Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study
Abstract
:1. Introduction
2. Green Roof System
3. Simulation-Based Management of a Green Roof System
3.1. Data Collection
3.2. Results
- The temperatures under the grids planted with New Gold Lantana, Purple Trailing Lantana, Hardy Ice Plant, and White Trailing Lantana are all equal (species effect);
- The temperatures of the roof surface, grid surface, and underneath the grid are equal (surface type effect);
- No interaction between species and surface types.
4. Simulation-Based Management of a Green Roof System
4.1. Surface Temperature Estimation Model
4.2. Energy Consumption Model of a Building
4.3. Irrigation System Model of a Building
4.4. PV Solar Panel Model
4.5. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Szlivka, D.F.; Rajnai, Z. Examination of Temperature Change of Green Roof and Flat Roof in Frequency Range. Ann. Fac. Eng. Hunedoara 2016, 14, 221. [Google Scholar]
- Dimitrijevic, D.; Tomic, M.; Zivkovic, P.; Stojiljkovic, M.; Dobrnjac, M. Thermal characteristics and potential for retrofit by using green vegetated roofs. Ann. Fac. Eng. Hunedoara 2016, 14, 41. [Google Scholar]
- Park, G.; Hawkins, T.W. An Examination of the Effect of Building Compactness and Green Roofs on Indoor Temperature through the Use of Physical Models. Geogr. Bull. 2015, 56, 93–101. [Google Scholar]
- He, Y.; Lin, E.S.; Tan, C.L.; Tan, P.Y.; Wong, N.H. Quantitative evaluation of plant evapotranspiration effect for green roof in tropical area: A case study in Singapore. Energy Build. 2021, 241, 110973. [Google Scholar] [CrossRef]
- Chagolla-Aranda, M.A.; Simá, E.; Xamán, J.; Álvarez, G.; Hernández-Pérez, I.; Téllez-Velázquez, E. Effect of irrigation on the experimental thermal performance of a green roof in a semi-warm climate in Mexico. Energy Build. 2017, 154, 232–243. [Google Scholar] [CrossRef]
- Schade, J.; Lidelöw, S.; Lönnqvist, J. The thermal performance of a green roof on a highly insulated building in a sub-arctic climate. Energy Build. 2021, 241, 110961. [Google Scholar] [CrossRef]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green roof stormwater retention: Effects of roof surface, slope, and media depth. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Cavanaugh, L.M. Redefining the green roof. J. Archit. Eng. 2008, 14, 4–6. [Google Scholar] [CrossRef]
- Ellingwood, B.R.; Culver, C.G. Analysis of live loads in office buildings. J. Struct. Div. 1977, 103, 1551–1560. [Google Scholar] [CrossRef]
- Luckett, K. Green Roof Construction and Maintenance; McGraw-Hill Education: New York, NY, USA, 2009. [Google Scholar]
- Liu, K.; Minor, J. Performance evaluation of an extensive green roof. In Proceedings of the Green Rooftops for Sustainable Communities, Washington, DC, USA, 4–6 May 2005; pp. 1–11. [Google Scholar]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Reduction of the urban cooling effects of an intensive green roof due to vegetation damage. Urban Clim. 2013, 3, 40–55. [Google Scholar] [CrossRef]
- He, Y.; Lin, E.S.; Tan, C.L.; Yu, Z.; Tan, P.Y.; Wong, N.H. Model development of Roof Thermal Transfer Value (RTTV) for green roof in tropical area: A case study in Singapore. Build. Environ. 2021, 203, 108101. [Google Scholar] [CrossRef]
- Nurmi, V.; Votsis, A.; Perrels, A.; Lehvävirta, S. Green roof cost-benefit analysis: Special emphasis on scenic benefits. J. Benefit-Cost Anal. 2016, 7, 488–522. [Google Scholar] [CrossRef]
- Aydin, B.; Kim, S.; Harp, D. Designing an Automated Sustainable Green Roof System. In Proceedings of the IISE Annual Conference, Orlando, FL, USA, 19–22 May 2018; Institute of Electrical and Electronics Engineers (IISE): Piscataway, NJ, USA, 2018. [Google Scholar]
- Ávila-Hernández, A.; Simá, E.; Xamán, J.; Hernández-Pérez, I.; Téllez-Velázquez, E.; Chagolla-Aranda, M.A. Test box experiment and simulations of a green-roof: Thermal and energy performance of a residential building standard for Mexico. Energy Build. 2020, 209, 109709. [Google Scholar] [CrossRef]
- Woltmann, S.; Zarte, M.; Kittel, J.; Pechmann, A. Agent based simulation model of virtual power plants for greener manufacturing. Procedia CIRP 2018, 69, 377–382. [Google Scholar] [CrossRef]
- Delamare, J.; Bitachon, B.; Peng, Z.; Wang, Y.; Haverkort, B.R.; Jongerden, M.R. Development of a smart grid simulation environment. Electron. Notes Theor. Comput. Sci. 2015, 318, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Morvaj, B.; Lugaric, L.; Krajcar, S. Demonstrating smart buildings and smart grid features in a smart energy city. In Proceedings of the 3rd International Youth Conference on Energetics (IYCE), Leiria, Portugal, 7–9 July 2011; pp. 1–8. [Google Scholar]
- Kim, S.; Kim, S.; Yoon, C. An Efficient Structure of an Agrophotovoltaic System in a Temperate Climate Region. Agronomy 2021, 11, 1584. [Google Scholar] [CrossRef]
- Department of Economic and Social Affairs Population Dynamic. World Urbanization Projects 2018; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Yau, K.; Muller, M.P.; Lin, M.; Siddiqui, N.; Neskovic, S.; Shokar, G.; Fattouh, R.; Mutakas, L.; Beaubien-Souligny, W.; Thomas, A.; et al. COVID-19 outbreak in an urban hemodialysis unit. Am. J. Kidney Dis. 2020, 76, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S. GHG emissions from urbanization and opportunities for urban carbon mitigation. Curr. Opin. Environ. Sustain. 2010, 2, 277–283. [Google Scholar] [CrossRef]
- Pearson, L.J.; Pearson, L.; Pearson, C.J. Sustainable urban agriculture: Stocktake and opportunities. Int. J. Agric. Sustain. 2010, 8, 7–19. [Google Scholar] [CrossRef]
- Hui, S.C.; Chan, S.C. Integration of green roof and solar photovoltaic systems. In Proceedings of the Joint Symposium 2011: Integrated Building Design in the New Era of Sustainability, Kowloon, Hong Kong, China, 22 November 2011; pp. 1–12. [Google Scholar]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Peck, S.W.; Callaghan, C.; Kuhn, M.E.; Bass, B. Greenbacks from Green Roofs: Forging a New Industry in Canada; Canada Mortgage & Housing Corporation: Ottawa, ON, Canada, 1999. [Google Scholar]
- MacIvor, J.S.; Lundholm, J. Performance evaluation of native plants suited to extensive green roof conditions in a maritime climate. Ecol. Eng. 2011, 37, 407–417. [Google Scholar] [CrossRef]
- HomeAdvisor. Green Roof Cost. 2021. Available online: https://www.homeadvisor.com/cost/roofing/green-roof/#avg (accessed on 1 May 2021).
- Dixon, R.; Bray, S. Appendix P4 Preliminary Texas Evaporation Trends Report. 2010. Available online: https://gato-docs.its.txstate.edu/jcr:d97dab4e-67fe-45e5-8303-1cf064adcfca/Preliminary_Texas_Evaporation_Trends_Report.pdf (accessed on 5 May 2021).
- Charalambous, K.; Bruggeman, A.; Eliades, M.; Camera, C.; Vassiliou, L. Stormwater retention and reuse at the residential plot level—Green roof experiment and water balance computations for long-term use in Cyprus. Water 2019, 11, 1055. [Google Scholar] [CrossRef] [Green Version]
- Heritage Water Tanks. The Ultimate Guide to Water Tank Prices. 2021. Available online: https://heritagetanks.com.au/water-tank-prices/ (accessed on 8 May 2021).
- Algarni, S.; Saleel, C.A.; Mujeebu, M.A. Air-conditioning condensate recovery and applications—Current developments and challenges ahead. Sustain. Cities Soc. 2018, 37, 263–274. [Google Scholar] [CrossRef]
- Guz, K. Condensate water recovery. ASHRAE J. 2005, 47, 54–56. [Google Scholar]
- Bryant, J.A.; Ahmed, T. Condensate Water Collection for An Institutional Building in Doha, Qatar: An Opportunity for Water Sustainability; Texas A&M University: College Station, TX, USA, 2008. [Google Scholar]
- Van Mechelen, C.; Dutoit, T.; Hermy, M. Adapting green roof irrigation practices for a sustainable future: A review. Sustain. Cities Soc. 2015, 19, 74–90. [Google Scholar] [CrossRef]
- Wang, Y.; Singh, R.P.; Fu, D.; Zhang, J.; Zhou, F. Thermal Study on Extensive Green Roof Integrated Irrigation in Northwestern Arid Regions of China. Water 2017, 9, 810. [Google Scholar] [CrossRef] [Green Version]
- Scherer, T.F. Irrigation Water Pumps. NDSU Extension Service. 2017. Available online: https://www.ag.ndsu.edu/publications/crops/irrigation-water-pumps (accessed on 8 May 2021).
- Schindler, A.K.; Ruiz, J.M.; Rasmussen, R.O.; Chang, G.K.; Wathne, L.G. Concrete pavement temperature prediction and case studies with the FHWA HIPERPAV models. Cem. Concr. Compos. 2004, 26, 463–471. [Google Scholar] [CrossRef]
- Moreda, G.P.; Muñoz-García, M.A.; Alonso-García, M.C.; Hernández-Callejo, L. Techno-Economic Viability of Agro-Photovoltaic Irrigated Arable Lands in the EU-Med Region: A Case-Study in Southwestern Spain. Agronomy 2021, 11, 593. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, J.; Kahara, S.N.; Kiniry, J.R. APEX simulation: Water quality of Sacramento Valley wetlands impacted by waterfowl droppings. J. Soil Water Conserv. 2020, 75, 713–726. [Google Scholar] [CrossRef]
- City of Commerce. Utility Services. 2020. Available online: https://commercetx.org/departments/department-of-finance/152-2/ (accessed on 15 May 2021).
- Chang, B.; Starcher, K. Evaluation of wind and solar energy investments in Texas. Renew. Energy 2019, 132, 1348–1359. [Google Scholar] [CrossRef]
- Othman, R.; Kasim, S.Z.A. Assessment of plant materials carbon sequestration rate for horizontal and vertical landscape design. Int. J. Environ. Sci. Dev. 2016, 7, 410. [Google Scholar] [CrossRef] [Green Version]
- Yim, S.Y.; Ng, S.T.; Hossain, M.U.; Wong, J.M. Comprehensive evaluation of carbon emissions for the development of high-rise residential building. Buildings 2018, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Congressional Budget Office. Impose a Tax on Emissions of Greenhous Gases. 2018. Available online: https://www.cbo.gov/budget-options/54821 (accessed on 15 May 2021).
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Squares | F 1 | p-Value | F Crit 2 |
---|---|---|---|---|---|---|
Between species | 1.55 × 100 | 3.00 × 100 | 5.16 × 10−1 | 9.07 × 10−3 | 9.99 × 10−1 | 2.62 × 100 |
Between surface types | 3.59 × 104 | 2.00 × 100 | 1.80 × 104 | 3.16 × 102 | 5.30 × 10−86 | 3.02 × 100 |
Interaction | 1.79 × 100 | 6.00 × 100 | 2.99 × 10−1 | 5.25 × 10−3 | 1.00 × 100 | 2.12 × 100 |
Error | 2.53 × 104 | 4.44 × 102 | 5.69 × 101 | |||
Total | 6.12 × 104 | 4.55 × 102 |
Month | Energy Consumption (KWh) | Energy Cost ($) | HVAC (KWh) | Air Temperature High (°C) 1 | Surface Temperature High (°C) 2 |
---|---|---|---|---|---|
Jan. | 338,347.93 | 33,834.79 | 140,865.43 | 14.44 | 38.79 |
Feb. | 248,121.81 | 24,812.18 | 50,639.32 | 16.67 | 40.97 |
Mar. | 236,843.55 | 23,684.35 | 39,361.06 | 20.56 | 44.80 |
Apr. | 197,482.49 | 19,748.25 | 0.00 | 25.00 | 49.16 |
May | 200,753.10 | 20,075.31 | 3270.61 | 29.44 | 53.53 |
Jun. | 225,565.28 | 22,556.53 | 28,082.79 | 33.33 | 57.35 |
Jul. | 248,121.81 | 24,812.18 | 50,639.32 | 35.56 | 59.53 |
Aug. | 257,144.42 | 25,714.44 | 59,661.93 | 36.67 | 60.63 |
Sep. | 250,377.47 | 25,037.75 | 52,894.97 | 32.78 | 56.81 |
Oct. | 230,076.59 | 23,007.66 | 32,594.10 | 26.67 | 50.80 |
Nov. | 214,287.02 | 21,428.70 | 16,804.53 | 20.56 | 44.80 |
Dec. | 270,678.34 | 27,067.83 | 73,195.85 | 15.00 | 39.34 |
Category | Air Temperature High (°C) 1 | Green Roof | Non-Green Roof | ||
---|---|---|---|---|---|
Surface Temperature High (°C) 2 | Energy Consumption (kWh) 3 | Surface Temperature High (°C) 2 | Energy Consumption (kWh) 3 | ||
Jan. | 14.44 | 17.12 | 14,914.69 | 38.79 | 135,470.00 |
Feb. | 16.67 | 19.81 | 9647.28 | 40.97 | 88,768.12 |
Mar. | 20.56 | 23.13 | 3403.96 | 44.80 | 32,055.33 |
Apr. | 25.00 | 27.50 | 643.31 | 49.16 | 6225.90 |
May | 29.44 | 31.86 | 2207.90 | 53.53 | 21,980.67 |
Jun. | 33.33 | 35.68 | 6841.89 | 57.35 | 69,878.12 |
Jul. | 35.56 | 37.87 | 10,759.00 | 59.53 | 111,542.67 |
Aug. | 36.67 | 38.96 | 13,045.03 | 60.63 | 136,273.46 |
Sep. | 32.78 | 35.14 | 6003.25 | 56.81 | 61,086.37 |
Oct. | 26.67 | 29.13 | 742.42 | 50.80 | 7260.79 |
Nov. | 20.56 | 23.13 | 3403.96 | 44.80 | 32,055.33 |
Dec. | 15.00 | 17.67 | 13,478.53 | 39.34 | 122,819.90 |
Category | Item | Quantity | Unit Cost ($) | Cost ($) |
---|---|---|---|---|
Green roof | Extensive grid (grid) 1 | 6394 | 5 | 31,970.00 |
Planting medium (ton) 2 | 261.73 | 68 | 17,797.49 | |
New Gold Lantana (plant) 3 | 6394 | 9.99 | 63,876.06 | |
Purple Trailing Lantana (plant) 3 | 6394 | 9.99 | 63,876.06 | |
Hardy Ice (plant) 3 | 6394 | 9.99 | 63,876.06 | |
White Trailing Lantana (plant) 3 | 6394 | 9.99 | 63,876.06 | |
Irrigation | HVAC irrigation system (m2) 4 | 2378.97 | 4.31 | 10,242.81 |
PV solar panel system (m2) 5 | 2378.97 | 61.10 | 145,357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Aydin, B.; Kim, S. Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study. Energies 2021, 14, 5443. https://doi.org/10.3390/en14175443
Kim S, Aydin B, Kim S. Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study. Energies. 2021; 14(17):5443. https://doi.org/10.3390/en14175443
Chicago/Turabian StyleKim, Sojung, Burchan Aydin, and Sumin Kim. 2021. "Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study" Energies 14, no. 17: 5443. https://doi.org/10.3390/en14175443
APA StyleKim, S., Aydin, B., & Kim, S. (2021). Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study. Energies, 14(17), 5443. https://doi.org/10.3390/en14175443