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Abstract: The method of analyzing the results of dust concentration measurements in mine workings
that was conducted within the ROCD (Reducing risks from Occupational exposure to Coal Dust)
European project using the developed dust prediction algorithm is presented. The analysis was based
on the measurements of average dust concentration with the use of the CIP-10R gravimetric dust
meters, for the respirable PM4 dust concentration, and IPSQ analyzer for instantaneous concentration
measurements (including PM2.5 dust) and with the use of Pł-2 optical dust meters for instantaneous
concentration measurements of PM10 dust. Based on the analyses of the measurement results,
the characteristics of the distribution of PM10, PM4, and PM2.5 dust particles were developed for
the tested dust sources. Then, functional models based on power functions were developed. The
determined models (functions) allow predicting the dust distribution in such conditions (and places)
for which we do not have empirical data. The developed models were implemented in a specially
developed online tool, which enables predicting the concentration of PM10, PM4, and PM2.5 dust
(on the basis of dust concentration of one source) at any distance from the dust source.

Keywords: dust; in situ tests; prediction

1. Introduction

The concentration of coal mining production worldwide and the winning of thinner
and thinner coal seams means that the mining personnel are exposed to a number of
hazards. Coal dust is one of such hazards. It is first and foremost a danger of explosion,
endangering human life, and damaging equipment; however, coal dust is also a lung
hazard arising from its prolonged exposure to the human respiratory system. Despite
international efforts to predict and protect miners’ health, a constant high incidence of
lung diseases among miners, often with severe consequences, has been recorded for
several years [1–3]. Pneumoconiosis resulting from long-term inhalation of free silica,
manifested by chronic bronchitis and emphysema, and sometimes by heart failure and
cardiac hypertrophy, is the most common occupational disease caused by mine dust [4,5].
Symptoms of pneumoconiosis usually appear after several years; therefore, these diseases
are most often diagnosed only among retired miners [6]. The share of new cases of
pneumoconiosis diagnosed in Poland, and caused by coal mining processes, is shown in
Figure 1 [7,8].
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Figure 1. Share of new pneumoconiosis cases in Poland caused by coal mining in the years 2013–2017 [8]. 

The persistently high number of cases of disease makes it important to look for new, 
practical tools and methods to improve risk models, dust control, and workers protection, 
especially with regard to the finest fraction of dust, i.e., PM2.5. Forecasting and assessment 
of hazards related to mine dust are based mainly on epidemiological [9] and cohort stud-
ies [10], based on regional or national data. The intensity of dust settlement by measuring 
its concentration in the protection zone was tested [11,12]. The tests results were used to 
develop an empirical model of these relationships (Figure 2). These models, developed on 
the basis of the test results of the intensity of settlement and changes in the concentration 
of dust in the protection zone, allowed for the development of tools for the reduction in 
the risk of coal dust explosion. 

 
Figure 2. Empirical model of dust settlement in relation to dust concentration in air for 
longwall panel no. 551 and longwall no. 121 [11]. 

In turn, in [13], the flow of air with coal dust in a mine working was tested. Dust 
distribution in the mine workings was numerically analyzed (CFD). 

The tests showed that it is possible to model dust concentrations using mathematical 
tools, with high compatibility with actual results. Due to the complexity of the process, 
the analyses were focused on one type of workings, and their main objective was not to 
predict dust concentration but to assess the effectiveness of the dust removal equipment 
used. 

In another work [14], the authors found a correlation between the rate of settling of 
dust particles and the aerosol parameters, which can be used to parameterize the mathe-

Figure 1. Share of new pneumoconiosis cases in Poland caused by coal mining in the years 2013–2017 [8].

The persistently high number of cases of disease makes it important to look for
new, practical tools and methods to improve risk models, dust control, and workers
protection, especially with regard to the finest fraction of dust, i.e., PM2.5. Forecasting and
assessment of hazards related to mine dust are based mainly on epidemiological [9] and
cohort studies [10], based on regional or national data. The intensity of dust settlement
by measuring its concentration in the protection zone was tested [11,12]. The tests results
were used to develop an empirical model of these relationships (Figure 2). These models,
developed on the basis of the test results of the intensity of settlement and changes in the
concentration of dust in the protection zone, allowed for the development of tools for the
reduction in the risk of coal dust explosion.
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Figure 2. Empirical model of dust settlement in relation to dust concentration in air for longwall
panel no. 551 and longwall no. 121 [11].

In turn, in [13], the flow of air with coal dust in a mine working was tested. Dust
distribution in the mine workings was numerically analyzed (CFD).

The tests showed that it is possible to model dust concentrations using mathematical
tools, with high compatibility with actual results. Due to the complexity of the process, the
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analyses were focused on one type of workings, and their main objective was not to predict
dust concentration but to assess the effectiveness of the dust removal equipment used.

In another work [14], the authors found a correlation between the rate of settling of
dust particles and the aerosol parameters, which can be used to parameterize the mathe-
matical models of air–dust mixture flow in mine ventilation networks. In [15], the diffusion
of dust particles was tested based on the CFD-DEM coupling model and underground
tests. In turn, the authors of [16], based on the theory of similarity and the theory of
two-phase gas–solid flow, applied numerical simulation and similarity experiments to in-
vestigate the distribution of dust concentration and the characteristics of dust propagation
in mine workings.

The main disadvantage of almost all known dust analyses is that they were based
only on the inhalable fraction (nominally particulate matter <10 µm—PM10) or on the
respirable fraction (nominally <4 µm—PM4). Little attention was paid to the fine fraction
(PM2.5) that can penetrate into the gas exchange zone in the lungs [17,18]. An increase
in PM2.5 dust concentration is associated with higher lung cancer incidences as well as
cardiovascular mortality [19]. Exposure to dust and work in the hard coal mining industry
caused over 4.5 thousand cases of pneumoconiosis in the last decade only in Poland [7,8].
In the United States, around the same time period, there was evidence of an increase in
both the incidence and severity of pulmonary diseases associated with coal dust [2].

The situation is similar in China, where pneumoconiosis accounts for more than
90% of occupational diseases, where more than 85% of them are reported in the coal mining
industry [20].

Within the project of ROCD (Reducing risks from Occupational exposure to Coal Dust)
funded by the European Commission Research Fund for Coal and Steel, research work was
carried out in the aspect of reducing dust concentration, protecting miners from dust, and
many studies enabling dust prediction [21].

The dust hazard prevention tool was developed within the project. It was a pre-
diction algorithm for monitoring the dust concentration, dust properties, and predicted
concentrations, based on continuous dust measurements and gained knowledge. The
algorithm for the prevention of excessive dust concentration is based on a much larger
number of results and a broader spectrum of dust particle sizes compared to the previous
methods, including coal mining technologies and the mine ventilation network system.
The prediction algorithm is created by a procedure of actions and a special interactive
application for predicting the dust concertation in any place of a mine working. In the first
place of the procedure, characteristics of the average dust concentration distribution were
developed, based on the determination of PM10, PM4, and PM2.5 dust concentration at
different distances from the source of dust, in the tested mine workings. The next step is to
determine the equivalent characteristics of the dust depending on the dust source. These
functions make it possible to predict the propagation of dust concentration in the places
for which we have no empirical data.

2. Test Methodology

Dust concentration measurements required for the prediction analysis were taken
using three types of devices: CIP-10-R gravimetric dust meters, IPSQ particle analyzer, and
the Pł-2 optical dust meter. Measurements were taken in the hard coal mines of Jastrzębska
Spółka Węglowa S.A., Polska Grupa Górnicza S.A. and Premogovnik Velenje mine in
Slovenia during normal mine operation. Dust concentration measurements were taken in
longwall panels and roadways. The measuring points were set at a distance of about 50 m
from each other, at least at three points. The first measuring point was placed just behind
the dust source, i.e., behind a roadheader in a coal face or at the air outlet from a longwall
face. Subsequent stationary measuring points were placed in the axis of the working, at
the height of 1.5 m, at distances of 50 m, 100 m, 150 m, 200 m, etc., in accordance with the
following scheme of measuring devices arrangement (Figure 3).
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PM4 dust concentration was measured with the use of CIP-10R dust meters (Figure 4).
Measurements of dust weight in the measuring cups of personal dust meters were per-
formed by a body accredited in the scope of tests in the work environment. Measurements
were taken in five coal faces and four gates.
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Figure 4. CIP-10R personal dust meter for measuring the PM4 dust respirable fraction of.

Measurements with the use of CIP-10R dust meters enabled calculating the average
dust concentration at the given measuring points (1).

S =
m

.
V × τ

(1)

where:
S—dust concentration (mg/m3).
.

V—air flow in the CIP-10R (dm3/min).
τ—measurement time (min).
m—dust mass in the measuring cup (mg).
Fractional distribution of dust and dust concentration at given points were measured

using an IPSQ analyzer connected to a laptop recording the results (Figure 5).



Energies 2021, 14, 5527 5 of 17

Energies 2021, 14, 5527 4 of 17 
 

 

 
Figure 3. Arrangement of devices in the gateroad. 

PM4 dust concentration was measured with the use of CIP-10R dust meters (Figure 
4). Measurements of dust weight in the measuring cups of personal dust meters were per-
formed by a body accredited in the scope of tests in the work environment. Measurements 
were taken in five coal faces and four gates. 

 
Figure 4. CIP-10R personal dust meter for measuring the PM4 dust respirable fraction of. 

Measurements with the use of CIP-10R dust meters enabled calculating the average 
dust concentration at the given measuring points (1). 𝑆 ൌ 𝑚𝑉ሶ ൈ 𝜏 (1) 

where: S—dust concentration (mg/m3). 𝑉ሶ—air flow in the CIP-10R (dm3/min). 𝜏—measurement time (min). 𝑚—dust mass in the measuring cup (mg). 
Fractional distribution of dust and dust concentration at given points were measured 

using an IPSQ analyzer connected to a laptop recording the results (Figure 5). 

(a)  (b)  

Figure 5. IPSQ analyzer, consisting of: (a) electronic measuring block with a computer; (b) measur-
ing probe. 

Figure 5. IPSQ analyzer, consisting of: (a) electronic measuring block with a computer; (b) measuring
probe.

Due to the device not being ATEX manufactured, the measurements in accordance
with the adopted measurement methodology could only be taken in workings of methane
concentration below 0.5%. The following parameters were measured: temperature, humid-
ity, airspeed, as well as the dimensions and concentration of dust particles suspended in the
air. Size distribution and dust concentration were measured in the range from 0.4 to 300 µm,
from which the particles below 2.5 µm were finally separated. To develop a mathematical
model of the dust distribution for a given type of working, data from measurements in
two mines (coal faces and gates) were used.

The last dust concentration measurements of PM10 dust were taken by the Pł-2/100
optical dust meter designed by ITI EMAG. The Pł-2 optical dust meter is an optical device
operating on the basis of light scattering on dust particles. The physical principle of
operation is based on the so-called Tyndall effect and consists in scattering light radiation
of a constant wavelength in a colloidal solution, which in this case is a mixture of coal dust
and air.

The Pł-2 dust meter (Figure 6) enables continuous measurement and recording of the
PM10 dust concentration in the range of 0–100 mg/m3.
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The Pł-2 dust meter is approved for operation in potentially explosive atmospheres,
and it could be used in workings with a risk of coal dust and methane explosion. The
dust meters were located in accordance with the assumed testing methodology, and the
measurements from dust meters were recorded through the mine’s measuring system.
Measurements were taken in three coal faces and three gates.
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3. In Situ Tests

Changes in dust concentration in mine workings are stochastic, determined by many
variables. The development of a proxy characteristic was based on several test trials carried
out in different mines to develop a relationship that best reflects changes in concentrations
of PM10, PM4, and PM2.5 in a given type of workings.

The results of the tests were divided into groups, depending on the type of working.
Then, from the separated points, the characteristics of the dust concentration distribution
depending on the distance from the dust source for each test in a given type of workings
were developed.

Characteristics of the average distribution of PM4 dust concentration, depending on
the distance from a dust source, obtained on the basis of dust concentration measurements
with the use of CIP-10R in gates (Figure 7) are presented below. The characteristics are
presented together with the functions describing them and are necessary to determine the
mean value enabling the creation of the equivalent characteristics in further tests.
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Figure 7. Characteristics of the average distribution of PM4 dust concentration in gates depending
on distance from a source of dust, based on dust concentration measurements using the CIP10R with
the functions describing them.

Similarly, the characteristics of the average distribution of PM4 respirable dust con-
centration depending on the distance from a dust source, based on dust concentration
measurements using CIP-10R, in coal faces are presented below, together with the functions
describing them (Figure 8).

The results of dust concentrations from the IPSQ analyzer allowed us to isolate
particle fractions of sizes below 2.5 µm at given measuring points. The sample result of the
quantitative share of particles in a given class at each of the three measuring points (coal
face) in one of the mines is shown in Figure 9.

On the basis of the measurement results of PM2.5 dust concentration for the coal face
and the gates, the characteristics of the average dust concentration distribution depending
on the distance for each test in a given type of workings were developed. The characteristics
of the average distribution of PM2.5 dust concentration depending on the distance, based
on the results from the IPSQ analyzer in the gates with the functions that describe them,
are presented below (Figure 10).

Similarly, the characteristics of the distribution of PM2.5 dust concentration depending
on the distance, measured with the IPSQ analyzer in coal faces, together with the functions
that describe them, are presented in Figure 11.
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Figure 11. Characteristics of the distribution of PM2.5 dust concentration depending on the distance
from a dust source, measured with the IPSQ analyzer in coal faces, together with the functions that
describe them.

The results of measurements taken by the Pł-2/100 optical dust meter consist of the
recorded momentary time processes of PM10 dust concentration in coal faces and gates.
Sample waveforms of the momentary concentration of PM10 dust in one of the mines,
obtained from three Pł-2 dust meters located in the coal face, are shown in Figure 12.

Based on the momentary time processes of PM10 dust concentrations, the average
PM10 dust concentration distributions were determined. The characteristics of the average
distribution of PM10 dust concentration depending on the distance in the coal faces with
the functions that describe them are presented below (Figure 13).

Similarly, below the characteristics of the average distribution of PM10 dust concen-
tration depending on the distance, in the gates with the functions that describe them are
presented (Figure 14).
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4. Analysis of the Results

For different workings, the location of the measuring points was different. Hence, to
develop a universal characteristic for each type of working, for each test with the use of a
different type of measuring device (Pł-2, CIP-10R, and IPSQ), graphs of changes in dust
concentration (PM10, PM4, and PM2.5), depending on the distance from the dust source,
were created. They enabled the extrapolation of the results to the required working length
equal to 300 m.

Examples of PM10 dust concentration measurements, extrapolated to a distance of
300 m from the dust source, for the gates, are presented in the table below (Table 1).

Table 1. Dust concentration measurements in the gates, extrapolated to a distance of 300 m from the
dust source.

Distance,
m

PM10 Dust Concentration,
Mine No 1, mg/m3

PM10 Dust
Concentration, Mine

No 2, mg/m3

PM10 Dust
Concentration, Mine

No 3, mg/m3

y = 70.279 × x−0.317 y = 115.74 × x−0.483 y = 110.72 × x−0.464

1 70.73 115.74 110.72
50 20.47 17.49 18.03
100 16.43 12.52 13.07
150 14.45 10.29 10.83
200 13.19 8.96 9.47
250 12.29 8.04 8.54
300 11.60 7.36 7.85

On the basis of each dust concentration extrapolated to a distance of 300 m, the average
value was determined, which was the base for the development of universal equivalent
characteristics, and then the equivalent equation was determined for a given dust fraction
and a given type of mine working (for a coal face and a gate).

Based on the results of dust concentration measurements in three gates, an equivalent
equation for PM10 dust concentration (measured by Pł-2 dust meters) depending on the
distance from the dust source, was obtained in the form of y = 97.201 × x−0.42 (Figure 15).
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On the other hand, on the basis of dust concentration measurements in four gates, the
equivalent equation for PM4 dust concentration (measured by CIP-10R), depending on the
distance from the dust source, was y = 10.276 × x−0.058 (Figure 16).
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Based on dust concentration measurements in two gates, the equivalent equation for
PM2.5 dust concentration (measured by the IPSQ analyzer), depending on the distance
from a dust source, was y = 0.6795 × x−0.503 (Figure 17).
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Based on the same method, characteristics and equivalent equations were determined
for the coalface. Based on the measurements of dust concentration in three coal faces, the
equivalent equation for PM10 dust concentration (measured by CIP-10R), depending on
the distance from the dust source, was y = 45.697 × x−0.23 (Figure 18).
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Figure 18. Equivalent characteristics of PM10dust concentration (measured by Pł-2 dust meter),
depending on the distance from the dust source, determined on the basis of dust measurements in
two coalfaces.

Based on the measurements of dust concentration in five coal faces, the equivalent
equation for PM4 dust concentration (measured by CIP-10R), depending on the distance
from the dust source, was y = 13.037 × x−0.159 (Figure 19).
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Based on the dust concentration measurements, measured by the IPSQ analyzer in
two coal faces, the equivalent equation for PM2.5 dust concentration depending on the
distance from the dust source was y = 1.1524 × x−0.219 (Figure 20).

Based on equivalent equations of dust concentrations (PM10, PM4, and PM2.5) for
coal faces and gates, a tool for dust concentration prediction was developed. This tool,
together with the methodology, creates an algorithm for the prediction of dust distribution
in hard coal mines.

Prediction of concentration of each type of dust: PM10, PM4, and PM2.5 (even if dust
concentration from only one point is known), on the basis of the developed mathematical,
empirical models, was possible, at any distance from the dust source. Dust concentration
in the gates and coal faces tested within the project can be predicted on the basis of the
obtained results (Figure 21). Data on the effectiveness in reducing the concentration of
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each type of dust by the most frequently used spraying devices in the Polish mines were
additionally implemented to the application. This allows for the assessment of their impact
on dust concentration (different fractions) in the selected places of mine workings, and
therefore to select the most preferable device with respect to the reduction in a given type of
dust. The application for predicting the dust concentration is divided into a part showing
the results of dust concentration depending on the distance from a dust source in the form
of graphs (left side of the window) and in the form of a panel for entering input data for
the simulation (right side of the window).
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Energies 2021, 14, 5527 14 of 17

determining the type of dust and its concentration (mg/m3) that has been measured,
and on this basis, it enables us to predict concentration at other points of a given type of
working. The panel also allows entering the length of the working in meters and the place
of installation of dust control devices.

Energies 2021, 14, 5527 14 of 17 
 

 

Figure 21. View of the dust prediction application, showing a graph of dust concentration depending on the distance from 
the dust source. 

Entering the input data in the panel (Figure 22) starts from the selection of the type 
of mine working for which the dust concentration is predicted. Then, the panel allows 
determining the type of dust and its concentration (mg/m3) that has been measured, and 
on this basis, it enables us to predict concentration at other points of a given type of work-
ing. The panel also allows entering the length of the working in meters and the place of 
installation of dust control devices. 

 
Figure 22. Window on the panel for entering the input data for prediction of dust concentration. 

After entering the data into the application panel and turning on each characteristic 
to be displayed, the predicted dust concentration [mg/m3] depending on the distance [m] 
are displayed in the graphic window (Figure 23). The graphic window displays the char-
acteristics of the distribution of the PM10, PM4, and PM2.5 dust concentrations depending 
on the distance from a dust source. When determining the impact of the spraying device 
used (BRYZA, TELESTO, PNIÓWEK, SSD-1), additional characteristics are displayed 
showing their impact on a given type of dust. After moving the cursor over any of the 
characteristics, a window appears with the forecasted results of concentration for each 
type of dust, with and without spraying devices. 

 
Figure 23. Graphical window to display the predicted dust concentration (PM10, PM4, and PM2.5) 
with and without spraying devices. 

  

Figure 22. Window on the panel for entering the input data for prediction of dust concentration.

After entering the data into the application panel and turning on each characteristic
to be displayed, the predicted dust concentration [mg/m3] depending on the distance
[m] are displayed in the graphic window (Figure 23). The graphic window displays
the characteristics of the distribution of the PM10, PM4, and PM2.5 dust concentrations
depending on the distance from a dust source. When determining the impact of the
spraying device used (BRYZA, TELESTO, PNIÓWEK, SSD-1), additional characteristics
are displayed showing their impact on a given type of dust. After moving the cursor over
any of the characteristics, a window appears with the forecasted results of concentration
for each type of dust, with and without spraying devices.
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5. Conclusions

The methodology and the tool for the prediction of dust concentration in coal mines
developed and presented in the article were based on a series of in situ tests carried out as
part of a European project. Dust concentration with a wide spectrum of particle fractions,
especially the fine dust fraction (PM2.5), in various types of workings, in several hard coal
mines, has not been measured so far. Underground tests required coordination of activities
and standardization of measurements. This enabled the development of dust concentration
distribution characteristics (PM10, PM4, and PM2.5) depending on the distance from a
dust source, and then the determination of empirical functions for them with high determi-
nation coefficients, indicating the high probability of correct description of the developed
relationships. Based on the designated functions, the equivalent dust characteristics of
PM10, PM4, and PM2.5 were developed for coal faces and gates (Figures 24 and 25).
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The developed equivalent characteristics show each dust fraction distribution depend-
ing on a distance from a dust source and type of mine workings.
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The equivalent functions of the distribution of PM10, PM4, and PM2.5 dust concentra-
tions enable their use to predict dust concentration in the tested types of mine workings.
Predicting the concentration of various dust fractions in various types of workings, based
on the dust concentration in one of the assessed coal faces or gates, is possible using the
developed functions of the designed application. The suggested testing methodology al-
lows to extend the developed database and increase the convergence of dust concentration
measurements with the real results.

The presented methodology creates an algorithm for the prediction of dust concentra-
tion and will allow mine supervisors to better control mine workings in terms of the safety
of the miners working there.
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