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Abstract: This paper puts forward the implementation of an intelligent type II fuzzy PID (T2-FPID)
controller tweaked with a water cycle algorithm (WCA), subjected to an error multiplied with time
area over integral (ITAE) objective index for regularizing the variations in frequency and interline
power flow of an interconnected power system during load disturbances. The WCA-based T2-FPID
is tested on a multi-area (MA) system comprising thermal-hydro-nuclear (THN) (MATHN) plants in
each area. The dynamical behavior of the system is analyzed upon penetrating area 1 with a step load
perturbation (SLP) of 10%. However, power system practicality constraints, such as generation rate
constraints (GRCs) and time delays in communication (CTDs), are examined. Afterward, a territorial
control scheme of a superconducting magnetic energy storage system (SMES) and a unified power
flow controller (UPFC) is installed to further enhance the system performance. The dominancy of the
presented WCA-tuned T2-FPID is revealed by testing it on a widely used dual-area hydro-thermal
(DAHT) power system model named test system 1 in this paper. Analysis reveals the efficacy of the
presented controller with other approaches reported in the recent literature. Finally, secondary and
territorial regulation schemes are subjected to sensitivity analysis to deliberate the robustness.

Keywords: water cycle algorithm; type II fuzzy controller; UPFC-SMES scheme; ITAE index; CTDs

1. Introduction

In the present scenario, rapid industrialization demands more electrical energy con-
sumption. Participation of electrical utilities in the existing power system has been rapidly
increasing to meet this ever-changing power demand. With the penetration of these elec-
trical utilities, an interconnected system becomes more complex. The electric utilities are
sub-grouped as control areas, which connect the remaining areas via transmission lines
named tie lines. As soon as a small load disturbance occurs on any of the control areas,
there exists a considerable disturbance in the area frequency, making the entire intercon-
nected system unhealthy. However, the stability and efficacy of the power system are more
likely to be relied on damping out the variations in line flow and frequency that arise under
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disturbance conditions at the earliest. This task can be effectively addressed by a load
frequency controller (LFC). An LFC can accomplish the mechanism of balancing the power
through a secondary regulator by altering the set point valve of the generation unit, thereby
regulating the system frequency. Thus, a supreme and robust secondary regulatory control
technique is essential to neutralize the impact of load variations on system performance.

Tungadio et al. [1] reported various power system models that have been deliberated
by researchers in LFC study. Elgerd et al. [2] initiated the visualization of isolated thermal
plant behavior under load disturbances. Since then, more researchers are enlightened to
contribute governing techniques in the LFC domain. Nanda et al. [3] investigated two-area
and three-area thermal systems with unequal generation capacity. Researchers in [4] carried
out the analysis of the performance assessment of a DAHT system on load disturbances.
Ravi et al. [5] investigated the traditional dual-area system incorporated with traditional
generating sources of thermal-hydro-gas units in each area. Authors in [6] analyzed DAHT
system behavior without and with a generation limiter of a GRC in order to demonstrate
its impact on system performance. Later, researchers concentrated on considering the
integration of renewable plants with existing conventional units for the study of LFCs.
Irrespective of the test system models, researchers are more concentrated on designing and
optimizing secondary regulators (SRs) to improve power system performance [7].

Several conventional PI/PID/PIDN/PIDD [8,9], modified PID [10], higher-order
degree-of-freedom (DOF) 2DOFPID/3DOFPID [11], intelligent fuzzy (F) PID (FPID) [12],
fractional-order (FO) FOPI/FOPID [13], and other FO and fuzzy-based cascade con-
trollers [14] are reported in the literature. Implementation of intelligent fuzzy controllers
in the LFC domain are gaining momentum year by year; in this regard, type II fuzzy
controllers are preferred over type I for various engineering optimization problems, and
the strength of type II fuzzy controllers is extensively discussed in [15]. However, the
selection of an appropriate soft computing algorithm to fine-tune the parameters of SRs is
a most challenging task. Different soft computing approaches that have been extensively
implemented by researchers in the domain of LFC study are particle swarm optimiza-
tion (PSO) [16], grasshopper optimization algorithm (GOA) [10], pattern search (PS) [17],
sine-cosine algorithm (SCA) [13], lightning search algorithm (LSA), bacterial foraging
optimizer (BFO) [3], genetic algorithm (GA) [4], firefly algorithm (FA) [12], gravitational
search algorithm (GSA) [17], differential evolution (DE) [18], imperialist competitive al-
gorithm (ICA) [14], symbiotic organism search (SOS) [15], whale optimizer (WO) [19],
artificial field algorithm (AEFA) [20], gray wolf optimizer (GWO) [21], and some hybrid (h)
approaches such as hFA-PS [8], hPSO-PS [22], combined DE-AEFA [7], HAEFA [16], and
an FA-PSO-GSA combination technique [23]. However, every year, various optimization
approaches have been proposed by researchers based on migration, hierarchal, and hunting
mechanisms of various organisms in nature.

Though the aforementioned optimizations are widely used by researchers, most of
them get trapped into local minima and are unable to use proper search space [19]. This
opens the space and scope for the use of novel meta-heuristic searching methods in the
study of LFCs. So, in this paper, an effective approach of WCA is used to optimize T2-
FPID regulator parameters to maintain the stability of interconnected systems. Though
this WCA is used in LFC study, the combination of the WCA approach and the T2-FPID
controller has not been studied so far and no literature is reported. This inspires the
authors to implement this control mechanism along with territorial strategies of FACTS
and energy storage devices (ESDs) for further enhancement. A complex interconnected
system definitely needs an additional regulatory mechanism as SRs are unable to regulate
the system deviations under sudden large disturbances. An additional strategy of a UPFC
and an SMES is implemented in this work because of their significant features.

In view of the above, the contributions of this paper are:

(a) The performance of the WCA-optimized T2-FPID controller is assessed for LFC study.
(b) The efficacy of the proposed WCA-tuned T2-FPID controller is revealed with other

control approaches reported in the literature by implementing test system 1.
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(c) Impact of CTDs on the MATHN system is revealed and the importance of considering
CTDs is discussed extensively.

(d) A UPFC-SMES additional strategy is implemented to further improve system perfor-
mance.

(e) Sensitivity analysis is performed to showcase the presented coordinated regulation
robustness.

2. Materials and Methods

Two power system models are used in this work to implement the presented T2-FPID
controller based on the WCA approach. A DAHT model named test system 1 with unique
generation capacities is analyzed by laying area 1 with an SLP of 10%. Another model
is a dual-area THN system referred to as test system 2 in this paper. The constraints
of practicality, such as GRCs and CTDs, are considered for test system 2 to exercise the
research close to the nature of realistic practice. The test system models 1 and 2 are depicted
in Figure 1 [4] and Figure 2 [21], respectively. The capacity of the DAHT model is 2000 MW,
with areas of unique generation capacities, and the MATHN system has a 2000 MW power
generation capacity for each area. Investigation of the LFC of a nuclear plant along with a
conventional thermal-hydro system is not available in the literature so far and is one of
the key issues that is addressed in this paper. The parameters of both the test systems are
detailed in Appendix A. Normally in the LFC of a power system, the information from the
sensing devices located at distant terminal points is transmitted to the command control
room, and from the command room, the control signals are transmitted to the generation
plant locations to alter the set point so that the stability of the system can be maintained.
This transmission and receiving of signals among different devices in distant places can be
possible only through the usage of communication channels. A communication channel
always inherits the features of delay. With these delays, the performance of the power plants
is adversely affected. Until now, considering CTDs for the power system LFC analysis is
not done satisfactorily. In this work, CTDs are carried out to investigate their impact on
the power system and are modeled as [24] given in Equation (1), and the parameter τd
indicates the time delay constant.

e−sτd =
1− τd

2 s
1 + τd

2 s
(1)
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Figure 1. Dual-area conventional hydro-thermal plant (DAHT) (test system 1) [24]. 
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Figure 2. Model of a MATHN plant with CTDs (test system 2) [21]. 

Figure 1. Dual-area conventional hydro-thermal plant (DAHT) (test system 1) [24].
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Figure 2. Model of a MATHN plant with CTDs (test system 2) [21]. Figure 2. Model of a MATHN plant with CTDs (test system 2) [21].

3. Type II Fuzzy Controller

In a type II fuzzy controller, the limitations of a type I controller, such as exhibiting the
crisp value from the incurred two-dimensional membership functions (MFs), are eliminated.
A T2-FPID controller is implemented for the LFC study as a secondary regulator in this work,
and the scaling factors are also perceived. The MFs used in the type II fuzzy systems are
three-dimensional and are created with an upper MF and lower MF combination like that
in a type 1 fuzzy system [25]. In this work, the ACE and the change in the ACE are given
as input variables to the T2-FPID controller, and the fuzzifier unit converts them into a 3D
representation and then transfers them to the rule-base unit and the defuzzifier unit. The
membership functions (MFs) perceived in this work for both error and change in error are
five linguistic variables termed big positive (BP), small positive (SP), zero (Z), big negative
(BN), and small negative (SN), as depicted in Figure 3. A Mamdani type of fuzzy engine
is perceived, and the FLC output is calculated by using the defuzzification method of the
center of gravity. The two-dimensional FLC rule base is noted in Table 1. The structure of the
T2-FPID controller is shown in Figure 4. The parameters K1 and K2 are scaling factors, and the
gains of the PID are indicated with KP, KI, and KD, and N represents the filter coefficient.
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Table 1. FLC system input and output rules.

ACE
∆ACE

BN SN Z SP BP

BN BN BN BN SN Z
SN BN BN SN Z SP
Z BN SN Z SP BP
SP SN Z SP BP BP
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However, parameters such as scaling factors, filter, and PID gains are optimally
rendered with the WCA mechanism subjected to the time domain objective index of the
ITAE given in Equation (2), where t represents the simulation time; parameters ∆ f1 and ∆ f2
indicate variations in the frequency of area 1 and area 2, respectively; and ∆Ptie12 represents
deviations in the tie-line power flow.

JITAE =
∫ t

0
t ∗ (∆ f1 + ∆Ptie12 + ∆ f2)dt (2)

4. Territorial Strategy of the SMES-UPFC

In the course of greater load disturbances, the secondary regulator is not passable
enough to handle the system deviations. So, a territorial control strategy is implemented in
this work in order to sustain system stability even in worst-case scenarios.

4.1. UPFC

Through an intended path, real and reactive power can be diverted by the UPFC.
Moreover, they are multivariable FACTS devices that can regulate system parameters and
thereby enhance the interline flow of power. The combination of an SSSC and a STATCOM
with a common DC link forms the device UPFC. Without additional sources, the UPFC can
facilitate real power compensation and also have the capability to absorb/generate real
power and hence enhance system stability. The UPFC structure implemented in this work
as a damping controller is shown in Figure 5 [21].
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4.2. SMES

An SMES play a handy role in providing real power during line outages at the load end.
These devices store energy in the form of a DC magnetic field by passing current through
the conductor wound around the magnet, which is maintained at cryogenic temperature
to impart a lossless nature. SMES devices get charged up during off-peak demands and
discharged at the time of power shortages. They have the feasibility to enhance the line
capacity by softening inter-area deviations. An SMES acts as an excellent spinning reserve
to meet the sudden demands on the system, thereby diminishing frequency fluctuations.
An SMES has the capability of huge storage capacity, and its low charge/discharge time
makes its application possible for LFC study. The mathematical model of the SMES [26]
used in work is given in Equation (3).

GSMES =
KSMES

1 + sTSMES
(3)

5. Water Cycle Algorithm

Eskandar et al. [27] in the year 2012 proposed this WCA strategy inspired from
the continuous water movement. Since then, this algorithm has been widely used by
researchers to solve non-linear constrained optimization problems and also engineering
optimizations. In this water cycle process, water collects at the banks of streams and rivers.
Later, these rivers/streams continue to join the sea. Moreover, this strategy possesses
strength to obtain minimum or maximum index values accurately within a few iterations.
So, in this work, this WCA approach is followed to retrieve the parameters of the secondary
regulator optimally so that variations in frequency are reduced. In this WCA, rivers or
streams act as the initial population and the sea is the global best.

Every raindrop (RD) is generated as an array of Nvar acts as a solution for the problem
initialized as

RDi = Xi = [x1, x2 . . . . . . xNvar] (4)

Population RD =


RD1

− − −
RDi

− − −
RDNPOP

 (5)

Later, every RD cost is evaluated by using the ITAE equation, and the gains of the
T2-FPID are initialized, subjected to the constraints modeled as follows:

K1Min ≤ K1 ≤ K1Max (6)

K2Min ≤ K2 ≤ K2Max (7)

KPMin ≤ KP ≤ KPMax (8)

KIMin ≤ KI ≤ KIMax (9)

KDMin ≤ KD ≤ KDMax (10)

5.1. Streams Flow into the River or Rivers Flow into the Sea

The water in the streams tries to flow toward the river, and in the same way, the water
in the rivers flows toward the sea. The position of streams and rivers is updated using the
following expressions:

PStream(t + 1) = PStream(t) + rand()× k× (PRiver(t) − PStream(t)) (11)

PRiver(t + 1) = PRiver(t) + rand()× k× (PSea(t) − PRiver(t)) (12)
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Here, k representing the constant usually takes a value between 1 and 2, rand() is a
random number from 0 to 1, and t indicates iterations. In case the objective index developed
by the stream is better than that of the river, then the positions of streams and rivers are
altered. A similar strategy is applicable for rivers and the sea.

5.2. Evaporation and Rain

This loop has a vital role in the searching mechanism of WCA. This evaporation and
rain loop is intended to avoid getting trapped into the local optima. This loop keeps this
WCA approach in a hierarchical position compared to other techniques. The process of
evaporation terminates if ∣∣∣PSea − PRiver

∣∣∣ < dmax (13)

dmax(t + 1) = dmax(t)− (dmax/(t)/iter.max) (14)

After the process of evaporation ends, immediately the process of rain starts:

PStream(t + 1) = PSea (t) +
√

V X rand(1, Nvar) (15)

The searching rate nearer to the sea is indicated with V. The global best solutions
are displayed immediately when the main loop reaches the maximum iterations. The
procedural flow of WCA is depicted in Figure 6.
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6. Results and Discussion
6.1. Case 1: Performance Analysis of Test System 1

To notice the execution of the presented regulator WCA-optimized T2-FPID, a conven-
tional hydro-thermal dual-area system is considered by perceiving area 1 with a disturbance
of 10% SLP. However, controlling strategies reported in the early and recent literature, such
as PI, a PID tuned with the respective GA [4], and hFA-PS [8] algorithms along with a fuzzy
PID optimized with hPSO-PS [22], are implemented to demonstrate WCA-based T2-FPID
control efficacy. The system nature under these controllers is assessed and compared in
Figure 7, and respective responses’ settling times along with regulator optimal parametric
gains are noted in Table 2. Gathering from Figure 7 and interpreting the settling times
noted in Table 2, it is confirmed that the presented WCA-based T2-FPID shows remarkable
performance in damping out frequency and inter-area power flow deviations. Hence,
the presented WCA-based T2-FPID approach is more dominating and outperforms the
methodologies that are listed in the literature because of the inheritance of the evaporation
and rain loop in the WCA mechanism to avoid solution divergence and because the usage
of 3D MFs in the T2-FPID regulator enhances the degree of freedom.
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Table 2. Optimal controller gains and settling times of responses for case 1.

Algorithm WCA:
T2-FPID

hPSO-PS:
Fuzzy PID

[22]

hFA-PS:
PID [8] GA: PI [4]

Optimal gain

Area 1

K1 = 0.0759
K2 = 0.0377
KP = 1.1288
KI = 0.1584
KD = 0.5725

KP = 1.0366
KI = 0.2098
KD = 0.4317

KP = 1.1231
KI = 0.3665
KD = 0.3821

KP = 0.7308
KI = 0.1844

Area 2

K1 = 0.1890
K2 = 0.0908
KP = 1.1056
KI = 0.1712
KD = 0.4070

KP = 1.0900
KI = 0.2521
KD = 0.3502

KP = 1.1673
KI = 0.1056
KD = 0.3276

KP = 0.6877
KI = 0.1722

ITAE × 10−4 3.35 11.29 26.88 67.49

Settling time
(s)

∆f 1 4.65 5.16 6.92 10.95
∆f 2 5.83 7.89 9.87 10.42

∆Ptie12 5.08 6.80 9.48 10.21

6.2. Case 2: Performance Analysis of Test System 2 without CTD Consideration

Later, the presented T2-FPID regulator is also implemented in the MATHN model,
named test system 2 in this paper, depicted in Figure 2. The PID, fuzzy PID, and T2-FIPD
controllers are used as secondary regulators optimized with the WCA mechanism one after
the other, and the behavior of the system is assessed upon laying area 1 with a disruption
of 10% SLP. A performance comparison of these controllers on the MATHN system without
taking CTDs into consideration is shown in Figure 8. Visualizing Figure 8, the T2-FPID is
more dominating than a conventional PID and fuzzy PID in dampening deviations and
also providing the responses to reach a steady condition.

6.3. Case 3: Performance Analysis of Test System 2 with CTD Consideration

In this case, the MATHN model is used with practicality constraints of CTDs and
the behavior of the system is monitored under the supervision of a PID, fuzzy PID, and
T2-FPID based on the WCA mechanism one at a time. Figure 9 depicts the comparative
analysis of these controllers on the MATHN system with CTDs and reveals that even when
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the system is considered with CTDs, the presented T2-FPID outperforms other controllers.
Optimal parameters of controllers and numerical results of the system responses are noted
in Tables 3 and 4.
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Table 3. Optimal controller gains for test system 2 in various cases.

Parameters
Without CTDs With CTDs

T2-FPID Fuzzy PID PID T2-FPID Fuzzy PID PID

Area 1

K1 = 0.0685
K2 = 0.0962
KP = 1.8995
KI = 0.3503
KD = 0.6172

KP = 1.2095
KI = 0.3167
KD = 0.4756

KP = 1.1048
KI = 0.2040
KD = 0.3010

K1 = 0.0873
K2 = 0.0900
KP = 1.2040
KI = 0.4098
KD = 0.8930

KP = 0.9812
KI = 0.1294
KD = 0.8226

KP = 0.8297
KI = 0.2454
KD = 0.7272

Area 2

K1 = 0.0990
K2 = 0.0355
KP = 1.2156
KI = 0.2911
KD = 0.7691

KP = 0.9990
KI = 0.2988
KD = 0.3765

KP = 1.2136
KI = 0.3139
KD = 0.6754

K1 = 0.0158
K2 = 0.0776
KP = 1.0639
KI = 0.3822
KD = 0.7819

KP = 1.0189
KI = 0.2194
KD = 0.9335

KP = 0.9867
KI = 0.3125
KD = 0.6999

Table 4. Settling time of responses in various cases for test system 2.

Settling
Time (s)

Without CTDs With CTDs

PID Fuzzy PID T2-FPID PID Fuzzy PID T2-FPID T2-FPID with
RFBs

T2-FPID with
UPFC-RFBs

∆f 1 14.06 8.72 5.222 23.01 14.09 11.82 8.364 5.44
∆Ptie12 15.91 10.96 9.05 22.51 15.82 12.58 8.031 5.639

∆f 2 15.42 9.725 6.398 22.28 14.14 11.93 8.641 6.54

6.4. Case 4: Demonstrating the Impact of CTDs on Test System 2

To showcase the impingement of CTDs on MATHN system performance, MATHN sys-
tem responses under the governing of the WCA-optimized T2-FPID regulator are compared in
Figure 10, without and with adopting CTDs. From the above cases, as the T2-FPID controller
is proven to be the most dominating, only the system responses with this controller have
been considered in this case. From Figure 10, CTDs have a considerable effect on system
stability. Reponses are much deviated upon considering CTDs with the system compared to
the case of not taking them into account. With the delay in communication between sensors
situated at distant locations and power generation units, altering of the turbine set point valve
position will get delayed. Due to this, there will be widening of the real power mismatch,
leading to more variations in system dynamics. However, CTDs are needed to be taken
into account while assessing the performance of interconnected models. While doing so, the
designed regulator can handle the system deviations more effectively compared to the case of
a controller designed for a system not taking CTDs into account.

6.5. Case 5: Performance Assessment of the UPFC-SMES on Test System 2

Later, the mechanism of a territorial control scheme is implemented for test system 2
under governing of the WCA-tuned T2-FPID regulator to improve the system dynamical
nature. First, only SMES devices are merged in each area and the system performance
is assessed. Later, a UPFC device is placed in the inter-area along with SMES device
positions, which are kept unchanged, and the responses are shown in Figure 11. As shown
in Figure 11, there is an enhancement in the performance of the MATHN model with the
UPFC-SMES strategy. This is possible only because of the nature of the SMES in meeting a
sudden load demand and the UPFC in regulating the inter-area power flow.

6.6. Case 6: Sensitivity Analysis

Further, the MATHN model is subjected to different load variations and the system
parameter of the tie-line coefficient in the range of±50% from the nominal value to validate
the robustness of secondary and territorial coordinated control mechanisms. The responses
for testing the robustness are shown in Figures 12 and 13. From this case, it is finalized
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that the system dynamical behavior is not much affected, even if the system is subjected to
parameter deviations and load variations.
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7. Conclusions

This paper addressed the potentiality of a WCA-optimized T2-FPID controller in
mitigating the frequency and interline flow of power fluctuations in the MATHN power
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system. However, the efficacy of the T2-FPID is revealed by comparing its performance
with a fuzzy PID and a conventional PID. Further, the performance of the MATHN power
system is scoped by considering it without and with CTDs. The presented T2-FPID
regulator enhances the performance index value by 35.6% with a fuzzy PID and 42.2% with
a traditional PID in the case of not considering CTDs and by 23.3% with a fuzzy PID and
31.4% with a traditional PID in the case of considering CTDs. The impingement of CTDs on
the MATHN system is showcased and justified. Subsequently, implementing the territory
control of the UPFC-SMES scheme under the governing of a WCA-tuned type II fuzzy
regulator shows remarkable enhancement in mitigation of variations. Later, a robustness
test is performed and it reveals the robustness of the presented secondary and territory
regulation schemes. Moreover, the presented WCA-based type II fuzzy regulator is applied
on the widely accepted test system of DAHT and the presented approach outperforms
other controllers such as the PI and PID tuned with GA and hFA-PS techniques, along with
the fuzzy PID tuned with hPSO-PS mentioned in the recent literature.
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Abbreviations

CTD Communication time delay
DAHT Dual-area hydro-thermal
DOF Degree of freedom
ESDs Energy storage devices
FLC Fuzzy logic controller
GSA Gravitational search algorithm
GRC Generation rate constraint
GWO Gray wolf optimizer
HAEFA Hybrid artificial field algorithm
ITAE Integral time area error
LFC Load frequency controller
MFs Membership functions
FO Fractional order
MATHN Multi-area thermal-hydro-nuclear
PS Pattern search
T2-FPID Type II fuzzy PID
SMES Superconducting magnetic energy storage
SR Secondary regulator
PSO Particle swarm optimization
SLP Step load perturbation
GDB Governor dead band
WCA Water cycle algorithm
UPFC Unified power flow controller
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Appendix A

Test system 1 [4]:
Thermal units: Tg = governor time constant = 0.08 s; Tt = turbine time constant = 0.4 s;

RT = governor regulation gain = 2.2 Hz/MW
Hydel units: K1 = governor gain = 1.0; T1 = governor time constant = 47.8 s; T2 =

amplifier time constant = 0.524 s; Tr = amplifier reset time = 5.0 s; TW = turbine time
constant = 1.0 s; RH = governor regulation gain = 2 Hz/MW

Test system 2 [21]:
Thermal units: N1 = 80 and N2 = 120, GDB parameters; Tsg = governor time constant

= 0.06 s; Tr = turbine reheat time constant = 0.3 s; Tt = turbine time constant = 10.2 s
Hydel units: Tgh = governor time constant = 0.2 s; Trh = hydraulic amplifier time

constant = 28.768 s; Tw = turbine time constant = 1.1 s
Nuclear units: TNR = nuclear reactor time constant = 0.26 s; KRN = reactor gain

constant = 0.3; TRH1, TRH2, and TRH3 = low-pressure turbine time constants = 7 s, 6 s, and
10 s, respectively; TN1 and TN2 = high-pressure turbine time constants = 0.5 s and 9 s,
respectively

SMES devices: KSMES = SMES gain constant = 0.9; TSMES = SMES time constant = 1 s
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