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Abstract: Placement of fins in enclosures has promising utilization in advanced technological pro-
cesses due to their role as heat reducing/generating elements such as in conventional furnaces,
economizers, gas turbines, heat exchangers, superconductive heaters and so forth. The advancement
in technologies in power engineering and microelectronics requires the development of effective
cooling systems. This evolution involves the utilization of fins of significantly variable geometries
enclosed in cavities to increase the heat elimination from heat-generating mechanisms. Since fins
are considered to play an effective role in the escalation of heat transmission, the current study is
conducted to examine the transfer of heat in cavities embedding fins, as well as the effect of a range
of several parameters upon the transmission of energy. The following research is supplemented with
the interpretation of the thermo-physical aspects of a power-law liquid enclosed in a trapezoidal
cavity embedding a U-shaped fin. The Boussinesq approximation is utilized to generate the mathe-
matical attributes of factors describing natural convection, which are then used in the momentum
equation. Furthermore, the Fourier law is applied to formulate the streaming heat inside the fluid
flow region. The formulated system describing the problem is non-dimensionalized using similarity
transformations. The geometry of the problem comprises a trapezoidal cavity with a non-uniformly
heated U-shaped fin introduced at the center of the base of the enclosure. The boundaries of the
cavity are at no-slip conditions. Non-uniform heating is provided at the walls (l1 and l2), curves
(c1, c2 and c3) and surfaces (s1 and s2) of the fin; the upper wall is insulated whereas the base and
sidewalls of the enclosure are kept cold. The solution of the non-dimensionalized equations is
procured by the Galerkin finite element procedure. To acquire information regarding the change
in displacement w.r.t time and temperature, supplementary quadratic interpolating functions are
also observed. An amalgam meshing is constructed to elaborate the triangular and quadrilateral
elements of the trapezoidal domain. Observation of significant variation in the flow configurations
for a specified range of parameters is taken into consideration i.e., 0.5 ≤ n ≤ 1.5 and 104 ≤ Ra ≤ 106.
Furthermore, flow structures in the form of velocity profiles, streamlines, and temperature contours
are interpreted for the parameters taken into account. It is deduced from the study that ascending
magnitude of (Ra) elevates level of kinetic energy and magnitude of heat flux; however, a contrary
configuration is encapsulated for the power-law index. Navier–Stokes equations constituting the
phenomenon are written with the help of non-dimensionalized stream function, temperature profiles,
and vortices, and the solutions are acquired using the finite element method. Furthermore, the
attained outcomes are accessible through velocity and temperature profiles. It is worth highlighting
the fact that the following analysis enumerates the pseudo-plastic, viscous and dilatant behavior of
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the fluid for different values of (n). This study highlights that the momentum profile and the heat
transportation increase by increasing (Ra) and decline as the viscosity of the fluid increases. Overall,
it can be seen from the current study that heat transportation increases with the insertion of a fin in
the cavity. The current communication signifies the phenomenon of a power-law fluid flow filling a
trapezoidal cavity enclosing a U-shaped fin. Previously, researchers have studied such phenomena
mostly in Newtonian fluids, hence the present effort presents novelty regarding consideration of a
power-law liquid in a trapezoidal enclosure by the placement of a U-shaped fin.

Keywords: power-law fluid; trapezoidal cavity; U-shaped fin; free convection; non-uniform heating;
finite element method

1. Introduction

The study of physical geometries for the formation of constructal designs for industrial
and engineering sectors has been globally attractive and has invited experts involved in its
development. This progress was initiated by placing multiple shaped cylinders for augmen-
tation and controlling of the heat, specifically in thermally controlled systems. Placement
of fins in enclosures has promising utilization in advanced technological processes such as
conventional furnaces, economizers, gas turbines, heat exchanges, and superconductive
heaters as heat reducing/generating elements, effectively obligatory in recent years.

The placement of thermally conducted fins such as heated cylinders in thermodynamic
systems brings about evolution in the construction of vast industrial designs [1,2]. Fins add
a promising role in engineering and applied science configurations such as conventional
furnaces, economizers, gas turbines, heat exchanges, superconductive heaters, and so
forth. Fins also control the economic cost of transmission of heat along with improving
quality in different heating sources. Readers are referred to [3–8] for a critical overview
of the advantages of fins and their effective role. In recent years, an extensive literature
has appeared regarding heat generation and control by utilizing fins in different shaped
enclosures. For the sake of interest, some of these are successively mentioned. Shi and
Khodadadi [9] analyzed the capability of heat transportation inside a heated squared
enclosure by anchoring a thin fin. They concluded that a significant amount of heat is
deposited in the presence of the fin in contrast to a situation when the fin is not located
inside the cavity. Horbach et al. [10] applied a Y-shaped constructal design to facilitate heat
passage in a highly heat-conductive material inserted in a squared cavity. Rehman et al. [11]
made a noticeable attempt to investigate the buoyantly convective flow of a non-Newtonian
liquid in a rhombus-shaped cavity with a T-shaped piece of equipment inserted in the
domain. Tavana et al. [12] demonstrated heat transportation in the presence of three
different fins (rectangular, T, triangular) in a microchannel configuration. They indicated
that a triangular fin is very efficient in transporting energy in a channel. Free convection
inside a non-uniformly heated domain, with the placement of fins conducting heat on
the cold walls of the cavity, was reported by Frederick and Scozia [13]. Flow patterns
against high Nusselt number magnitudes at the location of thermally heated fins, also
dependent on the magnitude of the Rayleigh number, were adumbrated by Facas et al. [14].
Nag et al. [15] noticed a change in recirculating flow patterns against variation in an aspect
ratio of encapsulated fins along with readings of fluctuation of the Rayleigh number in a
rectangular cavity.

Filling enclosures with materials possessing pervasive characteristics is highly essen-
tial. Before the arrival of the non-Newtonian fluid rheology concept, most of the cavities
were filled with air, water, or Newtonian fluids. Eventually, advancement in material test-
ing led the researchers towards fluids that disobeyed Newton’s law of viscosity, known as
non-Newtonian liquids. Non-Newtonian fluids are mostly recommended in industrial and
mechanical procedures due to their huge practical utility. The analysis of non-Newtonian
fluids gains special attention due to the non-linear relation of stress and strain which makes
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them more appealing to industry. Since dynamic viscosity changes with the application
of stress, complication related to non-Newtonian fluid arises, and the flexibility of such
fluids varies differently against stress. Hence, these liquids are classified into diversified
categories, namely shear-thinning, shear-thickening, and Newtonian fluids. Based on these
classifications, researchers have proposed several groups of liquids expressing the class of
materials mentioned. Among these, the power-law fluid model is the most generalized,
which expresses characteristics of almost all the classified versions by setting various mag-
nitudes of (n). Besides, examination of non-Newtonian fluids in enclosures is crucial in the
processing of food, drilling of oil, geophysical structures’ polymeric engineering, electronic
preservation systems, nuclear reactors, etc. Perhaps Ozoe and Churchill [16] were the
first who depicted hydrodynamical features of a power-law liquid in a shallow horizontal
enclosure by evaluating recirculation generated in the fluid flow domain. Kaddiri et al. [17]
described the study of a computational scheme for analyzing momentum features of a
power-law fluid, inside a square enclosure, along with the finding of the critical magnitude
of (n) which differentiate its shear-thinning and thickening attributes. Kim et al. [18] delib-
erated on the transient flow of power-law fluid in a vertical-cavity along with simultaneity
of heat transfer generated through natural convection.

Lamsaadi et al. [19] worked on examining flow attributes of power-law fluid by
varying aspect ratios of a shallow domain and also checked the case sensitivity of the
power-law index by finding the impact of flow field circulations. Lamsaadi et al. [20]
explicated the movement of a power-law liquid in a rotated slit and measured the dramatic
effect on cavity rotation, along with model controlling parameters, on the motion of
the fluid.

Gravity differences are a driving agent for producing flows in containers. This is due
to the production of heavier and lighter particles in the flow domain, due to lower or higher
effectivity of gravity forces. The process of such flow circulation is called convection. These
gravitational forces create dense and light layers among fluid streams and temperature
gradient is automatically generated through natural collision, termed natural convection.
The phenomenon of naturally convected flows has typical applications in processing types
of equipment such as computer chips, solar paneling, wind chiller, hydraulic pumps,
molten metals, heat dissipation fins, and hydrothermal reservoirs. Turan et al. [21] used a
commercial package to simulate the buoyant flows driven inside power-law liquid within
a cavity, with provision of constant temperature at the walls. Rudolf [22] elucidated the
thermodynamical attributes executed in a power-law fluid by generating free convection in
an enclosure whose sidewalls are isothermal and whose base is adiabatic. They measured
no change in heat transfer against the power-law model variable (n). The process of
convectional currents produced due to temperature gradients in rectangular [23] and
square [24] enclosures has been accessed. They demarcated the influential significance of
(n) and (Ra) on heat transfer and flow field properties, and noticed a critical magnitude of
(n) for which heat flux does not vary against the Prandtl number. Alloui [25] discussed
free convection in non-Newtonian liquid within an upright enclosure filled with Carreau-
Yasuda fluid and constructed a comparison of attained outcomes with a Newtonian case
by restricting associated model parameters. They found a very minute change in heat
transfer against flow-related variables for the lower magnitude of the Rayleigh number.
Ouertatani et al. [26] numerically assessed Rayleigh-Benard convection within a rectangular
domain and yielded uniformness in streamlines and isothermal patterns for the magnitude
of the Rayleigh number approaching 100. Some recent development in this direction
are addressed and accessed in [27–38]. Usman et al. [39] studied the transportation of
heat within a power-law liquid in the presence of a sinusoidal heat sink/source between
stretchable disks separated with a constant gap and rotating co-axially. They have also
performed an analysis of 3D steady flow and heat transportation of a non-Newtonian nano-
liquid above stretchable gyrating disks [40]. Usman et al. have also contributed towards the
analysis of 3D heat transportation and liquid flow in a Carreau liquid in between rotatory
stretchable disks [41]. Furthermore, they have explored the rheological consequences of
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a nanofluid over the surface of a Riga plate implanted in a porous medium [42]. Most
recently, Usman et al. have communicated transportation of heat in a hyperbolic fluid
over a lubricated stretchable rotatory surface of a disk [43]. Goodarzi et al. [44] measured
the convective heat transportation in a shallower chamber by incorporating two phasic
nano models. Goodarzi et al. [33–38] jointly executed comparative analysis regarding
accurate findings for heat flux calculation by utilizing different numerical techniques. A
numerical analysis of MHD natural convective fluid flow enclosed between two h-distance
apart plates was studied by Rasool et al. [39] Safaei et al. [40] numerically deliberated free
convective heat transfer fluid flow inside an elliptical container with varied attack angles.
A numerical examination of free convective MHD fluid flow governed by a non-linear
stretchable sheet was addressed by Rasool et al. [41]. Recent literature regarding heat
transfer aspects in different physical domains is gathered in [42–52].

The prime motivation behind the current research is to analyze attributes of non-
Newtonian fluid, flowing in a square enclosure with placement of fins generated by
temperature differences. So far, much of the literature regards natural convection in cavities,
but for placement of fins very sparse work has been presented. Our purpose is to fill this
gap and attract researchers in this direction instead of placing obstacles in enclosures. For
this purpose, power-law fluid is utilized and a T-shaped fin is placed at the base of the
enclosure. The mathematical articulation of the considered problem is dealt with in the form
of partial differential expressions and solved computationally by implementing the finite
element method. Initially, discretization of the domain is manifested by distributing it into
triangular and rectangular elements. Graphical representations for velocity, temperature,
heat flux, and kinetic energy are elaborated along with statistical data about the elements
and the relevant physical quantities. A comparison of current work with the published
literature is also presented. It is hoped that this research work will assist researchers
working in this field.

In the current research, natural convective heat transportation analysis is conducted
in a trapezium shaped cavity enclosing a U-shaped fin. Uniform heating is supplied to
the fin structure, due to which singularity is observed in the solutions. The significance
of the investigation is to observe the heat transportation that seems to increase due to
insertion of the fin in the domain. Power-law fluid is also submerged in the cavity to study
the effects of variation in viscosity upon fluid flow. To acquire solutions to the problem,
the Galerkin finite element method is used. The domain is discretized into triangles and
quadrilaterals, i.e., hybrid meshing is attained. According to the results, the power-law
catalogue ranging from 0.5 ≤ n ≤ 1.5 shows a decrease in momentum profile and kinetic
energy as it increases, hence increasing the viscosity of the fluid. Besides, the Rayleigh
number 104 ≤ Ra ≤ 106 depicts the increase in the momentum profile, heat transportation
and kinetic energy as it ascends. The conclusive remarks that can be drawn from the study
are that the heat transportation in a cavity enclosing a fin is greater compared to a cavity
without a fin [37].

Despite the great number of applications of placement of multi-shaped fins in enclo-
sures, such a study has not been conducted so far. From the detailed view of the literature
earlier, it is seen that heat transportation in a trapezoidal enclosure, cavities enclosing
fins and heat transfer in a power-law liquid have been studied separately. The study of
thermodynamical aspects of a non-Newtonian liquid in a trapezoidal cavity enclosing a
U-shaped fin has not yet been conducted. Influenced by this literature, the current paper
describes the thermos-physical attributes of a shear dependent fluid enclosed in a trapez-
ium shaped enclosure embedding a U-shaped fin. Hence, to fill the gap the following
analysis is accomplished. This document is organized in the following way: firstly, we
present the mathematical modeling and numerical computation of the problem, then the
methodology is described, results and discussion are detailed and conclusive remarks
are summarized.
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2. Mathematical Modelling

The current research is conducted assuming a two-dimensional, time-independent,
and steady flow for a shear dependent fluid enclosed in a trapezoidal enclosure. A non-
uniformly heated fin shaped like a tuning fork (U-shaped) is inserted in the cavity at the
base in order to portray an application of the considered problem, i.e., centrally heated
systems and insertions of fin-shaped hindrances. The boundaries of the domain, as well
as the flipper, are at the no-slip condition. The fin acts as a non-uniform heat generator
whereas the other walls are reserved at low temperature and the upper partition is adiabatic.
The Boussinesq approximation buoyancy expression is included in the mathematical
formulation of the problem, while all the other physical measures are considered to be at
rest. The Boussinesq approximations incorporate the role of free convection in the fluid
flow domain. A schematic illustration of the problem is demonstrated in Figure 1.
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Figure 1. A diagrammatic illustration of the problem.

The equations governing the problem are the continuity equation, momentum equa-
tions, and energy expression [53] as follows:

∂u
∂x

+
∂v
∂y

= 0, (1)

ρ(u
∂u
∂x

+ v
∂u
∂y

) = −∂p
∂x

+
∂τxx

∂x
+

∂τxy

∂y
, (2)

ρ(u
∂v
∂x

+ v
∂v
∂y

) = −∂p
∂y

+
∂τxy

∂x
+

∂τyy

∂y
+ ρgβ(T − Tc), (3)

u
∂T
∂x

+ v
∂T
∂y

= α

(
∂2T
∂x2 +

∂2T
∂y2

)
(4)

The stress tensor of viscosity for the power-law fluid is communicated below,

τij = 2µaDij = µa

(
∂ui
∂xj

+
∂uj

∂xi

)
(5)



Energies 2021, 14, 5355 6 of 17

Here, Dij is the strain rate tensor for Cartesian coordinates (two-dimensional) and µa
is the apparent viscosity derived from the succeeding relation,

µa = K

{
2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
]
+

(
∂v
∂x

+
∂u
∂y

)2
} n−1

2

, (6)

The variable K denotes the consistency index and n denotes the power-law constant
comprising three cases; (n < 1) shear thinning, Newtonian behavior for (n = 1) and
(n > 1) for shear thickening. The supplementary boundary constraints are as follows,

u(x, 0) = v(x, 0) = 0, 0 ≤ x ≤ L, y = 0,
u(x, y) = v(x, y) = 0, 0 ≤ x ≤ 0.25, 0 ≤ y ≤ L, y = L

0.25 x,
u(x, L) = v(x, L) = 0, 0.25 ≤ x ≤ 0.75, y = L,

u(x, y) = v(x, y) = 0, 0.75 ≤ x ≤ L, 0 ≤ y ≤ L, y = L(L−x)
L − 0.75,

(7)

Following are the applied similarity variables for the non-dimensionalization of
governing expressions in Equations (10)–(13),

X =
x
L

, Y =
y
L

, U =
uL
α

, V =
vL
α

, (8)

P =
pL2

ρα2 , θ =
T − Tc

∆T
, ∆T =

qL
k

, (9)

The attained dimensionless expressions are as follows,

∂U
∂X

+
∂V
∂Y

= 0 (10)

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+ Pr
[

2
∂

∂X

(
µ∗

a
∂U
∂X

)
+

∂

∂Y

(
µ∗

a

(
∂U
∂Y

+
∂V
∂X

))]
, (11)

U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+ Pr
[

2
∂

∂Y

(
µ∗

a
∂V
∂Y

)
+

∂

∂X

(
µ∗

a

(
∂U
∂Y

+
∂V
∂X

))]
+ RaPrθ, (12)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2 +
∂2θ

∂Y2 , (13)

Following is µ∗
a , defined to be the apparent non-dimensionalized viscosity,

µ∗
a =

[
2

{(
∂U
∂X

)2
+

(
∂V
∂Y

)2
}
+

(
∂V
∂X

+
∂U
∂Y

)2
] n−1

2

(14)

The non-dimensionalized form of boundary conditions are:

U(X, 0) = V(X, 0) = 0, 0 ≤ X ≤ 1, Y = 0,
U(X, Y) = V(X, Y) = 0, 0 ≤ X ≤ 0.25, 0 ≤ Y ≤ 1, Y = X

0.25
U(X, 1) = V(X, 1) = 0, 0.25 ≤ X ≤ 0.75, Y = 1,

U(X, Y) = V(X, Y) = 0, 0.75 ≤ X ≤ 1, 0 ≤ Y ≤ 1, Y = 1−X
0.25 ,

(15)

The non-dimensionalization of the coupled governing equations gives rise to the
introduction of the following dimensionless parameters,

Ra =
ρgβ∆TL2n+1

αnK
, Pr =

KL2−2n

ρα2−n , Nu =
hL
k

(16)

The displacement is observed along the x and y axis whereas the displacement rate
along the axis is denoted by u and v, respectively. The overall temperature of the domain
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is denoted by T, T = Th represents the thermal heating, whereas the cold temperature is
symbolized as T = TC. The kinematic viscosity and the thermal diffusivity are indicated
by υ and α. Moreover, pressure and density are indicated by p and ρ, respectively. In
addition to this, the above horizontal surfaces (s1 and s2), the curves (c1, c2 and c3) and the
vertical walls (l1 and l2) of the fin are also highlighted in Figure 1.

3. Numerical Computation

The current work deals with heat and its relation to energy and the physical attributes
of a power-law fluid. The power-law fluid is also recognized as an Ostwald-de Waele
relationship and is a generalized Newtonian fluid i.e., a time-independent non-Newtonian
fluid useful for approximating the behavior of a non-Newtonian fluid. For instance, one
case shows a drop in viscosity with an upsurge in shear rate, acknowledged as shear
thinning behavior and categorizing the fluid as pseudoplastic fluid. Another example
depicts the Newtonian conduct for constant fluid viscosity, whereas the less common
dilatant fluid viscosity increases along with an increasing rate of shear stress, giving rise to
shear thickening behavior. The process of natural convection is taking place in the domain
due to the provided temperature variation through sinusoidal (non-uniform) heating of
the inserted flipper. The consideration of the above-mentioned circumstances leads to the
formation of coupled partial differential expressions represented in Equations (10)–(13). A
very useful approach to discretize the governing equations is the Galerkin finite element
method. Hybrid meshing comprises elements with three to four vertices. In this regard,
the quadratic interpolation functions interpose the momentum and heat transportation
in the flow domain whereas, to introduce the pressure constraints, linear interpolating
polynomials are used. Meshing at coarser level is executed in Figure 2 to show variation in
degrees of freedom and elements formations.

Energies 2021, 14, x FOR PEER REVIEW 8 of 18 
 

 

 
(a) Mesh at Coarser Level 

 
(b) Zoomed Edges and Inner Curve of the Fin 

Figure 2. Represents the courser refinement level showing the discretized flow domain and the inclusion of 𝑃ଶ − 𝑃ଵ 
elements of a triangular and quadrilateral nature. 

4. Results and Discussion 
According to the mathematical modeling for natural convective heat transfer in a 

power-law liquid enclosed in a trapezoidal in contact with a heated U-shaped fin, a study 
was piloted to apprehend the effect of governing parameters on the phenomenon. 

Table 1 gives the number of elements and the degree of freedom for different levels 
of refinement. One of the key methods for achieving results is the discretization of the 
region through the method of finite element. In the above table, an ascending order of 
refinement levels (R.L) from extremely coarse to extremely fine is given, which shows that 
incrementing levels increases the total number of elements. The number of triangles and 
quads in the discretized domain is also listed. The power-law index (𝑛) is a suitable 
mathematical expression to relate kinetic energy of fluid to the intensity of momentum 
generated in the fluid due to natural convection. 

Table 1. Number of elements and degree of freedom for different refinement levels (R.L’s). 

Refinement Level (R.L) Number of 
Triangles 

Number of Quads. Number of 
Elements 

Degree of Freedom 

R.L (1) 296 112 408 1172 
R.L (2) 479 158 637 1768 
R.L (3) 736 208 944 2532 
R.L (4) 1331 306 1637 4212 
R.L (5) 1973 378 2351 5856 
R.L (6) 3088 472 3560 8556 
R.L (7) 8507 958 9465 21,824 
R.L (8) 22,901 1822 24,723 54,932 

Figure 2. Represents the courser refinement level showing the discretized flow domain and the inclusion of P2 − P1 elements
of a triangular and quadrilateral nature.



Energies 2021, 14, 5355 8 of 17

4. Results and Discussion

According to the mathematical modeling for natural convective heat transfer in a
power-law liquid enclosed in a trapezoidal in contact with a heated U-shaped fin, a study
was piloted to apprehend the effect of governing parameters on the phenomenon.

Table 1 gives the number of elements and the degree of freedom for different levels
of refinement. One of the key methods for achieving results is the discretization of the
region through the method of finite element. In the above table, an ascending order of
refinement levels (R.L) from extremely coarse to extremely fine is given, which shows
that incrementing levels increases the total number of elements. The number of triangles
and quads in the discretized domain is also listed. The power-law index (n) is a suitable
mathematical expression to relate kinetic energy of fluid to the intensity of momentum
generated in the fluid due to natural convection.

Table 1. Number of elements and degree of freedom for different refinement levels (R.L’s).

Refinement
Level (R.L)

Number of
Triangles

Number of
Quads.

Number of
Elements

Degree of
Freedom

R.L (1) 296 112 408 1172
R.L (2) 479 158 637 1768
R.L (3) 736 208 944 2532
R.L (4) 1331 306 1637 4212
R.L (5) 1973 378 2351 5856
R.L (6) 3088 472 3560 8556
R.L (7) 8507 958 9465 21,824
R.L (8) 22,901 1822 24,723 54,932
R.L (9) 27,407 1822 29,229 63,944

Named after Wilhelm Nusselt, a German engineer, the Nusselt number signifies the
transmission of heat within a fluid owing to convection. In the current study, the U-shape
embedded inside the trapezoidal domain is heated non-uniformly, generating the heat
flux. The change in the heat flux under the provision of sinusoidal heating is observed
against the Rayleigh number (Ra) in Table 2. The range of the parameter chosen to measure
the variations in local Nusselt number is 104 ≤ Ra ≤ 106. It can be observed from the
tabulation that by fixing n = 1 and Pr = 5, an uplift in the diffusivity of momentum is seen
with the increment in the Rayleigh number, because with the increment in (Ra), the degree
of buoyancy forces an increment and lifts the local convective heat transfer coefficient. The
table also describes the change in (K.E) concerning variation in (Ra). It can be seen from
the table that an abrupt increase in (K.E) occurs as we increase the value of (Ra) from 1E4
to 1E6. Since the increment in Rayleigh number (Ra) leads to a decrease in the viscidness of
the fluid to decrease, as an outcome the energy of the fluid molecules increase rapidly. The
value of (K.E) for 104 ≤ Ra ≤ 106 is tabulated in the above table. A rapid intensification
in the motion energy is seen at Ra = 1 × 106, i.e., K.E = 25737.

Table 2. Variation in kinetic energy for different values of the power-law index (n).

Rayleigh Number (Ra) Heat Flux (Nu) Kinetic Energy (K.E)

10,000 5.8026 89.774
1.0000 × 105 7.4054 2637.4
1.0000 × 106 12.129 25,737

Table 3 provides information regarding energy generation by the virtue of the fluid’s
motion following the increase in the viscidness of the fluid. The variation in the (n) ranges
from 0.5 ≤ n ≤ 1.5 by fixing (Ra) = 1000 and (Pr) = 5. Under the influence of non-
uniform heating of the flipper, it is evaluated that, with proliferation in (n) the kinetic
energy decreases within the flow region. This is because of the fact that increasing (n)



Energies 2021, 14, 5355 9 of 17

causes the viscosity of the fluid to escalate, and hence results in reducing its velocity. As a
result, the average kinetic energy of the fluid molecules depreciates.

Table 3. Variation in Nusselt number (Nu) and kinetic energy at different values of Rayleigh
number (Ra).

Power-Law Index (n) Kinetic Energy (K.E)

0.5 206.28
1 0.33140

1.5 0.038054

Analyzing the influence of (n) on the fluid circulation leads to significant observations
described in Figure 3. The power-law catalog ‘n’ characterizes the relation among the
constituents of stress and strain rate tensors. The characterization is categorized into three
cases. In the case <1 , the shear thinning agrees with the description of pseudo-plastic
fluids, i.e., reduction in viscosity with an increment in strain rate. The second case n = 1
terms a fluid as a Newtonian fluid, whereas the case n > 1 designates the shear thickening,
describing the dilatant conduct of a fluid, i.e., increasing viscosity with increasing strain rate.
The influence of the motion of a power-law fluid upon convective heat transfer via natural
convection, initiated by non-uniform heating of a U-shaped fin placed in a two dimensional
trapezoidal cavity, is studied in the above figure. It is seen clearly that in Figure 3, as n
increases and changes the fluid state from shear thinning to shear thickening, the liquid
circulation decreases and the number of streamlines drops, reflecting the slowdown of the
convective fluid flow. Figure 3a describes the pseudo plastic inheritance of the fluid which
is defined as the decrease in viscidness with the intensification in strain rate. This case is
also termed as shear thinning when n < 1. Certainly, it can be observed that the lesser the
viscosity, the more the fluid flow is enhanced. Four vortices are formed, two at the sides
below the fin (at c1 and c2) and two above it (at s1 and s2). At this point, the vortices are
circular describing the intensified fluid velocity or circulation. The reason is that, in cases
where the fluid displays shear thinning behavior, its viscosity in comparatively much less.
Hence, the fluid exhibits rotatory motion in the cavity above and at the sides of the fin.
Furthermore, Figure 3b,c represents the fluid flow against the magnitude of the power-law
index, being equal to and greater than unity respectively. In both cases, the fluid motion
consists of four vortices, but the circular shape of whirlpools is disrupted and they have
attained parabolic structures. Figure 3c shows slightly more ruptured structures than
Figure 3b. Since the increment in (n) defines the increase in the viscidness of the fluid, the
fluid motion decreases and the circular patterns slow down to give parabolic outlines.

Figure 4 is illustrated to describe the distribution of momentum against 104 ≤ Ra ≤ 106,
fixing n = 1 and Pr = 5. From Figure 4a–c, (Ra) is incremented and displayed. It can be
seen that the parabolic (near c1 and c2) and circular (above s1 and s2) patterns deform and
show compactness on the inner boundary lining of the cavity and the fin. The increase
in (Ra) gives way to the temperature distribution and the buoyancy forces in order to lift
their magnitude. Hence, the increase in the stream profile of a power-law fluid shows the
behavior illustrated in Figure 4.
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The above Figure 5 is portrayed to highlight the thermal distribution in the fluid
against 104 ≤ Ra ≤ 106, fixing n = 1 and Pr = 5. It can be explicitly interpreted from
Figure 5 that by uplifting the magnitude of (Ra) under the influence of no-uniform heating
from the fin surface, an increasing sharpness is visualized near its edges and curves. Since
non-uniform or sinusoidal heating is provided, by uplifting (Ra) the isothermal curves
initially showed heat transport in parabolic curves, and gradually all the heat compacted
against the fin’s walls and at its center (near c3). Moreover, an increasing (Ra) gives rise to
the inertial forces of the liquid molecules depending upon the temperature difference.
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Figure 5. Temperature profile and isothermal contours for varying (Ra) at n = 1 and Pr = 5.

Sliding values of kinetic energy concerning the power-law index 0.5 ≤ n ≤ 1.5
are encapsulated in Figure 6. Comparatively, the maximum value of kinetic energy is
attained for n < 1, i.e., the velocity of the fluid is at a maximum due to lessened viscosity.
Furthermore, the graph is abruptly decreased and attained a constant value of (K.E)
for (n ≥ 1), giving off a straight line analogous to the x-axis. Since the mobility of the
fluid particle lowers, as an outcome the motion of the fluid molecules reduces and (K.E)
drops down.
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is increased, the inertial forces of the molecules also increase, dominating the viscous
forces, hence the kinetic energy increases. From the graph, a straight line is attained and
proportional behavior is observed.
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The concept regarding the increase in the heat flux due to increment in (Ra) can be
visualized in Figure 8. The proliferation in (Ra) results in heat manifestation and hence
causes the buoyancy forces to take charge. Therefore, the Nusselt number increases in
profile. Initially from 0 to 0.1, an abrupt rise in (Nu) occurs, while after a certain point the
value increases proportionally.
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ber (Ra).

Variation in the vertical constituent of the velocity by drawing a cutline at y = 0.5 is
analyzed in Figure 9a. From the overview of the sketch, it is seen that velocity along the
cutline varies in the waveform. In addition, two wave structures are formed, one before
the interaction of the fluid with a U-shaped fin, and the other after the passage of fluid to
the obstruction. From the attained structures, it is seen that velocity behaves oppositely for
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the concerned cases. It is worthwhile to mention that absolute maxima of curves is attained
at x = 0.17 and x = 0.63, while absolute minima are attained at x = 0.04 and x = 0.71.
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Figure 9. (a) Cutlines for v component of velocity for different values of power law index (n) at
y = 0.5. (b) Cutlines for v component of velocity for different values of power law index (n) at x = 0.5.
(c) Cutlines for temperature distribution θ for different values of power law index (n) at x = 0.5.
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Figure 9b describes the variation in the horizontal component of the velocity w.r.t
varying y. It is clear from the illustration that initially the velocity of the liquid at zero
forms y = 0 to y = 0.15, whereas from y = 0.3 the graphical lines show an abrupt increase
and show inverted parabolic curves.

Maximum intensification in attained for the shear-thinning case at y = 0.45. Fur-
thermore, Figure 9c reveals the behavior of thermal distribution for varying x and fixed
y = 0.5. From the figure, it is depicted that, at the center of the fin, the magnitude of
heat is maximum whereas it declines as the value of y increases. Three curved graphs are
represented for the shear thinning, Newtonian, and shear thickening cases. As viscosity is
lesser in the pseudoplastic fluids, an observable gap is seen in the lines representing the
thermal distribution, comprising of larger values for n < 1 at every instant than for that of
n ≥ 1.

5. Conclusions

This research is conducted to show the characteristics of motion of fluid in a trape-
zoidal cavity containing a non-uniformly U-shaped fin. Mathematical rheological modeling
is constructed and presented as partial differential expressions. The Galerkin finite element
technique is applied to deal with the computational complexity in the flow domain. Tabula-
tion of several elements comprising quadrilaterals and triangles is presented to describe the
discretization of the domain. Circular, parabolic and compact curves have been observed
in the momentum distribution and heat transportation graphs. Furthermore, solutions
regarding the problem are gained via the Finite Element Method for non-uniform thermal
difference when varying Rayleigh number (Ra) and power-law index (n).

The central deductions are given below:

a. Increasing magnitude of (Ra) results in increased magnitude of kinetic energy, i.e.,
energy associated with the motion of the fluid particles.

b. The heat flux increases with the increase in Rayleigh number (Ra).
c. The fluid flow circulations are greatly affected by the increase in (Ra) and (n). As

the degree of (Ra) increases, velocity increases, whereas opposite behavior is seen
for increasing values of (n).

d. The kinetic energy for the shear-thinning case of the fluid decreases, whereas an
abrupt increase is seen as the magnitude of the power-law index increments.

e. Table graphs for the kinetic energy and Nusselt number are illustrated against the
Rayleigh number and power-law index.
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Nomenclature

u, v Velocity components
ρ Fluid density
p Fluid pressure
g Gravity
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β Thermal expansion coefficient
T Fluid temperature
n Power-law index
Tc The temperature of the cold wall
Ra Rayleigh number
Pr Prandtl number
K.E. Kinetic energy
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