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Abstract: We present the current status of time-lapse seismic integration at the Farnsworth (FWU)
CO2 WAG (water-alternating-gas) EOR (Enhanced Oil Recovery) project at Ochiltree County, north-
west Texas. As a potential carbon sequestration mechanism, CO2 WAG projects will be subject to
some degree of monitoring and verification, either as a regulatory requirement or to qualify for
economic incentives. In order to evaluate the viability of time-lapse seismic as a monitoring method
the Southwest Partnership (SWP) has conducted time-lapse seismic monitoring at FWU using the 3D
Vertical Seismic Profiling (VSP) method. The efficacy of seismic time-lapse depends on a number
of key factors, which vary widely from one application to another. Most important among these
are the thermophysical properties of the original fluid in place and the displacing fluid, followed
by the petrophysical properties of the rock matrix, which together determine the effective elastic
properties of the rock fluid system. We present systematic analysis of fluid thermodynamics and
resulting thermophysical properties, petrophysics and rock frame elastic properties, and elastic
property modeling through fluid substitution using data collected at FWU. These analyses will be
framed in realistic scenarios presented by the FWU CO2 WAG development. The resulting fluid/rock
physics models will be applied to output from the calibrated FWU compositional reservoir simulation
model to forward model the time-lapse seismic response. Modeled results are compared with field
time-lapse seismic measurements and strategies for numerical model feedback/update are discussed.
While mechanical effects are neglected in the work presented here, complementary parallel studies
are underway in which laboratory measurements are introduced to introduce stress dependence of
matrix elastic moduli.

Keywords: 4D; time lapse; CO2; EOR; WAG; sequestration; monitoring

1. Introduction
1.1. Farnsworth Site Background

The Southwest Regional Partnership on Carbon Sequestration (SWP) is one of seven
large-scale CO2 sequestration projects sponsored by the U.S. Department of Energy [1]. The
primary objective of the SWP effort is to exhibit and evaluate an active commercial-scale
carbon capture, utilization, and storage (CCUS) operation, and demonstrate associated
effective site characterization, monitoring, verification, accounting, and risk assessment.
The SWP field site is located within the Farnsworth Unit CO2 WAG (water-after-gas) EOR
(Enhanced Oil Recovery) project at Ochiltree County, northwest Texas which is undergoing
conversion to a CO2 flood. All CO2 utilized by the project is anthropogenic, sourced from a
fertilizer and an ethanol plant, and this CO2 would otherwise be vented to the atmosphere
(Figure 1). The CO2 WAG field development scheme being applied at FWU is a is a popular
form of tertiary hydrocarbon recovery which also holds promise as a large-scale CO2
utilization and storage (CCUS) mechanism. The CO2 WAG process [2] involves cyclic
alternation between CO2 and water injection phases for optimal mobilization and sweep of

Energies 2021, 14, 5476. https://doi.org/10.3390/en14175476 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6548-7145
https://orcid.org/0000-0001-5621-2211
https://doi.org/10.3390/en14175476
https://doi.org/10.3390/en14175476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14175476
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14175476?type=check_update&version=2


Energies 2021, 14, 5476 2 of 24

liquid hydrocarbons remaining in pattern drilling developments after primary recovery
and waterflood (secondary recovery). As a potential carbon sequestration mechanism,
CO2 WAG projects will be subject to some degree of monitoring and verification, either
as a regulatory requirement or to qualify for economic incentives. Time-lapse (or “4D”)
seismic provides a robust method for wide-scale fluid monitoring which has been widely
applied in petroleum resource development for decades [3]. More recently time-lapse
method has been used to monitor evolution of the CO2 “plume” on most carbon capture
and sequestration (CCS) projects [4]. The Southwest Partnership has conducted time-lapse
seismic monitoring at Farnsworth using the 3D Vertical Seismic Profiling (VSP) method.
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The efficacy of time-lapse seismic depends on a number of key factors which vary
widely from one application to another. Most important among these factors are the ther-
mophysical properties of the original fluid in place and the displacing fluid, followed by the
petrophysical properties of the rock matrix which together determine the effective elastic
properties of the rock fluid system. Here, is where monitoring of CO2 WAG systems varies
greatly from other oilfield and brine aquifer (CCS) CO2 storage owing to the thermody-
namic conditions dictated by the properties of the original and displacing fluids, reservoir
temperature, and pressure. Geologic sequestration of supercritical CO2 into a brine aquifer,
which is the typical case for CCS projects, results in a fluid system with effectively binary
fluid properties and relatively simple interface between original and displacing fluids by
comparison with miscible CO2 WAG systems. By contrast, CO2 WAG operations result
in a thermodynamically complex fluid system with multiple fluid contacts and a high
degree of ambiguity in thermophysical properties. Further, under miscible conditions an
additional phase is introduced. We use the data from the SWP Farnsworth West project in
an extensive fluid and rock physics modeling study to understand the unique monitoring
challenges presented by miscible CO2 WAG operations. The rock physics models are
applied to compositional reservoir simulator output and the resulting elastic predictions
compared to time-lapse 3D VSP surveys acquired at the FWU site.

1.2. Literature Review

There are numerous case histories in the literature documenting the application of
time-lapse monitoring for petroleum resource management and carbon sequestration.
Here, we focus on the distinct fluid systems presented by the various applications. CCS
(brine aquifer storage) projects such as Sleipner [5–7], Aquistore [8–10], Illinois Basin-
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Decatur Project (IBDP) [11–13], and Ketzin [14] are all non-miscible fluid systems which
are thermodynamically stable, have relatively favorable fluid mobility ratios, and in which
the single displacing (injected) CO2 volume is monotonically increasing. The result is a
continuous “plume” of CO2 emanating from the injection well, the interface of which with
the aquifer brine may be characterized as a “front”. Similarly, most documented successful
(non-EOR) hydrocarbon reservoir surveillance applications of time-lapse seismic have the
objective of monitoring an encroaching brine aquifer during field depletion, progression of
a water injection front in waterflood operations, or evolution of light hydrocarbon gas upon
pressure drawdown, all of which present essentially binary fluid discrimination problems
which may be characterized (and modeled) using “plume”, “front”, or “cap” concepts.
While not being trivial by any means, these fluid property and displacement scenarios have
the added advantage of well-established empirical correlations, analytical models, and
reasonable conceptual approximations to simplify and/or constrain interpretation. The
binary nature of this problem is further evidenced by the evolution of discrete analytical
methods using classification and analytical integration approaches [15–17].

By comparison there are relatively few documented case histories of time-lapse seismic
monitoring on CO2 EOR projects. Extensive fluid analysis and rock physics modeling
performed by Brown at Weyburn [18] show an estimated maximum of 6.3% variation in
compressional velocities between endpoint saturations of 100% brine and 100% CO2 in
high porosity (24%) fractured marly dolostone. While this degree of sensitivity is favorable
from a seismic detection perspective, the prediction for intermediate fluid mixtures in
a 29% porosity rock with oil and 40% CO2 are on the order of 1%, which is marginal
for seismic detection. Quantitative time-lapse seismic data integration at Weyburn was
performed using a novel methodology which optimized a penalty function formed of
the distance between simulated CO2 “front” from ensemble models and that interpreted
from thresholded time lapse seismic anomaly maps [19]. At Cranfield Gosh [20] applied a
pressure dependent effective media model (PDEM) to invert time lapse seismic data for
CO2 saturation. While success is reported in mapping the extent of CO2 migration, the
author acknowledges the need for additional constraints on gas distribution in order to
accurately predict CO2 movement. Alfi and Housenni [21] compared time-lapse seismic
interpretations to simulator predictions at Cranfield. As Cranfield is not a WAG operation
the CO2 “plume” was continuous. Limited success in the comparison was attributed to
model deficiencies and uncertainties. No attempt was reported to optimize the simulation
model through time-lapse seismic constraints. At the Denbury Bell Creek [22] project
researchers performed extensive rock physics and forward elastic modeling from reservoir
simulator output. The time-lapse seismic interpretation provided insights into reservoir
connectivity which was fed back to simulation modelers for consideration in the subsequent
reservoir model update. Incorporated discrepancies were fed back to reservoir engineers
for use in model updates. While these case histories show high levels of analytical rigor,
all rely either explicitly or implicitly on the concept of a CO2 “plume” or a distinct CO2
saturation “front”.

Our literature review also reveals the wide variety of geophysical analyses and re-
sulting attributes which have been utilized for time-lapse seismic data interpretation and
integration. These range from computationally simple but robust seismic data transforms
which can be extracted without external conditioning, to highly sophisticated and com-
putationally expensive specialized attributes which require conditioning to high quality
geophysical logs and/or numerical models. At the Hall-Gurney field in Kansas [23] re-
searchers experimented with use of low cost noninversion attributes for monitoring the
effectiveness of EOR in thin, shallow carbonates and were able to identify “overall area
effected by injected CO2”. Time or depth shift (sag, displacement) in events underlying a
storage zone is a popular and robust attribute which requires no external constraint for use
as a qualitative indicator [24,25]. With suitable constraint on reservoir properties and rock
physics, time delay may be used to estimate saturation changes in the injection zone. Time
delay has been successfully used at Sleipner [6] and Norne [26]. The next level of analytical
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rigor is seismic post stack (acoustic inversion), followed by pre-stack (elastic) inversion,
both of which have been applied at Sleipner [5,7]. Yet, more sophistication is introduced
by implementing wave equation constraints [27]. In rocks displaying anisotropy such as
the naturally fractured Weyburn dolostone, multi-component seismic attributes may be
used to produce semi-quantitative maps of elastic anisotropy for more representative rock
physics modeling [19].

2. Materials and Methods
2.1. General Methodology

We use the extensive body of site characterization data and reservoir modeling per-
formed at FWU as the basis for a comprehensive fluid property and rock physics modeling
study, followed by comparison with time-lapse VSP surveys. The calibrated FWU com-
positional simulation model is used to characterize expected fluid distributions in the
injection formation at times corresponding to seismic survey times. These results are
used to perform systematic fluid equation of state modeling for representative ranges
of anticipated reservoir fluid mixtures. These fluid EOS models are then used with a
site-specific petrophysical model for systematic fluid substitution modeling over ranges
of representative saturated reservoir rock conditions. These systematic modeling studies
reveal important characteristics of the rock-fluid system which are critical for the following
comparison of reservoir scale simulations with field time-lapse measurements.

The petrophysical and elastic properties used in our compositonal models and subse-
quent rock physics computations are correlated through a common 3D porosity distribution
which has been developed through analysis of log and core data and interpolated using
spatial trends extracted from the available 3D seismic data. First, the 3D permeability
distribution required for reservoir simulation was created through poro-perm relationships
extracted from the logging/core dataset and interpolated through geostatistical integration
with the 3D porosity distribution using the same seismic data for spatial trends. Next, the
3D elastic property distributions required for rock physics computations were developed
through correlations with porosity and interpolated through geostatistical integration with
the same common 3D porosity distribution, using the same seismic data for spatial trends.
In this way we feel that we have maintained correlation across petrophysical and elastic
properties throughout our process.

2.2. FWU Geological Model

Site characterization efforts at FWU have produced a rich collection rock and fluid sam-
ples, geophysical logs, and multiple time-lapse seismic datasets [28,29]. Core from several
wells, including characterization wells drilled specifically for this project, underwent com-
prehensive petrographic analysis, flowthrough, and mechanical testing. Three wells were
drilled as characterization wells (or “science” wells) by the partnership. Approximately
250 ft of core was obtained from each of the new characterization wells. Cored intervals
include the entire Morrow B reservoir interval, as well as Morrow shale that underlies and
overlies the Morrow B, the B1 sandstone interval, and the Thirteen Finger limestone which
forms the remainder of the primary seal. The geophysical logging program for the science
wells was designed to support the anticipated geophysical, petrophysical, geomechanical,
and geochemical studies as well as coupled process modeling.

Although geotechnical data acquisition activities at the FWU site have transitioned
from site-characterization activities to monitoring data collection, ongoing improvements
have been made to the site characterization through application of improved processing
and analytical methods. Figure 2 shows the type well log for the Farnsworth Unit, the
unit boundary, and location of SWP characterization wells. Specialized integration of
geophysical logs and mechanical core tests have resulted in creation of detailed wellbore
Mechanical Earth Models (MEMs). Pre-stack depth imaging of the 3D seismic dataset
has resulted in both higher fidelity structural and stratigraphic imaging and improved
image gathers for elastic inversion. Ongoing core flooding experiments and petrographic
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studies have resulted in definition of distinct hydraulic flow units (HFU’s) [29] within
the Morrow B formation as well as corresponding porosity dependencies and porosity-
permeability relations. The results of these data analyses have been integrated through a
combination of geostatistical and machine learning methods to provide enhanced geologic
description, hydrodynamic property estimation (Figure 3), and development of a 3D
mechanical property model for support of ongoing numerical elastic and mechanical
modeling studies. Although numerical simulations were performed in the Morrow B
production interval, porosity and permeability have been interpolated in from the Thirteen
Finger to base of the Morrow formation to support ongoing related studies. The property
interpolation workflow applied to each formation depended on the data available and the
formation characteristics. Integration methods included artificial neural network facies
identification from well logs and core, spatial variogram analysis, discrete and continuous
distributions, and co-simulation with elastic inversion properties. Due to the limited well
log data in all formations except the Morrow B, spatial variograms from seismic impedance
were used as proxies for well log data variograms in property interpolation. Such use of
variogram proxies, and the use of secondary variables in co-simulation, were justified by
observed correlations in available well log data.

The method applied within the Morrow B was distinct from other formations due to
availability of legacy well logs and research into HFUs conducted by SWP. A “Winland
R35” transform was derived from analysis of core porosity and permeability for 51 wells.
Eight different sub populations were identified in poro-perm space and used to create R35
cut-offs defining HUF. Poro-perm relationships were derived for each HFU sub population
from core data. The R35 transformation was used to compute R35 logs for the 51 wells with
data used in core analysis. For poro-perm interpolation, porosity logs were upscaled into
the grid and interpolated through Gaussian co-simulation with seismic acoustic impedance
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2.3. FWU Numerical Simulation Model

A field-scale Eclipse 300 compositional reservoir flow model has been developed by
SWP researchers for assessing the performance history of the CO2 flood, and optimizing
oil production and CO2 storage at FWU [30–32].

2.3.1. Compositional Fluid Model

The compositional fluid model was constructed from laboratory fluid experiments
tuned to an equation of state (EOS) [33,34]. The mixing rules of Pedersen [35] were followed
to split C7+ fractions into two pseudo-components using the average molecular weight,
average specific gravity and the total mole percent. The 3- parameter Peng Robinson
equation of state [36] with Peneloux volume correction [37] was used to perform all the
calculations with the resulting composition shown in Table 1 and phase envelope shown in
Figure 4. The viscosity was modeled using the Lohrenz-Bray-Clark correlation [38]. After
calibrating the fluid model to equation of state, a slim tube simulation experiment was
conducted to obtain the minimum miscible pressure (MMP) for FWU. A one-dimensional
200 cell model was used for the experiment with a CO2 injection volume of 1.2 pore
volume. The MMP of 4009 psia realized from the simulation as compared to an MMP value
4200 psia derived from laboratory experiments provided by the operator represents a less
than 5% error.
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Table 1. Fluid composition sampled from the FWU.

Components Molecular Molecular Critical Critical

fraction weight Temperature Pressure
% gm/mol ◦F Psi

CO2 0 44.01 87.89 1069.8
C1 38.49 16.04 −116.59 667.17
C2 3.86 30.07 90.05 708.36
C3 2.46 44.1 205.97 615.83

C4′s 1.95 58.12 453.65 430.62
C5′s 1.79 72.15 301.12 547.81
C6′s 2.83 86.18 380.71 489.79

HC1 (7–38) 33.48 189.95 802.94 326.19
HC2 (38–70) 15.13 545.65 1077.75 235.69
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2.3.2. Numerical Simulation Model

The simulation model for the Morrow B formation was calibrated through primary
(depletion), secondary (waterflood), and tertiary (CO2 WAG) recovery periods using a
machine learning assisted methodology and available pressures and injection/production
rates and pressures [32]. The original geological model uses a mesh-grid with a dimension
of 100 ft by 100 ft. Top and base of the Morrow B formation were modeled as no-flow
boundaries. Running simulation using such a fine grid system takes relatively expensive
computational cost. Our preliminary investigations indicate one run using the fine-meshed
model could take hours, which results in difficulties to the history matching process con-
sidering the demands of running hundreds of simulation cases to find the history matching
solution. Therefore, the first step of the history matching work is to upscale the model
using a coarsened grid of 200 ft by 200 ft mesh without sacrificing the accuracy. Rasmussen
et al. [39] presented relative permeability curves based on laboratory experiment which
corresponds to each hydraulic flow units from the FWU which is used in the numerical
modeling. During the history matching process, the uncertain parameters considered
included lateral permeability, vertical permeability anisotropy, and relative permeability
curve inputs. A total of 100 simulations were run by randomly combine the uncertainty
parameters and neural network based proxies were developed to improve robustness of
history matching workflow and save computational time. Particle swarm optimization
is employed and coupled with the expert proxy models to minimize the history match-
ing error considering the oil and water rate agreements between the simulated and field
observation data. Sun et al. [40] has presented the detailed history matching model and
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results utilized for this study. The various periods timesteps that coincided with the VSP
time-lapse acquisition data were extracted for the rock physics analysis.

2.4. Rock Physics
2.4.1. Properties of Hycrocarbon-CO2-Brine Mixtures—Analytical Study

Thermophysical properties hydrocarbon-CO2 fluid mixtures for systematic rock
physics sensitivity investigations were computed using NIST REFPROP [41] and SU-
PERTRAPP [42] databases and FORTRAN subroutines, integrated with python scripts.
We use REFPROP for calculating the bulk modulus and density of CO2 as a function of
pressure (P) and temperature (T) because of the established REFPROP’s accuracy for PVT
modeling of CO2 [43]. SUPERTRAPP is used for calculating the bulk moduli and bulk
density of hydrocarbon mixture with and without dissolved CO2. Fluid phase velocities
computed with REFPROP and SUPERTRAPP were used to calculate bulk moduli for each
phase. CO2 was in supercritical state at all reservoir temperature and pressure ranges
investigated. Depending on modeling pressure and temperature the fluid mixture has as
many as 4 phases; original oil, water, CO2-oil miscible mixture, and free (supercritical)
phase CO2.

The calibrated reservoir simulation model was used to establish representative
hydrocarbon-CO2-Brine mixtures for investigation by extracting fluid composition along
injector-producer profiles from WAG simulations. It was determined that, as a result of
many decades of primary depletion and waterflood leaving the remaining oil is “dead”,
no significant quantities of hydrocarbon gas evolve during WAG production. The native
hydrocarbon fluid reaches saturation with CO2 and additional CO2 exists as a separate
(supercritical) phase. Further, hydrocarbon components do not exhibit selective stripping
as a result of the miscible extraction process as has been reported by some experimental-
ists [44]. Based on this observation we constructed our hydrocarbon-CO2-brine mixture
EOS computations such that as the feed mole fraction of CO2 and brine in the mixture
increase, the feed mole fractions of hydrocarbon components are reduced in proportion
with the original composition.

Given the original oil composition (without CO2);

Σncomp
1 xHCi = 1 (1)

CO2 is introduced to the feed incrementally, such that,

Σncomp
1 x′HCi = 1− xCO2, (2)

and,
x′HCi = xHCi ∗ (1− xCO2). (3)

where x’ are the adjusted hydrocarbon mole fractions.
For this analysis a python wrapper script was constructed to systematically sample

the relevant EOS and fluid substitution parameter space, execute compiled SUPERTRAPP
FORTRAN flash subroutines, calculate thermophysical properties of the hydrocarbon-
CO2-water mixture with additional input from the REFPROP database, and perform
fluid substitution. The python script generates a database of fluid properties and fluid
substitution results for graphical and statistical analysis. The output from python script was
used as input to the rock physics coupled with the numerical simulation model through
series of user-defined workflows developed within Schlumberger Petrel platform. All EOS
results are converted to volume fractions for conversion to liquid and vapor saturations.
Oil and miscible CO2 Oil mixtures are liquids because the reservoir is above MMP. Free
phase CO2 is in supercritical state. There is no hydrocarbon gas because the reservoir
pressure is above the bubble point at the current temperature.
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2.4.2. Properties of Hydrocarbon-CO2-Brine Mixtures—Numerical Model Integration

For integration with the numerical compositional simulation model the fluid prop-
erties were obtained from Eclipse 300 EOS calculations. Bulk reservoir fluid density was
computed using predicted oil, water, and gas saturations and densities (keywords SOIL,
SWAT, SGAS, DENO, DENW, DENG). Bulk fluid modulus was computed as the inverse of
the Eclipse 300 solution for total fluid compressibility (keyword TOTCOMP).

2.4.3. Fluid Substitution

The elastic properties of saturated rock were calculated using Gassmann’s relation [45].

Ksat = Kdry +

(
1− Kdry

Ks

)2

∅
K f

+ 1−∅
Ks
− Kdry

K2
s

(4)

where;
Φ = Porosity;
Ksat = Bulk modulus of the saturated rock;
Kdry = Bulk modulus of the dry rock;
Ks = Bulk modulus of the mineral constituents;
Kf = Bulk modulus of the pore fluid.
Gassmann’s equation provides a fundamental relationship to relate a fluid saturated

formation with an idealized dry frame formation. However, to apply Gassmann’s equation
to solve fluid substitution problems the geophysicist must supply dry rock properties.
Biot [46] identified systematic relationship between solid matrix moduli (Ks, Gs) and
moduli of the material with porosity.

Kdry = Ks(1− α). (5)

Introducing the “Biot” coefficient

α = 1−
Kdry

Ks
, (6)

Gassmann’s relation may be rewritten as

Ksat = Kdry +
α2

∅
K f

+ (α−∅)
Ks

(7)

Applying Wood’s mixing law [47];

1
K f l

= ∑n
i=1

Si
Ki

(8)

where i = fluid phase.
Matrix elastic properties were determined through analysis of the available geophysi-

cal logging suite which included magnetic resonance, dipole sonic, spectral gamma ray,
pulsed neutron, array induction, formation image, and spontaneous potential. Petrophysi-
cal analysis yielded formation intrinsic properties enabling evaluation of elastic moduli
for the Morrow B formation. Figure 5 shows the calibration of formation properties to
available core data. Figure 6 shows the analysis of shear and bulk moduli used to determine
Kdry, G, and α for application of Gassmann’s Equation (3) and elastic modeling (10). The
Kdry, G, and Ks obtained from the geophysical log analysis, served as input parameters
for the Gassmann fluid substitution model (4). The saturated bulk modulus, expressed
as a function of the dry rock frame and pore fluid properties, was computed using the
Gassmann Equation (4). A linear regression model was fitted to the data to identify the
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relationship between the changes in the elastic properties to the rock physical properties.
The solid modulus, Ks, was determined by extrapolating porosity to zero on the Kdry vs.
porosity plot.
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Shear and compressional seismic velocities were computed as;

Vs =

√
µ

ρb
(9)

Vp =

√
µ + 4

3 Ksat

ρb
(10)
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where;
ρb = φ ∗ ρ f l + (1− φ) ∗ ρmatrix (11)

ρ f l = ∑n
i=1(Si ∗ ρi) (12)

For analytical studies, these relationships were implemented by python script. For
numerical model integration, fluid substitution was performed on the 3D reservoir model
and simulator output grids using the PETREL process manager.

2.5. Time-Lapse Seismic Surveys

The project has acquired multiple seismic data sets for site characterization and mon-
itoring. In addition to a full-field surface 3D dataset acquired for site characterization
purposes, 3D-VSP surveys were acquired in all three characterization wells [47]. A to-
tal of four 3D VSP surveys (pre-CO2 baseline and 3 monitor surveys), were acquired in
well 13-10A, which is the injector in the 5-spot pattern used for this study. The baseline
survey was acquired in February 2014 during the well shut-in for conversion to WAG
injection. Monitor surveys were acquired January 2015, December 2016, and December
2017. All monitor surveys were acquired after the CO2 leg of the WAG cycle. Baseline and
monitor surveys were processed through an identical three-component (3C) processing
workflow. Pre-processing included source/receiver geometry quality control, receiver
selection, 3 component orientation, noise attenuation, Surface Consistent Amplitude Com-
pensation (SCAC), 3C wavefield separation, deterministic trace-by-trace wave-shaping
deconvolution, and static correction. Images were created from upgoing wavefields us-
ing a Generalized Radon Transform (GRT) imaging algorithm. Figure 7 shows maps of
depth shift below the injection interval computed for the three p-wave baseline-monitor
survey pairs using the method proposed by Nickel and Sonneland [48]. In consideration
of acquisition geometry, and image point coverage, images were cropped outside 1000 ft
radial distance from the survey well (13–10A). It should be noted here that this is an ex-
tremely challenging seismic detection problem due to the relative thinness of the reservoir
(~40–45 ft), the estimated wavelength of p waves (~150 ft) in the data at the reservoir
interval, and what we will later see to be very subtle fluid effects.
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2.6. Numerical Simulaton Model Integration

In addition to aiding in selection of parameter ranges for the analytical fluid EOS
and rock physics study, the numerical simulation model was used to model the time-
lapse change on elastic properties for comparison with the recorded time-lapse VSP data.
Reservoir simulations were configured to output liquid and vapor phase mole fractions
for each fluid component, oil, gas, and water densities, and total fluid compressibility as
computed by the E300 compositional fluid model. In order to minimize computational
effort a sector model was constructed encompassing the 13-10A injector study pattern.
Figure 8 shows the full model and sector model domains, the 3D VSP image area, and the
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well 13-10A/13-12 profile which is used for diagnostic purposes. The reservoir property
model was supplemented with elastic moduli based on log correlations as shown in
Figure 8. Fluid substitution and elastic modeling was performed on the four-layer Morrow
B formation. A shift attribute map was computed for each baseline-monitor pair by
vertically integration of the fluid substitution effects within the reservoir. The statistical
and spatial characteristics of modeled and measured shifts were compared on absolute
value and normalized bases.
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3. Results
3.1. WAG Operational Factors

Figure 9 shows the CO2 and Water injection rates and cumulative volumes injected
by well 13-10A during the time-lapse monitoring period. We have adopted the labeling
convention that WAG cycles (labeled 1–8) commence with the water leg of the cycle. The
baseline survey was acquired just prior to commencement of the cycle 1 water leg, the
monitor 1 survey was acquired at the end of cycle 1, just before the cycle 2 water leg,
Monitor 2 was acquired at the end of cycle 5, just prior to the cycle 6 water leg, and
Monitor 3 was acquired at the end of cycle 8. It can be seen that the durations and injection
rates are variable, often due to operational or economic factors. Note that in Figure 9
volumes are reported in STB for liquid (water) and mscf (thousand standard cubic ft) for
gas (CO2). While these are standard conventions for reservoir engineering and production
management purposes these units to not adequately represent the relative volumetric
proportions within the reservoir which may impact seismic imaging. To normalize the
volumes to reservoir conditions we use the gas formation volume factor (FVF) Bg.

Bg =
Vg,r

Vg,sc
(13)

where;
Vg,r = Volume of gas at reservoir conditions
Vg,sc = Volume of gas at standard conditions
At reservoir conditions of 168 ◦F and 4500 PSI, BCO2 equals 0.001455 while BH2O~1.

Volumes will also be adjusted to bulk reservoir volume using the relationship;

bulk reservoir volume =
f luid Volume
φ∗ (1− Swirr)

(14)
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where Swirr = Irreducible water saturation.

Energies 2021, 14, x FOR PEER REVIEW 13 of 25 
 

 

At reservoir conditions of 168 oF and 4500 PSI, BCO2 equals 0.001455 while BH2O~1. 
Volumes will also be adjusted to bulk reservoir volume using the relationship; 𝑏𝑢𝑙𝑘 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑓𝑙𝑢𝑖𝑑 𝑉𝑜𝑙𝑢𝑚𝑒𝜙 ∗  (1 − 𝑆௪) (14)

where Swirr = Irreducible water saturation. 
Table 2 lists cumulative volumes of water and gas injected from the time of the base-

line survey at surface and reservoir conditions, and in equivalent bulk reservoir volumes 
using a porosity of 0.15 and Swirr = 0.3. After the short initial WAG cycle the Water: CO2 
bulk reservoir volume injection ratio is approximately 1:3 (0.29–0.33). There are several 
intervening WAG cycles within the M1–M2, and M2–M3 survey times. 

 
Figure 9. CO2 and water WAG injection cycles in well 13-10A during time-lapse monitoring. Purple 
arrows indicate VSP survey dates. Red lines are CO2 injection rate (solid) and cumulative volume 
(dashed). Blue lines are water injection rate (solid) and cumulative volume (dashed). Vertical green 
dashed lines delineate WAG cycles for reference. 

Table 2. Cumulative volumes of water and gas injected from the time of the baseline survey at sur-
face and reservoir conditions, and in equivalent bulk reservoir volumes using a porosity of 0.15 and 
Swirr = 0.3. 

  Standard Conditions Reservoir 
Volume 

 

Monitor Date Water (stb) CO2 (mscf) Water (cf) CO2 (cf) 
W/G 
Ratio 

1 1/17/2015 16,550 553,100 885,100 7,665,000 0.12 
2 12/3/2016 99,100 1,314,000 5,298,000 18,020,000 0.29 
3 1/1/2018 141,000 1,623,000 789,100 22,490,000 0.33 

In order to achieve a perspective of fluid volume with respect to time-lapse survey 
timing we invoke a simplistic conceptual model of non-mixing (piston displacement), an-
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Figure 9. CO2 and water WAG injection cycles in well 13-10A during time-lapse monitoring. Purple
arrows indicate VSP survey dates. Red lines are CO2 injection rate (solid) and cumulative volume
(dashed). Blue lines are water injection rate (solid) and cumulative volume (dashed). Vertical green
dashed lines delineate WAG cycles for reference.

Table 2 lists cumulative volumes of water and gas injected from the time of the baseline
survey at surface and reservoir conditions, and in equivalent bulk reservoir volumes using
a porosity of 0.15 and Swirr = 0.3. After the short initial WAG cycle the Water: CO2
bulk reservoir volume injection ratio is approximately 1:3 (0.29–0.33). There are several
intervening WAG cycles within the M1–M2, and M2–M3 survey times.

Table 2. Cumulative volumes of water and gas injected from the time of the baseline survey at
surface and reservoir conditions, and in equivalent bulk reservoir volumes using a porosity of 0.15
and Swirr = 0.3.

Standard Conditions Reservoir
Volume

Monitor Date Water
(stb)

CO2
(mscf) Water (cf) CO2 (cf) W/G

Ratio

1 1/17/2015 16,550 553,100 885,100 7,665,000 0.12
2 12/3/2016 99,100 1,314,000 5,298,000 18,020,000 0.29
3 1/1/2018 141,000 1,623,000 789,100 22,490,000 0.33

In order to achieve a perspective of fluid volume with respect to time-lapse survey tim-
ing we invoke a simplistic conceptual model of non-mixing (piston displacement), annular
rings representing the sequential fluid phase injection cycles to compute an “equivalent
cylindrical radius” for each hypothetical phase front. Figure 10 shows the hypothetical
equivalent annular fluid fronts using a reservoir thickness of 45 ft at each time lapse monitor
survey time.
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tion of CO2 (top) and oil saturation (bottom) along the study profile between wells 13-10A 
and 13-12. Simulations show no CO2 breakthrough at the time of M1. Interestingly, oil 
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Figure 10. Illustration of hypothetical annular phase fronts at time lapse monitor surveys 1 (left), 2 (center), and 3 (right).
The VSP image area is shown as the black dashed line.

While the non-mixing piston front assumption allows us to gain spatial and relative
volumetric perspective with regard to injected volumes and pattern pore volume, a more
accurate representation of the thermodynamics and hydrodynamics of the system are
reflected in numerical simulations. Figure 11 shows streamline (top) and compositional
(bottom) simulation results for the monitor survey times. Streamlines clearly show prefer-
ential drainage in the pore space between the injector and producing wells. Compositional
simulations of gas saturation are consistent with streamlines showing preferential flow
of CO2 toward injectors, albeit exhibiting asymmetry which suggests either differences
in well control parameters and/or performance characteristics, or heterogeneity in reser-
voir properties. Inspection of production data (Figure 12) shows breakthrough in all four
producers shortly after acquisition of M2. Figure 12 shows the simulated mole fraction
of CO2 (top) and oil saturation (bottom) along the study profile between wells 13-10A
and 13-12. Simulations show no CO2 breakthrough at the time of M1. Interestingly, oil
saturation increases in front of the CO2 front at the time of the M1 survey (Figure 13). It
is hypothesized that this is the result of banking of oil by the leading cycle 1 waterfront
before cycle 1 CO2 moves in and the miscibility process develops.
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Figure 13. Simulated mole fraction of CO2 (top) and oil saturation (bottom) along the study profile
between wells 13-10A and 13-12 shown in Figures 10 and 12. Oil banking is suggested by the increase
in Soil in front of the cycle 1 waterfront at the M1 survey time. The distance is in feet.

As a final step in our review of operational factors we inspect the variation of predicted
hydrocarbon compositions in time and space as the oil is mobilized and extracted by the
miscible process. We normalized hydrocarbon composition by component mole fractions
along the study profile (Figure 14) at each survey time and observe that the composition
of the remaining oil stays nearly constant, suggesting that there is no significant selective
stripping of components by the miscible process.



Energies 2021, 14, 5476 16 of 24
Energies 2021, 14, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 14. Simulated CO2 mole fraction and normalized hydrocarbon mole fractions along the 13-
10A-13-12 study profile at M1 (top), M2 (center), and M3 (bottom) survey times. 

3.2. Analytical Model Rock Physics Investigations 
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Used together, our petrophysical data analysis, the python implementation of NIST 
subroutines, and databases facilitated a comprehensive investigation of a broad range of 
realistic fluid substitution scenarios providing valuable insights into the time-lapse inte-
gration problem. Here, we show a selection of graphical results which capture many of 
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Figure 14. Simulated CO2 mole fraction and normalized hydrocarbon mole fractions along the
13-10A-13-12 study profile at M1 (top), M2 (center), and M3 (bottom) survey times.

3.2. Analytical Model Rock Physics Investigations

Based on our data and numerical model review we designed a systematic analyti-
cal fluid EOS and rock physics study to investigate the expected elastic response of the
reservoir within representative ranges of fluid composition, rock properties, and reservoir
thermodynamic state. Parameter ranges for the study are listed in Table 3.

Table 3. Fluid EOS and rock physics study parameter ranges.

Parameter Min Max

Porosity (fraction) 0.075 0.175
Water Saturation (fraction) 0.3 0.75

Oil Saturation (fraction) 0.27 0.7
CO2 Feed Fraction 0 1

Hydrocarbon Fractions Proportional
Temperature (◦F) 163 173

Pressure (psi) 4000 6000

Used together, our petrophysical data analysis, the python implementation of NIST
subroutines, and databases facilitated a comprehensive investigation of a broad range
of realistic fluid substitution scenarios providing valuable insights into the time-lapse
integration problem. Here, we show a selection of graphical results which capture many
of the important behaviors of the rock-fluid system resulting from WAG implementation
at FWU.

Figure 15 shows contour plots of reservoir fluid compositions which represent stiffness
endpoints. The top row with the maximum possible water saturation and no CO2 represents
the stiffest fluid in the system. The bottom row with the minimum possible water saturation
and maximum CO2 represents the softest fluid in the system. Contours are relative to the
attribute value at user selected reference temperature which is annotated on each plot. For
this comparison we used nominal reservoir temperature and pressure (168 ◦F, 4500 psi)
as the reference point. These plots show that the saturated rock properties have little
sensitivity to temperature for both fluids. Further, the stiff fluid shows negligible variation
with pressure from a seismic detection perspective, but can vary as much as 20% from
nominal conditions for highest anticipated pressures. However, this interpretation must be
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put in the perspective that such high pressures are not optimal for the production scheme
and should be considered anomalous.
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Figure 16 illustrates another informative visualization tool, again comparing (end-
point) stiff versus soft fluids at a selected nominal reference temperature and pressure. The
four plots in Figure 16 show the variation of normalized elastic properties for hydrocarbon-
CO2-water mixtures (left column), saturated reservoir rock (right column), stiff fluid (top
row), soft fluid (bottom row) as a function of CO2 molar (feed) fraction. All curves are
normalized to their value at xCO2 = 0. Additionally, shown are the fluid mixture vapor
(red) and liquid (blue) fraction curves which clearly show the saturation point of 0.75 mole
fraction of CO2. Inspection of the top and bottom plots on the left shows the approximately
7% drop in velocity of the reservoir fluid at zero mole fraction CO2 (owing to the differ-
ence in water saturation), and a much-amplified response to the addition of CO2 for the
softer fluid, again owing to replacement of water with potentially miscible hydrocarbon.
Comparing left columns to right illustrated the extreme dampening effect of the rock frame
on the elastic response. The difference in velocity between stiff and soft fluids (maxim vs.
minimum water saturation) at zero CO2 mole fraction is only ~0.5%. Velocity of the rock
saturated with the stiff fluid drops by only ~0.6% at CO2 fractions up to saturation before
the existence of free phase CO2 begins to take effect on the bulk fluid properties. For the
soft fluid the response to additional CO2 is somewhat stronger but still at just under 1% at
CO2 saturation.

Finally, we looked at elastic property variations in saturated rock at nominal tem-
perature and temperature (168 ◦F, 4500 psi). Figure 17 illustrates contoured variations of
p wave velocity with CO2 mole fraction and porosity (left), and water saturation (right).
The left plot shows a high degree of sensitivity with respect to porosity, which is a source
of significant statistical uncertainty in 3D models, while showing little sensitivity to the
quantity of CO2 except for the inflection at saturation (xCO2 = 0.75). Variation with water
saturation and CO2 mole fraction (right) shows a complex response surface with most
significant variations related to the phase transition and at lower water saturations.
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Figure 16. Normalized reservoir fluid (left) and saturated rock (right) elastic properties for stiff fluid
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at nominal conditions (T = 168 ◦F, p = 4500 psi, and ϕ = 0.15).
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points shown.

3.3. Model Rock Physics from Compositional Simulator

Elastic properties were computed from 3 dimensional arrays of reservoir porosity and
reservoir fluid properties at each time-lapse survey time. Computed velocities from the
baseline survey and each monitor survey were used to compute synthetic time-lapse depth
shifts. Figure 18 shows the computed time-shifts (color maps) and the contour for mole
fraction of CO2 at the saturation level of 0.75. Figure 19 shows distributions of computed
monitor survey depth shifts. Monitor 1 survey has the fewest depth shifted samples
(simulator blocks) with depth shifts. The number of shifted cells increases over time as
expected injection of additional CO2. Depth shift magnitude for M1 is distributed uniformly
by comparison to those for M2 and M3 which show apparent shifting of magnitudes
downward. It is possible that this is due to a greater amount of free phase CO2 in the early
stages of miscibility development, with more complete mixing over time yielding lower
magnitude depth shifts. In all cases the computed depth shifts are extremely small from a
seismic detection perspective.
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3.4. Comparison with Time-Lapse Measurements

We compare simulated depth shifts with Schlumberger displacement attribute compu-
tations for the three monitor survey times. Figure 20 shows maps of simulated depth shifts
(top) and Schlumberger displacement attribute (bottom) in the zone beneath the Morrow B
at M1 (left), M2 (center), and M3 (right) survey times. Color scales have been adjusted to
normalize the visual comparison between simulated and measured values. Although the
visual comparison is not encouraging, we note that the spatial trends in the measured dis-
placement maps are suggestive of preferential fluid saturation changes toward producing
wells, consistent with the known hydrodynamics of the 5-spot pattern. Differences from
the simulated distribution may be due to local heterogeneities not captured in the reservoir
model and not corrected by the calibration which was achieved through optimization at a
global parameter scale.

Figure 21 compares the frequency distributions of absolute and normalized, measured
and simulated time-lapse shifts for the three monitor surveys. Simulated and measured
datasets were normalized independently to their maximum values. Maximum shifts were
0.68 ft for simulations and 3.8 ft for the measured displacement attribute for a ratio of
5.6. Ratios of average distribution values were 7.5, 10.4, and 3.7, respectively for M1, M2,
and M3.
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4. Discussion and Conclusions

We are tasked with interpretation and integration of time-lapse VSP data optimizing
the FWU reservoir simulation model. From previous experience and literature review
we know that WAG operations result in fluid properties and seismic detection scenarios
that are much more challenging than immiscible systems. Because these processes are
difficult to isolate for investigation in a complex compositional reservoir simulation, we first
performed an analytical fluid study which enabled us to isolate and investigate complex
thermodynamic processes. We reviewed the field operations at FWU in terms of the fluids
in place, and the volumes and timing of injected fluids. We discovered that, contrary to
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the concept of a discrete CO2 plume, as a conformance management technique the WAG
operation is specifically designed to create an optimal CO2-hydrocarbon mixture with water
as an intermediate phase. We used available data and models to perform a systematic
EOS analysis of WAG fluid thermodynamics. We found that the FWU WAG operational
scenario results in a thermodynamically complex transient distribution of fluid mixtures
with largely similar thermophysical properties while the hydrocarbon undersaturated with
respect to CO2. We then used Gassmann’s model to perform a systematic rock physics
study which showed that already subtle differences in fluid properties are heavily muted
by the rock framework. From these analytical studies we conclude that the most likely
seismic detection scenario at FWU is for the existence of free phase CO2 which exists where
the available oil is saturated, or the miscibility process has not yet fully developed.

We applied our rock physics model to compositional simulations using the production
data calibrated FWU reservoir model. These simulations verify a continuum of saturations
rather than a distinct distribution of high concentration CO2 which might be characterized
as a plume, or as forming a discrete fluid front. These gradational compositional variations
are reflected in similarly gradational spatial distributions of simulated depth shifts. Poor
spatial correlations between simulated and measured depth shifts may be attributed
to either data resolution or model error. Clearly, strict application of seismic imaging
fundamentals tells us that these shifts are all well below the seismic resolution. However,
it is not yet clear whether or not we are able to achieve the less stringent goal of merely
detecting changes in bulk reservoir properties with the given data. As regards to seismic
data fidelity, interpretating estimates of effective media properties at seismic wavelengths
is a well-studied problem. Worthington [49] reports ratios of up to 10:1 for estimates of
bulk reservoir properties from multi-scale measurements of fractured media compliance
using cross-well seismic and laboratory ultra-sonic measurements. On the side of the
model accuracy, the model used was calibrated at the global (full field) scale. As such,
the calibration at the pattern scale may be non-unique with respect to production data
only. Recognition of such ambiguities and non-uniqueness in geostatistical model property
distributions is one of the main motivators for introduction of time-lapse seismic data as a
calibration constraint. If the fidelity of our measured data can be verified, then the spatial
discrepancies between simulated and measured shifts can be used to drive model updates.
This subject is currently under study.

Other potential sources of simulated versus measured discrepancies owing to nu-
merical simulations but not investigated here include: the accuracy of the Eclipse 300 as-
sumption of first contact miscibility, the effects of simulation grid scale on the modeling of
miscible process development, and the correspondence between the Eclipse calculation
of total fluid system compressibility and the assumptions used by the Wood’s law mixing
equation and Gassmann’s equation. We also assume that the time-lapse response of the
reservoir is independent of pore pressure and effective stress. While we are aware of
ultra-sonic measurements under stress on Morrow B reservoir samples which indicate
potentially significant velocity versus stress sensitivity, inclusion of such effects was not
within the scope of funding for this project.

5. Avenues for Future Work

It is clear that successful integration of the time-lapse seismic data at FWU depends
on establishing the confidence level for the seismic data. This is not a black and white
issue and should not be considered a binary decision. All quantitative integrations provide
a mechanism for scaling the contribution of each observation in computation of model
updates. Unfortunately, a rigorous estimate of confidence in seismic data is difficult to
establish. It is possible that methods based on data signal to noise characteristics may
be implemented. However, these are based on seismic amplitude data so a strategy for
application to displacement data would be required.

Quantitative integration of the time-lapse seismic data for reservoir model updating
presents a number of spatial and temporal sampling challenges. One of these is the dis-
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crepancies between spatio-temporal sampling characteristics of the different observation
domains. Seismic data are finely and spatially sampled (~50′ × 50′) but coarsely sampled
temporally (1–2 years). Production data are coarsely sampled spatially (~1000′ × 1000′)
but finely sampled temporally (hourly, daily). Further, the dynamic processes dictating
fluid compositional changes and movement in 3D space over time are very complex. This
is why that it is essential to use a transient compositional simulation model as the basis for
integration. Although integration of simulation models for 3D interpretation is not new,
recent advances in distributed computing and machine learning techniques (such as proxy
model based optimization) are fuelling progress. Another challenge is the superposition
of effects from sub-pattern scale fluvial system heterogeneity and the thermodynamically
active fluid system effects. First, we feel that further lateral refinement of the simulation
grid scale is needed. An update and optimization scheme such as the one implemented
by Ampomah et al. [32] or Sun et al. [40] for production data calibration of the reservoir
model and optimization of development schemes at FWU may be used for time-lapse
data integration. In these studies, machine-learning technologies such as response surface
models (RSM), multi-layer neural networks (MLNN), and support vector machines (SVM)
are used to develop proxy models for numerical simulation results against production data.
These proxy models are coupled with suitable optimization strategy (such as the evolu-
tionary strategy) to achieve optimization of a penalty function which includes historical
data. For time-lapse integration, the proxy model would include both production data
from pattern wells and time-lapse seismic measurements. The required proxy for EOS
and rock physics response could be developed through integration of NIST databases in
a similar manner as was used in our analytical fluid and rock physics study. Although
the full field reservoir model property distribution was developed through a pixel based
geostatistical method, it may be necessary to implement an object-based property popula-
tion method using a fluvial system model in order to impose and systematically update
representative anisotropy in model porosity and permeability updates. These methods
are currently being applied for calibration of coupled hydro-chemical simulation models
by SWP researchers [unpublished]. The proxy model process for time-lapse integration
may be preconditioned with a geologically realistic and equiprobable realization ensemble
strategy such as implemented by Souza et al. [17].
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