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Abstract: Harnessing wind energy is one of the fastest-growing areas in the energy industry. However,
wind power still faces challenges, such as output intermittency due to its nature and output reduction
as a result of the wake effect. Moreover, the current practice uses the available renewable energy
resources as a fuel-saver simply to reduce fossil-fuel consumption. This is related mainly to the
inherently variable and non-dispatchable nature of renewable energy resources, which poses a threat
to power system reliability and requires utilities to maintain power-balancing reserves to match the
supply from renewable energy resources with the real-time demand levels. Thus, further efforts
are needed to mitigate the risk that comes with integrating renewable resources into the electricity
grid. Hence, an integrated strategy is being created to determine the optimal size of the hybrid
wind-solar photovoltaic power systems (HWSPS) using heuristic optimization with a numerical
iterative algorithm such that the output fluctuation is minimized. The research focuses on sizing the
HWSPS to reduce the impact of renewable energy resource intermittency and generate the maximum
output power to the grid at a constant level periodically based on the availability of the renewable
energy resources. The process of determining HWSPS capacity is divided into two major steps.
A genetic algorithm is used in the initial stage to identify the optimum wind farm. A numerical
iterative algorithm is used in the second stage to determine the optimal combination of photovoltaic
plant and battery sizes in the search space, based on the reference wind power generated by the
moving average, Savitzky–Golay, Gaussian and locally weighted linear regression techniques. The
proposed approach has been tested on an existing wind power project site in the southern part of the
Sultanate of Oman using a real weather data. The considered land area dimensions are 2 × 2 km.
The integrated tool resulted in 39 MW of wind farm, 5.305 MW of PV system, and 0.5219 MWh of
BESS. Accordingly, the estimated cost of energy based on the HWSPS is 0.0165 EUR/kWh.

Keywords: optimal layout; wake effect; fluctuation; wind farm; ramping rate

1. Introduction

In most countries, the demand for electricity is growing rapidly. One of the challenges
in the electricity sector is to meet this demand while supplying customers with reliable and
stable power simultaneously. Conventional power resources are being supplemented with
renewable resources. Most of the power suppliers depend on fossil fuels as the primary
energy source due to their ready availability and lower cost compared to other resources.
However, the increase in demand, along with increased oil and gas production costs, drive
the use of other energy resources [1]. In addition, political integration via a common energy
policy or climate-change mitigation is one of the motives to use renewable energy sources.
According to the International Renewable Energy Agency (IRENA) report, most of the
investment in renewable resources is in wind and solar resources; in 2018, around 80% of
the investment in renewable energy was in these two resources.
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The main challenges of utilizing renewable resources are the high capital cost and
the fluctuations of wind and solar power output. However, the recent development of
renewable energy technologies shows a declining trend in cost. There have also been
advancements in the integration of renewable resources into the existing conventional
power resources [2]. This requires the mitigation of the vulnerabilities imposed on the grid
through the intermittent nature of these resources. Variability and ramp events in power
output are the key challenges for system operators due to their impact on the system in
both the long and short term [3]. These impacts include, but are not limited to, system
balancing, reserve management, scheduling, and the commitment of generation units.

Previous research has examined several sizing approaches to find the ideal size of
hybrid plants that include wind, solar, and battery storage. Most prior research focused on
improving the scale of hybrid wind-solar photovoltaic power systems (HWSPS) by lower-
ing costs while ensuring the necessary degree of power supply dependability. Smoothing
techniques can be divided into two groups. The first group uses energy storage systems
such as flywheels, batteries, and capacitors. For instance, a 51 MW wind farm system can
be stabilized using a 34 MW battery [4]. The second group is based on power curtailment
strategies such as pitch, inertia, and DC link voltage controls [5]. According to the litera-
ture, the battery-energy storage system (BESS) is widely used with renewable resources to
resolve the fluctuation issue [6]. The choice of smoothing sources depends on the difference
between the actual signal and the smoothed signal. The smoothed signal is defined in terms
of the reference wind power. The reference signal is the key to determining the supportive
resources needed to satisfy the system reliability. Different smoothing techniques are used
to generate the reference signal, including moving average [7], wavelet decomposition [8],
Gaussian [9], Savitzky–Golay [10], and low pass filter [11] techniques.

Different studies have implemented the smoothing techniques using the BESS. For
example, the authors of [12] used the BESS to meet the reference signal of the wind power
generated by the moving average (MAV) technique. Kim et al. [13] used wavelet decom-
position to obtain the smoothed signal of wind power, where hybrid storage combining
an ultra-capacitor and BESS is used as the smoothing source. A simple MAV technique
and low pass filter are used in [14] to control the BESS in order to stabilize the PV output
power. However, in all these studies, fixed wind farm (WF) and PV plant sizes are used.
Most of the studies smooth the fluctuation using the minimum BESS size. As an example,
the optimization in [15,16] was conducted to minimize the BESS size while reducing wind
power intermittency. It is important to investigate different methods of achieving stable
output power using the optimal source sizes.

The investigation performed in [17] shows that the Gaussian technique is more effec-
tive than the MAV for smoothing the wind and solar generation to an acceptable ramping
rate level. The authors used solar and wind plants as the primary sources and used the
BESS for smoothing. In [18], the Savitzky–Golay (SG), MAV, and Gaussian techniques
are used with the BESS to mitigate PV output fluctuation. The results show a smoother
output power with the SG than with the other algorithms. The authors of [19] used a
wavelet decomposition method while using an ultra-capacitor with the BESS to prolong
the BESS’s lifetime.

According to the literature, MAV is widely used to smooth noisy signals [20]. The
BESS is operated to make up the difference between the actual signal and the MAV signal.
However, the MAV approach depends on past time series data, which are different from
the current value of the fluctuating variable. The problem of the MAV and most other
techniques is the memory effect feature, meaning that the approach depends on data from
the past [21]. This means that the BESS is operated excessively, which shortens its lifespan.
Many factors affect the size of the needed memory in the used smoothing technique. For
instance, the window size and the number of the samples in the window with the type of
data determine the required memory. The aforementioned factors in the memory could
also cause over-smoothing, which ultimately increases the required BESS capacity [22].
The optimal sizing of the HWSPS while utilizing the MAV technique has already been



Energies 2021, 14, 5377 3 of 16

investigated in our previous study [23]. To avoid the aforementioned factors used for the
MAV technique, our research [23] investigates other smoothing techniques.

Hence, in addition to the MAV method, this study considers the locally weighted linear
regression, Gaussian, and SG techniques. No previous studies have investigated the use of
locally weighted linear regression or SG for smoothing the wind power fluctuations. The
developed tool is suitable for a site with ample solar irradiation and copious wind resources
to take advantage of the complimentary nature of both the PV and wind resources.

The wake impact is not taken into account in any of the HWSPS sizing studies. This
study is unique in that it integrates a model of the wake effect into the size of the HWSPS in
order to decrease wind power losses due to turbine layout. Furthermore, instead of using
the load demand profile to create an HWSPS, the MAV, locally weighted linear regression,
Gaussian, and SG filters/techniques are utilized to provide a smooth reference power
within the operational ramping rates. The integrated tool is designed to use the selected
site effectively for a hybrid renewable power plant in a grid-connected mode. This means
this approach attempts to utilize the site effectively to generate maximum output power to
the grid at a constant level periodically based on the availability of the renewable energy
resources. The PV plant and BESS are sized to provide the reference power generated. As a
result, an integrated strategy is created that combines a genetic algorithm with a numerical
iterative technique to determine the appropriate size of the HWSPS.

The reminder of this paper is organized as follow. Section 2 describes the sizing
methodology to mitigate the wind output power fluctuation. Section 3 presents the smooth-
ing techniques to obtain a smooth signal. Section 4 shows the data needed to run the
proposed case study. The results and discussions are highlighted in Section 5. The impor-
tance of the wake effect is described in Section 6, while Section 7 comprises the effect of the
contribution factor on sizes of the PV plant and BESS. Finally, the conclusions based on the
results are discussed in Section 8.

2. Sizing Methodology

Wind farm sizing is a complex optimization problem that cannot be solved with
traditional optimization methods. Therefore, GA is used to solve the wind farm layout
optimization problem. The stochastic and intermittent nature of wind speed contributes to
the intermittency of wind power. Therefore, many studies focus on estimating wind speed.
However, the wake effect that occurs among the wind turbines is also a critical factor
that must be considered when designing wind farms. Jensen’s wake effect model [24] is
used in the wind farm layout optimization (WFLO) problem. Jensen’s model is one of the
recommended models with a strong performance [25,26]. Hence, this model is the one
used for further analysis in this study, and its mathematical model is described in detail
in [27].

To obtain the optimal wind farm size, the optimization problem is modeled in
Equations (1)–(4).

Min(COE) = Min
[

N ( 2
3 + 1

3 e(−0.00174 N2))

∑360◦
τ=0 ∑N

i=1[Pi[(x, y), vi, θτ)] Pr(vi, θτ)]

]
(1)

subject to
0 ≤ xk ≤ l & 0 ≤ yk ≤ w ∀k ∈ [i, n], l, w = 2000 (2)

Din =
√
[xi − xn]2 + [yi − yn]2 ≥ (5× Dr0) xi, yi, xn, yn ∈ S, ∀i, n = 1, ...., N, i 6= n (3)

N > 0 (4)

where

vi = v0[1−

√√√√ N

∑
i=1

(1− v/v0)2] (5)
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The objective function given in Equation (1) is to maximize the output power and
minimize the costs. In other words, it is mainly to minimize the cost of energy. The major
goal of this objective function is to find the optimal wind turbine layout by introducing
Jensen’s wake effect model. The numerator of Equation (1) considers economy of scale that
is directly depending on the number of the wind turbines (N). Moreover, the denominator
of the objective function represents the total power produced. The power output of
each wind turbine depends on its location within the farm (x, y), and the probability
of occurrence (Pr) of a scenario of a combination of wind speed (v) and direction angle
(θ). Jensen’s wake model given by Equation (5) is applied if there is wake effect among
the turbines; otherwise, free stream wind speed v0 is used. The optimization problem
constraints included the upper and lower limits of the wind farm terrain as defined in
Equation (2). This is defined by the width (w) and length (l) of the selected site to limit the
locations of the turbines (x, y) within the wind farm site. In addition, the spacing constraint
of five times rotor diameters (Dr0) between any two wind turbines using the Euclidean
distance formula is given in Equation (3). The other inequality constraint is the minimum
number of wind turbines (N), as presented in Equation (4). The genetic algorithm is used
to solve the optimization problem (i.e., 3000 generations, 600 populations size). When the
improvement in the fitness value falls below a certain threshold for a number of consecutive
steps, or when the maximum number of iterations is achieved, the optimization process is
terminated. According to the available literature, the objective function and the parameters
of Grady et al.’s [28] study are widely used as a benchmark. Therefore, the objective
function in Grady et al.’s study was used to cross-check the developed wake model and
the formulated optimization problem [27].

The major goal of this research is to size a wind farm, which serves as the founda-
tion for calculating the sizes of the PV plant and BESS. The optimum wind farm size is
determined using a genetic algorithm [29]. The methodology is determined by the size
of the chosen site, the position of the turbines, and the wind speeds and directions. After
determining the wind farm size, the PV plant size and BESS capacity are identified as
smoothing sources. Different smoothing techniques are used as described in the following
section to generate reference power. A numerical iterative algorithm (NIA) is used to
determine the PV plant size and the BESS capacity following the methodology and the
evaluation criteria explained in our previous study [23] by deploying the contribution
factor. In the proposed NIA, each PV module’s output power was estimated based on the
historical data of solar irradiance and temperature. Next, the size of the PV system was
calculated by involving a contribution factor (S) with a value between 0 and 1, in steps
of 0.02. A search space range was established by the contribution factor. When S = 0, no
PV power is required; when S = 1, the PV plant’s power generated equals Pre f (t). The
BESS is sized depending on the cumulative net energy after obtaining the PV system size.
The BESS is used as a secondary source for smoothing, reducing capacity and lowering
system costs.

The integrated approach’s main goal is to size the HWSPS such that it is both cost-
effective and dependable. The planned HWSPS is evaluated using cost of energy (COE) as
a major performance indicator. The COE formula takes into account all of the components’
capital costs, operating and maintenance expenses, replacement cost, and salvage cost. The
loss of the power supply probability (LPSP) is utilized for techno-economic assessment
and comparison in this study. The LPSP is defined as the likelihood that the supply would
be unable to meet demand, and its value varies from zero to one. The flow chart in
Figure 1 shows the phases of the suggested strategy for scaling the HWSPS. The procedure
of defining the HWSPS capacity is divided into two major steps. In the first step, an ideal
wind farm is determined using the evolutionary algorithm, subject to site dimensions and
turbine spacing, while Jensen’s wake effect model is used to reduce power losses caused
by wind turbines layouts. Based on the reference wind power obtained by the MAV, SG,
Gaussian, and LWLR methods, a numerical iterative algorithm is used in the second stage
to determine the best combination of PV plant and BESS in the determined search space.
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Figure 1. Process flow for sizing the HWSPS.

3. Smoothing Techniques

To obtain a smoothed reference output power approximating the load demand, many
smoothing techniques are utilized. An integrated approach has been developed, which
uses moving average, locally weighted linear regression, Gaussian, and Savitzky–Golay
techniques. The proposed strategy is different from previous studies in that it does not
involve a load demand profile. The sizing approach was designed to utilize the selected site
effectively for a grid-connected system. The focus of this research is to maximize the output
power from a hybrid renewable power plant at a constant level based on the availability of
renewable energy resources. It is assumed that the load demand variations are absorbed
by the grid.

3.1. Moving Average

In this investigation, the moving average smoothing technique (MAV) is used to
obtain a smoothed reference output power Pre f , which represents the load demand. The
Pre f value is the reference for the optimal HWSPS plant. The smoothing wind window
of MAV [30,31] must be manipulated carefully to reach the desired reference power. The
mathematical interpretation of the k-period MAV is presented by Equation (6):

Pre f (t) =
Pwind(t) + Pwind(t− 1) + Pwind(t− 2) + . . . + Pwind(t− k)

k
(6)

3.2. Locally Weighted Linear Regression

Linear regression is a technique for determining the linear connections between input
and output. For non-linear relationships between the input and the output, locally weighted
linear regression (LWLR) [32] is used. Unlike normal linear regression, LWLR does not use
fixed parameters (β); thus, it is a non-parametric algorithm used to smooth noisy signals.
It is a memory-based method and uses training data that are local to the point of interest.
The mathematical model of the LWLR is given by Equation (7).

R(β) =
m

∑
i=1
W (i)

[
P(i)

wind −
(

β0 + β1 t(i)
)]2

(7)
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As with the moving average, specifying the span length is critical for the LWLR. The
span is defined by the fraction (i.e., 0.057%) of the data points closest to the target point
t0. The data points within the span determine the smoothed value. The points outside the

span have a zero weight. Thus, the smoothing process is local, since it uses only the local
points in each span. Quadratic and linear models can be used in the regression. In this
study, linear models are used. The tricube function [33] is used to calculate the weights, as
given by Equation (8):

W (i) =

[
1−

∣∣∣ t0−ti
d(t)

∣∣∣3]3
(8)

The fitted model is obtained for the target point t0, and the same process is repeated
for all the data points. The mathematical representations and calculations for the LWLR
are summarized in the following points:

- Define the span length;
- Obtain the regression weights for each data point in the span;
- Solve the LWLR problem to obtain β0 and β1 by taking the first derivative for minima,

as shown in Equations (9)–(11):

dR(β)

dβ0
= −2

m

∑
i=1
W (i)

[
P(i)

wind −
(

β0 + β1 t(i)
)]

(9)

dR(β)

dβ1
= −2

m

∑
i=1
W (i)

[
P(i)

wind −
(

β0 + β1 t(i)
)]

t(i) (10)

[
β0
β1

]
=

[
∑W (i) ∑W (i)t(i)

∑W (i)t(i) ∑W (i)t(i)t(i)

]−1[
∑W (i)P(i)

wind

∑W (i)P(i)
windt(i)

]
(11)

- Finally, to obtain the corresponding Pre f -value for the target point (t0), substitute in
the line equation for β0 and β1.

3.3. Gaussian Distribution

The Gaussian distribution is also known by other names, such as normal distribution.
The Gaussian function is widely used as a smoothing operator for noisy data points.
In addition, it is used in defining the probability distribution (histogram) of data. The
Gaussian function follows the bell-shaped curve. It is a function of non-zero value and is
symmetrical about the mean (t = µ).

The probability distribution is described mathematically using the expression in
Equation (12) [34]:

p(t) =
1

σ
√

2 π
e−

1
2

(
t−µ

σ

)2

(12)

where µ and σ represent the mean and standard deviation, respectively. The term 1
σ
√

2 π
is

a constant that acts as a normalizer. The exponential term decays quickly as t diverges from
µ. The rate of decay is influenced by the value of σ. The curve of the Gaussian function is
divided into three segments, defined as follows:

- Segment (I): (µ− σ) ≤ t ≤ (µ + σ);
- Segment (II): (µ− 2σ) ≤ t ≤ (µ + 2σ);
- Segment (III): (µ− 3σ) ≤ t ≤ (µ + 3σ).

These three segments combined have the highest probability value (99.72%), with
respective weights of 68.26% (segment (I)), 27.18% (segment (II)), and 4.28% (segment (III)).

3.4. Savitzky–Golay

Instead of smoothing by averaging the data and making an aggressive change in
the original signal, Savitzky–Golay [35] is a simple smoothing algorithm that follows the
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pattern of the original signal. SG is performed by fitting a least square in each window.
In general, it is a moving polynomial fit with constant weighting coefficients. These
coefficients are called convolution integers. These sets of integers are selected based
on the window size and the polynomial degree. A reference table for 25 window sizes
is presented in [36] and contains different values of convolution integers for quadratic
polynomials. Alternatively, convolution integers could be defined based on approximation
by polynomials. In our case, a window size of 31 points, i.e., (m = 31) with a quadratic
polynomial ({=2) is used. Thus, the smoothed signal for a set of data points

(
ti, Pwindi

)
with the length n is calculated using the formula in Equation (13). The convolution integers
are calculated using the Vandermonde matrix (Mvand) as given by Equation (14):

Pre f j
=

m−1
2

∑
i=− m−1

2

Qi Pwindj+i

m + 1
2
≤ j ≤ n− m− 1

2
(13)

Q = (Mvand
T Mvand)

−1
Mvand

T (14)

where

Mvand =



1 b1 b2
1 · · · b f

1
1 b2 b2

2 . . . b f
2

1 b3 b2
3 . . . b f

3

1
...

...
. . .

...
1 bi b2

i . . . b f
i


, b = [

1− m
2

, . . . , 0 , . . . ,
m− 1

2
]

The power fluctuation ∆Pre f (t) is measured at each smoothing technique’s time instant,
taking the difference between the subsequent output powers, as shown in Equation (15):

∆Pre f (t) = |Pre f (t + 1) − Pre f (t)| (15)

4. Case Study

A case study has been provided to show the applicability of the suggested technique.
The weather data from Thumrait, Dhofar Governorate, Oman, were utilized. This study
makes use of wind speed and direction data collected throughout a year at a resolution of
10 min intervals. This histogram shown in Figure 2 will be utilized in the optimization of
the wind farm layout. After determining the farm size, the instant wind power Pwind(t) is
calculated using real 10-minute wind profiles, whose wind magnitude is shown in Figure 3.
In addition, the PV output power is determined by utilizing the global horizontal irradiance
of the mentioned site [23]. Table 1 lists the key technical and economic characteristics
utilized in this analysis for the PV module, wind turbines, and BESS. For this study, a
square land area is considered with dimensions of 2× 2 km. The wind farm site is assumed
flat with a surface roughness of 0.3 m.
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Figure 2. Histogram of wind speeds and directions for a year.

(m
/s
)

Figure 3. Wind speedprofile for a year.

Table 1. Specifications of the used wind turbine, PV module, BESS, and inverter [23,37–39].

Wind Turbine PV

Rated power 3 MW Model Polycrystalline
Hub height 84 m Maximum power at STC (Prpv) 275 W

Rotor diameter 82 m Temperature coefficient of (Prpv) −0.47%/C◦

Capital cost 1784 EUR/kW Capital cost 598.62 EUR/kW
O&M cost 3% capital cost/year O&M cost 1% capital cost/year
Lifetime 20 years Lifetime 20 years

BESS Inverter

Nominal capacity 1000 Ah Rated power 115 kW
Nominal voltage 2 V efficiency (ηinv) 90%

Capital cost 213 EUR/kWh Capital cost 117.26 EUR/kW
Replacement cost 213 EUR/kWh Replacement cost 117.26 EUR/kW

O&M cost 9.8 EUR/kWh/year O&M cost 0.92 EUR/ kW /year
Lifetime 5 years Lifetime 20 years
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5. Results and Discussion

Running the simulation with the data given produces results with 13 as the optimal
number of turbines. They are distributed mainly along the WF’s boundaries to decrease
the wake impact as shown in Figure 4.

To demonstrate the wake effect’s impact on wind power generation in more detail,
Figure 5 depicts the power generation of the wind farm with and without the wake effect
using the optimum configuration. The wake effect model produces more precise and
realistic results for the power generation of a wind farm [40]. The overall velocity loss
owing to the turbine wake effect is approximately 2.72% of the available wind speed. This
equates to a 5.31% decrease in the wind farm’s generating power. The distinction between
the two situations is obvious, and utilizing the wake effect model enables planners to
estimate more realistic wind farm power.

Figure 4. Optimal wind farm layout.

Figure 5. Power generated by the wind farm for three days.

The suggested strategy then proceeds to create a smooth wind output power (Pre f )
utilizing the LWLR, MAV, Gaussian, and SG approaches to decrease variations in the wind
farm’s output power with the help of a PV plant and BESS. The primary goal of smoothing
wind generation is to minimize the ramping rate, as seen in Figure 6. The ramping rates
are displayed before and after smoothing. Before smoothing, the maximum ramping
is 32.33 MW. After smoothing, the maximum ramping rates are 2.14 (with LWLR), 3.85



Energies 2021, 14, 5377 10 of 16

(with MAV), 2.40 (with Gaussian), and 3.20 MW (with SG). This means that the maximum
ramping in Pre fLWLR , Pre fMAV , Pre fGaussian

, and Pre fSG correspond to 5.49%, 9.87%, 6.15%, and
8.21% of the wind farm’s capacity, respectively. These results are adequate to move on with
this case study.

P
re
f M
A
V

P
re
f L
W
L
R

P
w
in
d

P
re
f S
G

P
re
f G
a
u
ss
ia
n

Figure 6. The yearly ramping rate of the wind farm.

Each smoothing technique was used with 30 data points, and the generated Pre f for
each technique is shown in Figure 7. It is obvious that Pre f is smoother than Pwind. The
purple-bounded regions in Figure 8 present how much Pwind falls short of Pre f . The gap
between Pwind and Pre fMAV is greater than that from other smoothing techniques. This
means more resources are needed to compensate the generations. As a result, a PV plant
and BESS with 50 contribution factors (S) were installed to alleviate the shortfall, as stated
in Section 2.

Time(10-min)

P
wind

P
ref

Gaussian

P
ref

LWLR

P
ref

MAV

P
ref

SG

P
 (
M
W
)

Figure 7. Actual and smoothed wind power samples.
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Pwind PrefMAV

P
(M
W
)

(a)

Time(10-min)

PrefGaussianPwind

P
(M
W
)

(b)

Time(10-min)

PrefLWLR
Pwind 

P
(M

W
)

(c)

Time(10-min)

PrefSGPwind

P
(M
W
)

(d)
Figure 8. One day sample for shortages of Pwind to fulfill the Pre f : (a) MAV; (b) Gaussian; (c) LWLR; (d) SG.

Running the suggested method in NIA produced several PV plant and BESS setups
with COE and LPSP, as illustrated in Figure 9. As the sizing of BESS is meant to minimize
oversizing by considering just the minimal yearly negative accumulative net energy, the
BESS size dropped with each increase in S for each smoothing approach, and finally the
size was fixed. The minimum CE values for the whole year are 0.72609 (for LWLR), 0.6680
(for MAV), 0.57942 (for Gaussian), and 0.41753 MWh (for SG), as shown in Figure 10.

The capacity of the BESS began at 18.74 MWh for S = 0, and then reached the minimum
value of 0.8350 MWh for S = 0.04 (with the MAV). In addition, the minimum COE was
0.0229 EUR/kWh, with 10.716 MW for the PV plant sizes. The simulation results also attest
to the effect of LWLR, Gaussian, and SG in smoothing the wind power to overcome the
negative impact of the memory effect in MAV. Compared to MAV, the optimal sizes of
the BESS and PV for LWLR, Gaussian, and SG were attained while S = 0.02. Thus, the
optimal COE was 0.0237 EUR/kWh (for LWLR), 0.0203 EUR/kWh (for Gaussian), and
0.0165 EUR/kWh (for SG). However, the COE for LWLR was the highest, due to the size of
the BESS, which reached 0.9076 MWh.

On the other hand, the BESS for the SG was 0.2024 MWh lower than the BESS size for
the Gaussian. The PV size was 5.329 (for LWLR), 5.329 (for Gaussian), and 5.305 MW (for
SG). These techniques yielded similar PV size values, in contrast with MAV, which yielded
a value of 10.716 MW. Table 2 shows an overview of the best outcomes.
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Table 2. Optimal HWSPS configurations based on the suggested method, taking into account various smoothing approaches.

MAV LWLR Gaussian Savitzky–Golay

Wind farm (MW) 39 39 39 39
Cbattery(MWh) 0.8350 0.9076 0.7242 0.5219

PV (MW) 10.716 5.329 5.329 5.305
COE (EUR/kWh) 0.0229 0.0237 0.0203 0.0165

LPSP (%) 4 3.17 2.99 2.52
S 0.04 0.02 0.02 0.02

As shown in Figure 11, the values still fall short of the reference power, but the whole
LPSP values for the entire year are 4% for MAV, 3.17% for LWLR, 2.99% for Gaussian, and
2.52% for SG. The largest loss comes at night when PV generation is not available. The
size of the PV plant grows linearly as the contribution factor S increases, resulting in larger
fluctuations and more damped output.

With an increase in a contribution factor, the power deficit reduces, but the COE rises.
Simultaneously, the BESS SOC varies substantially between SOCmin and SOCmax. (charged
and discharged condition). During the day, there is enough Ppv MAV to compensate for the
wind generation shortfall. A portion of the surplus energy is used to power the BESS. Due
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to the tiny size of the PV plant, the BESS is usually employed if the LWLR, Gaussian, or SG
are used. The BESS is the most commonly used with LWLR, followed by Gaussian and
then SG. Due to the huge size of the PV plant, the MAV uses the BESS the least. MAV, on
the other hand, has a greater COE and a lower LPSP than SG.
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Figure 11. Sample of total output power and smoothedwind power: (a) MAV; (b) Gaussian; (c) LWLR; (d) SG.

6. Sizing without the Wake Effect

A simulation was run to determine the best HWSPS without taking into account the
wake effect. For each smoothing approach, the simulation was run using the optimum
contribution factor. With the MAV set to S = 0.04, this resulted in a HWSPS with a PV plant
of 11.372 MW and a BESS of 0.8984 MWh. The PV plant and BESS sizes rose by 6.12% and
7.59%, respectively. The optimum PV and BESS sizes for the SG for S = 0.02 were 5.63 MW
and 0.5319 MWh, respectively. Running the simulation with S = 0.02 and the Gaussian
model resulted in a HWSPS with a 5.66 MW PV plant and a 0.7418 MWh BESS. Finally,
when compared to the wake findings, the sizes of PV and BESS rose by 6.12% and 2.91%,
respectively, using the LWLR method. This illustrates the overestimation that happens
when estimating the HWSPS size without taking the wake effect into account.

7. The Influence of Contribution Factor on PV Plant and BESS Sizes

The wind farm’s cost alone is less than the optimal cost of the proposed HWPS.
However, the LPSP of a HWSPS with MAV is 4%, compared to 6.91% for a stand-alone
wind farm, implying that the HWSPS is roughly 2.91% more reliable. These findings
demonstrate that a wind farm alone is not a dependable solution.
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Increasing the size of the PV plant and the BESS improves the LPSP but raises the
COE. Furthermore, the surplus electricity grows, resulting in a decrease in revenue. Thus,
the availability of other resources on a wind farm benefits the electrical system, but only
up to a certain degree of resource penetration.

8. Summary

In this paper, an approach was developed to mitigate the wind output power fluctua-
tion. It focuses on scaling the HWSPS to decrease the impact of renewable energy resource
intermittency and provide maximum output power to the grid at a consistent level on a
timely manner based on renewable energy resource availability. The PV and BESS are sized
dependent on the production of the wind farm. Unlike earlier research, this technique does
not consider the load profile when sizing the HWSPS. The appropriate size of the HWSPS
is determined using the smoothed wind power signal as a reference. The smoothed signal
is generated using the MAV, LWLR, SG, and Gaussian smoothing techniques.

Furthermore, the GA is employed in the initial step of the method, with Jensen’s
wake effect model being applied to provide more precise and realistic results. The research
focuses on sizing the HWSPS in order to decrease production variations and enhance
dependability of the wind farm. The NIA is used to size the PV plant and the BESS, which
is a trade-off between system cost and reliability.

The suggested method was shown using real GHI data from a wind power plant
site in Oman with a multi-speed and multi-directional wind profile. The wake impact
on turbines was shown, and the power outputs of the wind farm with and without the
wake effect model were compared. The optimal HWSPS had a wind to PV ratio of 3.64:1
with MAV and around 7.32:1 with other smoothing techniques. The corresponding BESS
capacity represented 1.68% of the HWSPS’s rating for MAV, 2.05% for LWLR, 1.18% for SG,
and 1.63% for Gaussian.

The results also show that the SG smoothing technique is more suitable for this task
than MAV, Gaussian, or LWLR techniques. It was also found that the window size plays a
vital role in the smoothing of noisy output, but this smoothness has a negative impact on
the cost of energy. The memory effect feature of the presented smoothing techniques led
to a delay between the smoothed signal and the actual signal. In general, this implies an
increase in the smoothing source capacities.

In addition, an evaluation of the influence of the wake effect and the contribution
factor on the sizing of the HWSPS was conducted. This evaluation revealed the importance
of the wake effect to avoid overestimating the HWSPS size. As a result, the suggested
method is efficient in conducting a feasibility study for the size of a HWSPS in order to
achieve a cost-effective and dependable system.
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