rated speed first (44 cycles per minute), and then and at a reduced speed
of 35 cycles per minute to compare the influence of the booster’s speed on the specific
energy consumption.

3.2.2. Test Procedure

The same set-up procedure described in Section 3.1.1 is carried out to collect the data
for the hydrogen production and storage analysis: Table 10 shows the quantities measured
during the test.

Table 10. Quantities measured during the hydrogen production and storage analysis test with unit of
measurement, instrument used for the survey and reference to the position on the P&ID of Figure 2.

Quantity Unit Instrument P&I Reference

Electrolyser H2 outlet flow rate [Nm3/h] Flow meter H2/001FT
Electrolyser H2 outlet pressure [bar g] Electrolyser display PT

Electrolyser power consumption [kW] Network analyser -
Air compr. power consumption [kW] Network analyser -
H2 compr. driving air flow rate [Nm3/h] Flow controller CA/001FC

H2 compr. speed [Cycles/min] Stopwatch -
H2 buffer pressure [bar g] Pressure transducer H2/002PT

H2 storage pressure [bar g] Pressure transducer H2/005PT
Ambient temperature [◦C] Weather station -

Ambient pressure [hPa] Weather station -

3.2.3. Test Results: Booster Hydrogen and Driving-Air Flow Rate Variation with Time and
Booster Specific Energy Consumption

The test has been divided into two steps. In the first step, the hydrogen storage
pressure was raised from 10 to 100 bar g and, in the second step from 100 to 200 bar g.
The overall filling time was about 5 h. The plots overtime of the hydrogen flow rate
processed by the booster and its driving-air flow rate, for the booster running at 44 cycles
per minute, are shown in Figures 6 and 7.

When the electrolyser hydrogen output flow rate is considered, it can be noticed that
this is reduced if compared to the test on the electrolyser as a stand-alone unit and working
at the same output pressure. This depends on the processing capability limits of the booster.
The already described fluctuations of the hydrogen flow from the electrolyser due to the
internal recirculation for filter cleaning can be noticed as well. From Figure 7 it can be
noticed that the booster driving-air flow rate is progressively increased in steps by the
automation control system, in order to keep the compressor speed constant as the pressure
in the storage system increases.

The specific energy required by the hydrogen booster can be evaluated as follows.
At first, the energy associated with the isentropic air compression process required to
produce the compressed air is calculated. This air is the one required to drive the hydrogen
booster for the entire storage process. Then, the energy content of the mass of hydrogen
stored is quantified. The specific energy required by the hydrogen booster is calculated as
the ratio between energy associated to compress air and the one of the hydrogen stored.
The calculated specific energy of the hydrogen booster for compression from 4.6 bar g to
200 bar g is equal to 15 kWh/kgH2.
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Figure 6. Plot over time of the hydrogen flow from the electrolyser during the test with hydrogen
booster running at 44 cycles per minute.

Figure 7. Plot over time of the booster driving-air flow rate during the test with hydrogen booster
running at 44 cycles per minute.

It could be interesting to compare this value with other data, but literature on these
types of boosters, as shown in the introduction section, is scarce. Moreover, using this
approach to assess the efficiency implies that the operating conditions have to be the same
(initial pressure and final pressure). Therefore, it is difficult to make a comparison with the
tested system and other data. As already pointed out in a study cited in the introduction
section, the specific energy consumption of an air-driven hydrogen booster can vary from
4.4 to 9.3 kWh/kgH2 with an inlet pressure decreasing from 200 to 120 bar g and outlet
pressure of the storage of 450 bar g. These values, although lower, are comparable with the
ones referred to the hydrogen booster used in this study.
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3.2.4. Test Results: Hydrogen Pressure Variations with Time

The plots overtime of the hydrogen pressure measured on the hydrogen buffer and
the high-pressure storage during the test with the electrolyser working at output nominal
pressure of 4.6 bar g and the hydrogen booster running at 44 cycles per minute are shown
in Figures 8 and 9. As shown in Figure 8 the hydrogen pressure in the low-pressure buffer
is almost constant during the test. It is also evident the interruption of the test during the
night (at a time of approx. 8500 s).

Figure 8. Plot over time of the hydrogen pressure in the low-pressure buffer during the test with
hydrogen compressor running at 44 cycles per minute.

Figure 9. Plot over time of the hydrogen pressure on the hydrogen storage during the test with
hydrogen compressor running at 44 cycles per minute.



Energies 2021, 14, 5347 14 of 17

3.2.5. Test Results: Booster Running at 35 Cycles Per Minute

A similar storage system filling test was then performed with the electrolyser operating
at rated output pressure (4.6 bar g), but with the booster running at a reduced speed
of 35 cycles per minute. As in the previous case, the test was divided into two steps.
With reference to the pressure in the storage system, in the first step of the test, the pressure
was raised from 0 to 172 bar g and, in the second step from 172 to 200 bar g. In this case,
the overall filling time was about 6 and a half hours. Plots of booster hydrogen flow rate
and hydrogen storage pressure variations with time were similar in trend to those recorded
in the previous test and are shown in Figures 8 and 9.

3.2.6. Test Results: Production and Storage Specific Energy Consumption Considerations

Table 11 shows the mean values calculated from the data collected with the electrolyser
operating at output nominal pressure and booster running at 44 cycles per minute.

Table 11. Test results for tests with electrolyser operating at 4.6 bar and hydrogen compressor running at 44 cycles
per minute.

Quantity Unit From
10 to 100 Bar g

From
100 to 200 Bar g

Overall Process: from
10 to 200 Bar g

Electrolyser H2 outlet flow rate (average) [Nm3/h] 1.54 1.43 1.51
Electrolyser H2 outlet pressure (average) [bar g] 4.6 4.6 4.6

Electrolyser power consumption (average) [kW] 21.2 21.2 21.2
Air compressor power consumption (average) [kW] 8 9.7 8.85

Peak air compressor power consumption [kW] 12.4 12.7 -
Peak H2 compressor driving air flow rate [Nm3/h] 35 56.5 -

Storage initial pressure [bar g] 10 99.3 -
Storage final pressure [bar g] 100 204.5 -

Buffer pressure (average) [bar g] 4.53 4.51 4.52
H2 compressor booster speed [cycles/min] 44 44 44

Based on these data and considering the electricity required to compress the air for
driving the booster, it is possible to define the storage-specific energy consumption as the
overall energy required to compress 1 kg of hydrogen from 4.6 to 200 bar g. For the consid-
ered case, a 65 kWh/kgH2 value has been calculated. This value is significantly higher than
the air driven booster specific energy consumption previously stated (15 kWh/kgH2) and it
is higher than figures found in literature for the considered pressure range (4.6 to 200 bar g):
in the introduction section, a value of about 10 kWh/kgH2 is reported. It must be however
highlighted that this specific energy consumption is related to an electric-driven hydrogen
compressor. Such a solution is intrinsically more efficient since the conversion from electric-
ity to compressed air is not required. Moreover, the air compressor used in the presented
test to drive the hydrogen booster is a constant-speed electric screw compressor. This type
of compressor, once the set pressure is reached, does not switch off the electric motor, and
keeps operating in the so-called “unload mode”. When operating in this mode, power ad-
sorbed can reach 50% of the full load without producing any useful effect (compressed air).
This behavior of the air compressor is illustrated in Figure 10, where the air compressor’s
electrical power consumption is shown for different booster output pressure. Figure 10a
shows the air compressor electrical power consumption when the booster works at low
hydrogen outlet pressure (abt. 10 bar g), whereas Figure 10b shows the air compressor
electrical power consumption when the booster works at high hydrogen outlet pressure
(abt. 200 bar g).
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Figure 10. Electric power consumption of the air compressor in an interval of 10 min. respectively:
(a) with a hydrogen outlet pressure of abt. 10 bar g; (b) with a hydrogen outlet pressure of abt. 200 bar g.

The electrical consumption peaks shown in Figure 10a,b correspond to the air com-
pressor “load mode” (compressor feeding the air storage while the electrical consumption
valleys correspond to the “unload mode”. Comparing Figure 10a,b it is also possible to
observe that the electrical energy adsorbed when the compressor is in “unload mode” is
higher when the hydrogen outlet pressure is low.

On the basis of the measured data, considering the electrolyser working at a design
flow rate (77 kWh/kgH2 at 5.53 Nm3/h) and a hypothetical compressor able to elaborate
this hydrogen flow with the same specific energy consumption as the one installed in
the test rig (65 kWh/kgH2), the production and storage required specific energy would
be 142 kWh/kg.

Table 12 summarizes the results obtained with the electrolyser operating at output
nominal pressure and booster running at a reduced speed of 35 cycles per minute. Slow-
ing down the hydrogen booster, the processed hydrogen flow rate is further decreased
to an average value of 1.19 Nm3/h. The electrolyser and booster efficiencies are reduced
as well. These data show that, for achieving high production and storage efficiencies, it
is important to choose the right match of system components. For example, when the
electrolyser is considered, its efficiency is severely affected when operated at part load.
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Table 12. Test results for tests with electrolyser operating at 4.6 and hydrogen compressor running at 35 cycles per minute.

Quantity Unit From
0 to 172 Bar g

From
172 to 200 Bar g

From
0 to 200 Bar g

Electrolyser H2 outlet flow rate (average) [Nm3/h] 1.26 1.12 1.19
Electrolyser H2 outlet pressure (average) [bar g] 4.6 4.6 4.6

Electrolyser power consumption (average) [kW] 21.2 21.2 21.2
Air compressor power consumption (average) [kW] 8 9.4 8.7

Peak air compressor power consumption [kW] 12.7 12.7 -
Peak H2 compressor driving air flow rate [Nm3/h] 35.7 43.7 -

Storage initial pressure [bar g] 0 167 -
Storage final pressure [bar g] 172 202 -

Buffer pressure (average) [bar g] 4.58 4.46 4.52
H2 compressor booster speed [cycles/min] 35 35 35

4. Conclusions

In this article, the authors present experimental data acquired on a small hydrogen
production and storage system, based on an alkaline electrolyser and an air-driven hydro-
gen booster. The goal of this study is to increase the experimental data available about
hydrogen production and storage plants of small capacity (5 Nm3/h of hydrogen, storage at
200 bar g). This size of plants in the future could be very interesting from a commercial
point of view; enabling for household application and small or medium industries the
possibility to store the renewable energy that they produce when not immediately used.

The experimental data show that the electrolyser efficiency is in line with the man-
ufacturer specifications, and this is equal to 36% (93 kWh/kgH2) at a reduced flow rate
(pressure 4.6 bar g) and to 43% (77 kWh/kgH2) at a design flow rate (4.2 bar g). This differ-
ence is due to the large increase in the hydrogen flow. Data available in literature for similar
electrolysers show an average specific energy consumption of 57.6 kWh/kgH2. Since part
of the hydrogen generated by the tested electrolyser is used for the regeneration of the car-
tridge of the hydrogen purification system, it is possible to conclude that the experimental
value of the efficiency is in line with the values available in literature. Power absorbed by
the air-driven hydrogen booster is high if compared to other literature data. Calculated
specific energy of the hydrogen booster for compression from 4.6 bar g to 200 bar g is equal
to 15 kWh/kgH2 (when referred to the compressed air only) and 65 kWh/kgH2 (if the
electrical power consumption of the air compressor is included).

Possible actions to increase the overall plant efficiency could be:

• Replacement of the hydrogen booster with a multistage unit capable of processing a
higher flow rate;

• Modification of the electrolyser unit in order to avoid using hydrogen to regenerate
the filter cartridges;

• Increase of the electrolyser output pressure.

It would therefore be necessary to carry out an in-depth analysis aimed at identifying,
among the proposed solutions, the best compromise in terms of technical, economic, and
safety requirements.
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