Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Entrainer Selection
3.2. Process Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Redel-Macías, M.D.; Leiva-Candia, D.E.; Soriano, J.A.; Herreros, J.M.; Cubero-Atienza, A.J.; Pinzi, S. Influence of short carbon-chain alcohol (ethanol and 1-propanol)/diesel fuel blends over diesel engine emissions. Energies 2021, 14, 1309. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, D.; Lapuerta, M.; German, L. Progress in the Use of Biobutanol Blends in Diesel Engines. Energies 2021, 14, 3215. [Google Scholar] [CrossRef]
- Lodi, G.; De Guido, G.; Pellegrini, L.A. Simulation and energy analysis of the ABE fermentation integrated with gas stripping. Biomass Bioenerg. 2018, 116, 227–235. [Google Scholar] [CrossRef]
- Sjulander, N.; Kikas, T. Origin, impact and control of lignocellulosic inhibitors in bioethanol production—A review. Energies 2020, 13, 4751. [Google Scholar] [CrossRef]
- Lodi, G.; De Guido, G.; Pellegrini, L. Recovery of butanol from ABE fermentation broth by gas stripping: Process simulation and techno-economic evaluation. In Proceedings of the 25th European Biomass Conference and Exhibition (EUBCE 2017), Stockholm, Sweden, 12–15 June 2017; pp. 1034–1041. [Google Scholar]
- De Guido, G.; Lodi, G.; Pellegrini, L. Study of the integrated product recovery by gas stripping for the ABE fermentation with a fed-batch fermenter. Chem. Eng. Trans. 2019, 74, 793–798. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, X.; Yi, M.; Wang, Y. Facile covalent crosslinking of zeolitic imidazolate framework/polydimethylsiloxane mixed matrix membrane for enhanced ethanol/water separation performance. ACS Sustain. Chem. Eng. 2020, 8, 12664–12676. [Google Scholar] [CrossRef]
- Rossetti, I.; Compagnoni, M.; De Guido, G.; Pellegrini, L.A.; Ramis, G.; Dzwigaj, S. Ethylene production from diluted bioethanol solutions. Can. J. Chem. Eng. 2017, 95, 1752–1759. [Google Scholar] [CrossRef]
- Wang, L.; Huang, H.; Chang, Y.; Zhong, C. Integrated High Water Affinity and Size Exclusion Effect on Robust Cu-Based Metal–Organic Framework for Efficient Ethanol–Water Separation. ACS Sustain. Chem. Eng. 2021, 9, 3195–3202. [Google Scholar] [CrossRef]
- Fu, C.; Li, Z.; Sun, Z.; Xie, S. A review of salting-out effect and sugaring-out effect: Driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Front. Chem. Sci. Eng. 2021, 15, 854–871. [Google Scholar] [CrossRef]
- Haris, A.; Irhamsyah, A.; Permatasari, A.D.; Desa, S.S.; Irfanita, R.; Wahyuni, S. Pervaporation membrane based on laterite zeolite-geopolymer for ethanol-water separation. J. Clean. Prod. 2020, 249, 119413. [Google Scholar]
- Widagdo, S.; Seider, W.D. Journal review. Azeotropic distillation. AIChE J. 1996, 42, 96–130. [Google Scholar] [CrossRef]
- Moussa, A.S.; Jiménez, L. Entrainer selection and systematic design of heterogeneous azeotropic distillation flowsheets. Ind. Eng. Chem. Res. 2006, 45, 4304–4315. [Google Scholar] [CrossRef]
- Cairns, B.P.; Furzer, I.A. Multicomponent three-phase azeotropic distillation. 2. Phase-stability and phase-splitting algorithms. Ind. Eng. Chem. Res. 1990, 29, 1364–1382. [Google Scholar] [CrossRef]
- Kraemer, K.; Harwardt, A.; Skiborowski, M.; Mitra, S.; Marquardt, W. Shortcut-based design of multicomponent heteroazeotropic distillation. Chem. Eng. Res. Des. 2011, 89, 1168–1189. [Google Scholar] [CrossRef]
- Pham, H.N.; Doherty, M.F. Design and synthesis of heterogeneous azeotropic distillations—I. Heterogeneous phase diagrams. Chem. Eng. Sci. 1990, 45, 1823–1836. [Google Scholar] [CrossRef]
- Pham, H.N.; Doherty, M.F. Design and synthesis of heterogeneous azeotropic distillations—II. Residue curve maps. Chem. Eng. Sci. 1990, 45, 1837–1843. [Google Scholar] [CrossRef]
- Pham, H.N.; Doherty, M.F. Design and synthesis of heterogeneous azeotropic distillations—III. Column sequences. Chem. Eng. Sci. 1990, 45, 1845–1854. [Google Scholar] [CrossRef]
- Prayoonyong, P.; Jobson, M. Flowsheet synthesis and complex distillation column design for separating ternary heterogeneous azeotropic mixtures. Chem. Eng. Res. Des. 2011, 89, 1362–1376. [Google Scholar] [CrossRef]
- Ryan, P.J.; Doherty, M.F. Design/optimization of ternary heterogeneous azeotropic distillation sequences. AIChE J. 1989, 35, 1592–1601. [Google Scholar] [CrossRef]
- Chien, I.; Wang, C.; Wong, D. Dynamics and control of a heterogeneous azeotropic distillation column: Conventional control approach. Ind. Eng. Chem. Res. 1999, 38, 468–478. [Google Scholar] [CrossRef]
- Chien, I.-L.; Chen, W.-H.; Chang, T.-S. Operation and decoupling control of a heterogeneous azeotropic distillatin column. Comput. Chem. Eng. 2000, 24, 893–899. [Google Scholar] [CrossRef]
- Kovach, J., III; Seider, W. Heterogeneous azeotropic distillation: Experimental and simulation results. AIChE J. 1987, 33, 1300–1314. [Google Scholar] [CrossRef]
- Luyben, W.L. Control of a multiunit heterogeneous azeotropic distillation process. AIChE J. 2006, 52, 623–637. [Google Scholar] [CrossRef]
- Luyben, W.L. Control of the heterogeneous azeotropic n-butanol/water distillation system. Energy Fuels 2008, 22, 4249–4258. [Google Scholar] [CrossRef]
- Wang, C.; Wong, D.; Chien, I.; Shih, R.; Liu, W.; Tsai, C. Critical reflux, parametric sensitivity, and hysteresis in azeotropic distillation of isopropyl alcohol+ water+ cyclohexane. Ind. Eng. Chem. Res. 1998, 37, 2835–2843. [Google Scholar] [CrossRef]
- Cairns, B.P.; Furzer, I.A. Multicomponent three-phase azeotropic distillation. 3. modern thermodynamic models and multiple solutions. Ind. Eng. Chem. Res. 1990, 29, 1383–1395. [Google Scholar] [CrossRef]
- Font, A.; Asensi, J.C.; Ruiz, F.; Gomis, V. Application of isooctane to the dehydration of ethanol. Design of a column sequence to obtain absolute ethanol by heterogeneous azeotropic distillation. Ind. Eng. Chem. Res. 2003, 42, 140–144. [Google Scholar] [CrossRef]
- Gomis, V.; Pedraza, R.; Francés, O.; Font, A.; Asensi, J.C. Dehydration of ethanol using azeotropic distillation with isooctane. Ind. Eng. Chem. Res. 2007, 46, 4572–4576. [Google Scholar] [CrossRef]
- Pienaar, C. Evaluation of Entrainers for the Dehydration of C2 and C3 Alcohols Via Azeotropic Distillation. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2012. [Google Scholar]
- Zhao, L.; Lyu, X.; Wang, W.; Shan, J.; Qiu, T. Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Comput. Chem. Eng. 2017, 100, 27–37. [Google Scholar] [CrossRef]
- Gomis, V.; Font, A.; Saquete, M.D. Vapour–liquid–liquid and vapour–liquid equilibrium of the system water+ ethanol+ heptane at 101.3 kPa. Fluid Ph. Equilibria 2006, 248, 206–210. [Google Scholar] [CrossRef]
- Gomis, V.; Font, A.; Pedraza, R.; Saquete, M. Isobaric vapor–liquid and vapor–liquid–liquid equilibrium data for the water–ethanol–hexane system. Fluid Ph. Equilibria 2007, 259, 66–70. [Google Scholar] [CrossRef]
- Pequenin, A.; Asensi, J.C.; Gomis, V. Isobaric vapor− liquid− liquid equilibrium and vapor− liquid equilibrium for the quaternary system water− ethanol− cyclohexane− isooctane at 101.3 kPa. J. Chem. Eng. Data 2010, 55, 1227–1231. [Google Scholar] [CrossRef]
- Pequenín, A.; Asensi, J.C.; Gomis, V. Quaternary isobaric (vapor + liquid + liquid) equilibrium and (vapor + liquid) equilibrium for the system (water+ethanol + cyclohexane + heptane) at 101.3 kPa. J. Chem. Thermodyn. 2011, 43, 1097–1103. [Google Scholar] [CrossRef]
- Pequenín, A.; Asensi, J.C.; Gomis, V. Vapor–liquid–liquid equilibrium and vapor–liquid equilibrium for the quaternary system water–ethanol–cyclohexane–toluene and the ternary system water–cyclohexane–toluene. Isobaric experimental determination at 101.3 kPa. Fluid Ph. Equilibria 2011, 309, 62–67. [Google Scholar] [CrossRef]
- Chien, I.-L.; Zeng, K.-L.; Chao, H.-Y. Design and control of a complete heterogeneous azeotropic distillation column system. Ind. Eng. Chem. Res. 2004, 43, 2160–2174. [Google Scholar] [CrossRef]
- Arifin, S.; Chien, I.-L. Combined preconcentrator/recovery column design for isopropyl alcohol dehydration process. Ind. Eng. Chem. Res. 2007, 46, 2535–2543. [Google Scholar] [CrossRef]
- Luyben, W.L.; Chien, I.-L. Design and Control of Distillation Systems for Separating Azeotropes; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Cho, J.; Jeon, J.-K. Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration. Korean J. Chem. Eng. 2006, 23, 1–7. [Google Scholar] [CrossRef]
- Arda, N.; Sayar, A.A. Liquid-liquid equilibrium of water+ 2-propanol+ 2, 2, 4-trimethylpentane ternary at 293.2 ± 0.1 K. Fluid Ph. Equilibria 1992, 73, 129–138. [Google Scholar] [CrossRef]
- Otero, J.; Comesana, J.; Correa, J.; Correa, A. Liquid−liquid equilibria of the system water+ 2-propanol+ 2, 2, 4-trimethylpentane at 25 C. J. Chem. Eng. Data 2000, 45, 898–901. [Google Scholar] [CrossRef]
- Gomis, V.; Font, A.; Saquete, M.; García-Cano, J. LLE, VLE and VLLE data for the water–n-butanol–n-hexane system at atmospheric pressure. Fluid Ph. Equilibria 2012, 316, 135–140. [Google Scholar] [CrossRef]
- Pienaar, C.; Schwarz, C.E.; Knoetze, J.H.; Burger, A.J. Vapor–liquid–liquid equilibria measurements for the dehydration of ethanol, isopropanol, and n-propanol via azeotropic distillation using dipe and isooctane as entrainers. J. Chem. Eng. Data 2013, 58, 537–550. [Google Scholar] [CrossRef]
- Gomis, V.; Font, A.; Pedraza, R.; Saquete, M. Isobaric vapor–liquid and vapor–liquid–liquid equilibrium data for the system water+ ethanol+ cyclohexane. Fluid Ph. Equilibria 2005, 235, 7–10. [Google Scholar] [CrossRef]
- Gomis, V.; Pequenín, A.; Asensi, J.C. Isobaric vapor–liquid–liquid equilibrium and vapor–liquid equilibrium for the system water–ethanol-1, 4-dimethylbenzene at 101.3 kPa. Fluid Ph. Equilibria 2009, 281, 1–4. [Google Scholar] [CrossRef]
- Gomis, V.; Pequenín, A.; Asensi, J.C. A review of the isobaric (vapor + liquid + liquid) equilibria of multicomponent systems and the experimental methods used in their investigation. J. Chem. Thermodyn. 2010, 42, 823–828. [Google Scholar] [CrossRef]
- Hölscher, I.; Schneider, G.; Ott, J. Liquid-liquid phase equilibria of binary mixtures of methanol with hexane, nonane and decane at pressures up to 150 MPa. Fluid Ph. Equilibria 1986, 27, 153–169. [Google Scholar] [CrossRef]
- Hwang, I.-C.; Park, S.-J.; Choi, J.-S. Liquid–liquid equilibria for the binary system of di-isopropyl ether (DIPE)+ water in between 288.15 and 323.15 K and the ternary systems of DIPE + water + C1–C4 alcohols at 298.15 K. Fluid Ph. Equilibria 2008, 269, 1–5. [Google Scholar] [CrossRef]
- Lladosa, E.; Montón, J.B.; Burguet, M.; de la Torre, J. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa. J. Chem. Thermodyn. 2008, 40, 867–873. [Google Scholar] [CrossRef]
- Rastegar, R.; Jessen, K. Measurement and Modeling of Liquid−Liquid Equilibrium for Ternary and Quaternary Mixtures of Water, Methanol, 2-Propanol, and 2,2,4-Trimethylpentane at 293.2 K. J. Chem. Eng. Data 2011, 56, 278–281. [Google Scholar] [CrossRef]
- Sayar, A.A. Liquid-liquid equilibria of some water + 2-propanol + solvent ternaries. J. Chem. Eng. Data 1991, 36, 61–65. [Google Scholar] [CrossRef]
- Tamura, K.; Chen, Y.; Tada, K.; Yamada, T. Liquid–liquid equilibria for quaternary mixtures of water, ethanol, and 2,2,4-trimethylpentane with fuel additives. Fluid Ph. Equilibria 2000, 171, 115–126. [Google Scholar] [CrossRef]
- Verhoeye, L.A.J. System cyclohexane-2-propanol-water. J. Chem. Eng. Data 1968, 13, 462–467. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Ying, A. Measurement and Calculation of Liquid–Liquid Equilibria of Ternary and Quaternary Systems Containing Water, Propan-1-ol, and 2,2,4-Trimethylpentane (TMP) with 2,2′-Oxybis(propane) (DIPE) or Dimethyl Carbonate (DMC). J. Chem. Eng. Data 2011, 56, 4466–4472. [Google Scholar] [CrossRef]
- Asensi, J.C.; Moltó, J.; del Mar Olaya, M.a.; Ruiz, F.; Gomis, V. Isobaric vapour–liquid equilibria data for the binary system 1-propanol+1-pentanol and isobaric vapour–liquid–liquid equilibria data for the ternary system water+1-propanol+1-pentanol at 101.3 kPa. Fluid Ph. Equilibria 2002, 200, 287–293. [Google Scholar] [CrossRef]
- Fernández, M.J.; Gomis, V.; Ramos, M.; Ruíz, F. Influence of the Temperature on the Liquid−Liquid Equilibrium of the Ternary System 1-Pentanol + 1-Propanol + Water. J. Chem. Eng. Data 2000, 45, 1053–1054. [Google Scholar] [CrossRef]
- Fernández-Torres, M.J.; Gomis-Yagües, V.; Ramos-Nofuentes, M.; Ruíz-Beviá, F. The influence of the temperature on the liquid–liquid equilibrium of the ternary system 1-pentanol–ethanol–water. Fluid Ph. Equilibria 1999, 164, 267–273. [Google Scholar] [CrossRef]
- Loras, S.; Fernández-Torres, M.J.; Gomis-Yagües, V.; Ruíz-Beviá, F. Isobaric vapor–liquid equilibria for the system 1-pentanol–1-propanol–water at 101.3 kPa. Fluid Ph. Equilibria 2001, 180, 205–210. [Google Scholar] [CrossRef]
- Mara, K.; Bhethanabotla, V.R.; Campbell, S.W. Total pressure measurements for 1-propanol + 1-pentanol, 1-propanol + 2-pentanol, 2-propanol + 1-pentanol, and 2-propanol + 2-pentanol at 313.15 K. Fluid Ph. Equilibria 1997, 127, 147–153. [Google Scholar] [CrossRef]
- AspenTech. Aspen Plus®; AspenTech: Burlington, MA, USA, 2019. [Google Scholar]
- Gomis, V.; Font, A.; Saquete, M.D. Homogeneity of the water+ ethanol+ toluene azeotrope at 101.3 kPa. Fluid Ph. Equilibria 2008, 266, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Gomis, V.; Ruiz, F.; Asensi, J.C. The application of ultrasound in the determination of isobaric vapour–liquid–liquid equilibrium data. Fluid Ph. Equilibria 2000, 172, 245–259. [Google Scholar] [CrossRef]
- Magnussen, T.; Michelsen, M.; Fredenslund, A. Azeotropic distillation using UNIFAC. Inst. Chem. Eng. Symp. Ser. 1979, 56, 1–4. [Google Scholar]
- Newsham, D.; Vahdat, N. Prediction of vapour-liquid-liquid equilibria from liquid-liquid equilibria Part I: Experimental results for the systems methanol—water—n-but. Chem. Eng. J. 1977, 13, 27–31. [Google Scholar] [CrossRef]
- Iwakabe, K.; Kosuge, H. Isobaric vapor–liquid–liquid equilibria with a newly developed still. Fluid Ph. Equilibria 2001, 192, 171–186. [Google Scholar] [CrossRef]
- Van Zandijcke, F.; Verhoeye, L. The vapour-liquid equilibrium of ternary systems with limited miscibility at atmospheric pressure. J. Appl. Chem. Biotechnol. 1974, 24, 709–729. [Google Scholar] [CrossRef]
- Lee, L.-S.; Chen, W.-C.; Huang, J.-F. Experiments and correlations of phase equilibria of ethanol-ethyl acetate-water ternary mixture. J. Chem. Eng. Jpn. 1996, 29, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Donis, I.R.; Esquijarosa, J.A.; Gerbaud, V.; Joulia, X. Heterogeneous batch-extractive distillation of minimum boiling azeotropic mixtures. AIChE J. 2003, 49, 3074–3083. [Google Scholar] [CrossRef]
- Younis, O.; Pritchard, D.; Anwar, M. Experimental isobaric vapour–liquid–liquid equilibrium data for the quaternary systems water (1)–ethanol (2)–acetone (3)–n-butyl acetate (4) and water (1)–ethanol (2)–acetone (3)–methyl ethyl ketone (4) and their partially miscible-constituent ternaries. Fluid Ph. Equilibria 2007, 251, 149–160. [Google Scholar] [CrossRef]
- Prokopakis, G.J.; Seider, W.D.; Ross, B. Azeotropic distillation towers with two liquid phases. In Foundations of Computer-Aided Chemical Process Design, Proceedings of the International Conference, Held at New England College, Henniker, New Hampshire, 6–11 July 1980; American Institute of Chemical Engineers: New York, NY, USA, 1981; p. 239. [Google Scholar]
- Font, A.; Asensi, J.C.; Ruiz, F.; Gomis, V. Isobaric Vapor− Liquid and Vapor− Liquid− Liquid equilibria data for the system water+ isopropanol+ isooctane. J. Chem. Eng. Data 2004, 49, 765–767. [Google Scholar] [CrossRef]
- Aicher, T.; Bamberger, T.; Schluender, E.-U. Liquid-liquid and vapor-liquid phase equilibria for 1-butanol+ water+ 2-propanol at ambient pressure. J. Chem. Eng. Data 1995, 40, 696–698. [Google Scholar] [CrossRef]
Entrainer | Literature Source | Focus of the Study |
---|---|---|
benzene | Cairns and Furzer [27] | New simulation method for three-phase distillation using a modified phase-stability analysis |
Luyben [24] | Process simulation | |
Pienaar [30] | Process simulation | |
cyclohexane | Gomis et al. [45] | VLE and VLLE data |
toluene | Gomis et al. [62] | VLE and VLLE data |
Zhao et al. [31] | Process simulation | |
isooctane or 2,2,4-trimethylpentane | Cairns and Furzer [27] | New simulation method for three-phase distillation using a modified phase-stability analysis |
Font et al. [28] | VLE and VLLE data | |
Gomis et al. [29] | Analysis of process viability by an experimental procedure and an equilibrium-model-based simulation | |
cyclohexane + toluene | Pequenín et al. [36] | VLE and VLLE data |
cyclohexane + isooctane | Pequenín et al. [34] | VLE and VLLE data |
cyclohexane + heptane | Pequenín et al. [35] | VLE and VLLE data |
diisopropyl ether (DIPE) | Hwang et al. [49] | LLE data |
Pienaar [30] | VLE and VLLE data; process simulation | |
Pienaar et al. [44] | VLE and VLLE data | |
diethyl ether | Gomis et al. [63] | VLLE data |
pentane | Magnussen et al. [64] 1 | Simulation method 1 |
hexane | Gomis et al. [33] | VLE and VLLE data |
n-heptane | Gomis et al. [32] | VLE and VLLE data |
p-xylene | Gomis et al. [46] | VLE and VLLE data |
n-butanol | Newsham and Vahdat [65] | VLE data |
Gomis et al. [63] | VLLE data | |
Iwakabe and Kosuge [66] | VLLE data | |
2-butanol | Iwakabe and Kosuge [66] | VLLE data |
1-pentanol | Fernandez-Torres et al. [58] | LLE data |
ethyl acetate | Van Zandijcke and Verhoeye [67] | VLE data |
Lee et al. [68] | VLE and VLLE data | |
Gomis et al. [63] | VLLE data | |
Donis et al. [69] | Feasibility of heterogeneous batch-extractive distillation | |
n-butyl acetate | Younis et al. [70] | VLLE data |
methyl ethyl ketone | Younis et al. [70] | VLLE data |
Entrainer | Literature Source | Focus of the Study |
---|---|---|
benzene | Cho and Jeon [40] | Process simulation |
cyclohexane | Verhoeye [54] | VLE and LLE data |
Prokopakis et al. [71] 1 | Simulation method 1 | |
Wang et al. [26] | Experiment using a laboratory-scale sieve plate distillation column; dynamic simulation | |
Chien et al. [21] | Dynamics and control of a HAD column | |
Chien et al. [22] | Operation and decoupling control of a heterogeneous azeotropic distillation column | |
Chien et al. [37] | Design and control of a complete HAD column | |
Arifin and Chien [38] | Combined preconcentrator/recovery column design | |
Kraemer et al. [15] | Shortcut-based design | |
Isooctane or 2,2,4-trimethylpentane | Arda and Sayar [41] | LLE data |
Otero et al. [42] | LLE data | |
Font et al. [72] | VLE and VLLE data | |
Rastegar and Jessen [51] | LLE data | |
This work | Process simulation | |
diisopropylether (DIPE) | Hwang et al. [49] | LLE data |
Lladosa et al. [50] | VLLE data | |
Pienaar [30] | Process simulation | |
dichloromethane | Sayar [52] | LLE data |
1,2-dichloroethane | Sayar [52] | LLE data |
2-methylbutyl acetate | Sayar [52] | LLE data |
1-butanol | Aicher et al. [73] | VLE and LLE data |
1-pentanol | Sayar [52] | LLE data |
phenylmethanol | Sayar [52] | LLE data |
cyclohexanol | Sayar [52] | LLE data |
1-methylcyclohexanol | Sayar [52] | LLE data |
dibenzyl ether | Sayar [52] | LLE data |
octanenitrile | Sayar [52] | LLE data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Guido, G.; Monticelli, C.; Spatolisano, E.; Pellegrini, L.A. Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer. Energies 2021, 14, 5471. https://doi.org/10.3390/en14175471
De Guido G, Monticelli C, Spatolisano E, Pellegrini LA. Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer. Energies. 2021; 14(17):5471. https://doi.org/10.3390/en14175471
Chicago/Turabian StyleDe Guido, Giorgia, Chiara Monticelli, Elvira Spatolisano, and Laura Annamaria Pellegrini. 2021. "Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer" Energies 14, no. 17: 5471. https://doi.org/10.3390/en14175471
APA StyleDe Guido, G., Monticelli, C., Spatolisano, E., & Pellegrini, L. A. (2021). Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer. Energies, 14(17), 5471. https://doi.org/10.3390/en14175471