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Abstract: Despite the extensive use of ejectors in the process industry, it is complex to predict
suction and motive fluids mixture characteristics, especially with multiphase flows, even if, in most
cases, mixture pressure control is necessary to satisfy process requirements or to avoid performance
problems. The realization of an ejector model can allow the operators to overcome these difficulties
to have real-time control of the system performance. In this context, this work proposes a framework
for developing a Digital Twin of an ejector installed in an experimental plant able to predict the
future state of an item and the impact of negative scenarios and faults diagnosis. ANNs have
been identified as the most used tool for simulating the multiphase flow ejector. Nevertheless, the
complexity in defining their structure and the computational effort to train and use them are not
suitable for realizing standalone applications onboard the ejector. The proposed paper shows how
Swarm Intelligence algorithms require a low computational complexity and overperform prediction
error and computational effort. Specifically, the Grey Wolf optimizer proves to be the best one among
those analyzed.

Keywords: ejector; multiphase flow; Swarm Intelligence algorithms

1. Introduction

Ejectors are standard devices in the process industry for gas extraction or vapor
from the specific system or container. An ejector can be considered as a compressor or
vacuum pump, with no moving parts, relatively inexpensive and easy to maintain. It uses
a high-pressure carrier fluid to drive a low-pressure suction fluid subject to an intermediate
back pressure.

Despite the extensive use of ejectors, it is complex to predict mixture characteristics,
mainly when operating with multiphase flows. Nevertheless, mixture pressure control is
necessary to satisfy process requirements or avoid performance problems in most cases.

In this context, realizing a Digital Twin (DT) of the ejector can allow the operators
to overcome these difficulties to have real-time control of the system performance. The
notion of DT assumes a greater importance in a digital real-time image of a physical
entity, system, or the like, which grants companies the performance improvement. The
connection between the digital and physical systems is made easier thanks to the increased
development of embedded sensors technology [1], signal processing algorithms [2], and
wireless communications systems [3,4]. Since the DT provide a Realtime tracking of the
physical world for monitoring, adjusting, and optimizing actual processes by various
modeling techniques, such as simulation-, mathematics-, or data-based modeling.

In the literature, it is possible to find various techniques used to solve ejector modeling
and theoretic and investigational analysis about motion in the multiphase fluids system.
These techniques study the dynamic behavior of the ejector and the fluid-dynamic behavior
of the liquids/gas passing through it to predict and optimize its operation considering
several working conditions [5]. Predicting ejector performance was one of the first ap-
proaches to ejector modeling that was proposed [6]. The authors proposed a 1D analysis,
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i.e., a mathematical model using a set of algebraic equations, differential equations, and
conservation equations of thermodynamics, which characterizes the behavior of the ejector.
This method has also been used by other authors such as [7]. In addition, one of the leading
modeling/analysis techniques of ejector fluid dynamics behavior, still used today, is the
Computational Fluid Dynamics analysis (CFD). For the purpose described above, various
authors have used this technique [8–11]. CFD analysis can solve complicated equations,
which characterize the motion of fluids, whose analytical resolution is instead feasible only
when considering laminar (not turbulent) flows. This technique generally performs calcu-
lations/operations with a high computational cost. Reference [12] introduced the Shock
Circle Model and showed that the latter is more straight forward than the one-dimensional
modeling approaches and can foresee the ejectors performance in binding modes with
more precision.

The mentioned methodologies are characterized by the fact that they use vector
calculations and algebraic/differential equations that can be complex. Moreover, sometimes
they imply, for their resolution, the knowledge of certain physical quantities specific to
fluids, such as enthalpy or entropy, which in many cases are not measurable. Another
critical aspect to consider is that the model carried out does often have to interface easily
with other components of the plant (pump and tank) to create a DT of the overall plant.
Such complexities would make the realization of the virtual model of the ejector very
complex or sometimes impossible.

By analyzing the literature, there are no papers that propose a DT for managing
an ejector. The proposed approach tries to overcome this gap by developing a DT that,
throughout the evaluation of steady states, the analysis of past problems, and the forecast
of potential tendencies, can offer complete support in the decision-making process to
comprehend the ejector behavior. The proposed DT framework is tested in an experimental
plant for multiphase ejector modeling.

It is essential to highlight that most simulation applications could solve only one
specific design and offline optimization [13]. Thus, the application of DT features needed a
significant change in the simulation approach [14]. In light of this, the application of proper
simulation techniques brings DTs to life, thus becoming testable [15]. Hence, a Digital
Twin Simulation Interface (DTSI) is essential for meeting all the requirements associated
to the product or the simulation of the item life cycle. In particular, through customized
interfaces, the interaction between the DT and the physical system can easily simulate
different scenarios to identify proper actions to be applied to the second one.

In this paper, the Digital Twin is equipped with a simulation tool based on supervised
machine learning techniques to overcome these problems and guarantee maximum inter-
face ability and versatility. Through simulation tools, DT can help operators to understand
physical objects as complex as an ejector system and predict the suction and motive fluids
mixture characteristics.

The simulation model is one of the essential tools of the DT, and it must allow operators
to examine the relationships established among the various variables of the problem. It
must have low computational complexity and a low need for computational resources
to minimize the system latency. For this reason, not only the Artificial Neural Networks
(ANNs) but also the Swarm Intelligence (SI) algorithms have been decided to be used to
evaluate as simulation tools. The implementation of SI algorithms is not complex, and the
cost associated with these types of projects is not high, conversely to the ANNs. Moreover,
the ANNs are essentially a “Black-Box”, which means that the networks do not allow
to examine the relationships established among the various variables of the problem in
the individual stages of elaboration but only provide “the obtained solution”. Finally,
unlike the SI algorithms, ANNs present a high computational complexity. They need
more computational resources. The proposed paper aims to demonstrate how emerging
AI techniques, such as Swarm Intelligent algorithms, can allow developers to realize a
valid tool for advanced system monitoring. In particular, they can be used onboard of
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the considered item with no strict requirements in terms of computational power and
device features.

The proposed study is organized as follows: Section 2.1 shows the multiphase system
and ejector modeling literature review. A description of used techniques is briefly reported
in terms of advantages, disadvantages, and application fields. Then, Section 2.2 describes
the Digital Twin framework used for the multiphase ejector installed in an experimental
plant. In Section 3, the research approach for developing the simulation tool and resulting
models are described. Finally, in Section 4, the discussion and conclusions are presented.

2. Materials and Methods
2.1. Literature Review

The multiphase flow investigation and the ejector performance are one of the most
relevant topics in many research fields: from oil and gas industries to refrigeration applica-
tions and gathering information about fluid and well properties such as the amount of gas
and oil in the mixture, their pressure, and temperature [16].

According to [17], simulation is used to predict the pressure loss and phase velocities
for stationary multiphase flow in wells and pipelines. The majority of the analyzed papers
used CFD to predict experimental results since simulations save time and money accurately.
For example, a three-dimensional CFD model was compared by [18] with the experimental
data in different working conditions. Reference [19] provided a numerical research of an
ejector for steam based on CFD to distinguish correct experimental conditions allowing
one to perform a cycle of reliable operations on an ejector. In particular, the structure of
the flow and the combination process within the ejector were evaluated considering a
solar-driven air conditioning system. New models have been developed for predicting
ejector performance at a critical point and breaking point, based on constant pressure
mixing and constant pressure disturbance. Reference [20] developed ejector models to
predict the performance of the ejector at a critical point and at a breaking point considering
constant pressure mixing and disturbance hypotheses obtaining an ejector model for the
entire operating range through a method of analysis of the effect of the change (EOC) to
identify the efficiencies of ejector components and influences on ejector shape and accuracy.
Reference [21], through CFD and orthogonal test, carried out an optimization analysis of
structure parameters of stem ejector for the waste heat recovery and, also, to see how those
single-factors affect the ejector using a single-factor analysis. Reference [22] studied the
deviations from Darcy’s law by focusing on high-speed non-Darcy flow and low-speed
pre-Darcy flow, using an ejector to move air from the pores by sucking the porous medium.
Reference [23] numerically evaluated how the inlet and outlet nozzles diameters and the
divergent section variations affect the steam ejector performance and functioning (under
different flow pressure conditions). Reference [24] presented a theoretic assessment of the
impact of Venturi devices in gas wells by forming simulations in a steady state to adapt to
experimental and theoretic pressure profiles. They used Aspen Plus®, for the reproduction
of the creation of gases in wells, and then, through CFD simulations, they reproduced the
multiphase mixture flow in a venturi machine referring to ANSYS CFX®.

By focusing on the ejector and multiphase flow modeling, it is possible to highlight
if ANNs have always been used for this purpose. Indeed, [25] provided an ANN model
to foresee the pressure loss considering a Venturi scrubbers. The authors designed three
independent ANNs, comparing the results with those calculated using other models. This
analysis showed that the results of the ANNs were more similar to the experimental data.
References [26,27] realized an ANN to calculate the liquid holdup in a horizontal two-
phase flow. Reference [28] used Artificial Neural Networks to perform a thermodynamic
analysis of the ejection–absorption cycle of thermal systems. In particular, the authors have
calculated the energy losses in the system, avoiding the classical thermodynamic analysis
that uses complex differential equations and complex simulation programs. Reference [29]
developed an ANN to estimate the output pressure from an ejector, given various input
states. The authors then proposed an alternative method of ejector modeling compared
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to traditional models (thermodynamic and CFD models). This research also lays the
foundation for the control strategies for constructing an ejector-based refrigeration system
using machine learning methods. Reference [30] used an ANN for the identification of the
flow pattern through the natural logarithmic normalization.

Reference [31] have modeled a hybrid air conditioning system to an ejector using
artificial neural networks to predict the performance of the latter. The authors used MLP,
RBF, and SVM neural networks, comparing the results and identifying the best performing
in the MLP network regarding the forecasting error. In comparison with previous studies,
the aim of the proposed approach is the prediction and the performance control of an ejector
not only through a simulation model but by trying to realize a real DT of the physical
ejector. Several simulation models are tested for the DT. In addition to the well-known
ANNs, the SI algorithms are tested as they provide a clear view of relationships established
among the various variables of the problem in every individual stage of elaboration. The
results of the literature analysis on SI algorithms are very different, and they underline
the absence of SI algorithms for the ejector modeling. However, they are used in many
research fields, from the biomedical one [32] to decision-making process [33], from data
mining [34] to vehicle routing [35,36]. Nevertheless, the low computational complexity of
SI algorithms and their low need for computational resources make them appropriate for
minimizing the system latency.

2.2. The DT Model

Figure 1 shows the reference model of the proposed DT. It allows the virtual creation
of a physical process, offering a static and dynamic analysis tool. Moreover, it is possible to
understand how to spread information among all the available digital objects to increase
the actors’ safety level.
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The main features of the proposed DT system refer to the controlling plant, the use
of simulation tools for better plant management through scenarios analysis, anomalies
detection, and predictive maintenance. For these reasons, the required platform needs to
be fast and computationally not complex, so that it is possible to connect more users and
manage many actions.

The reference model consists of four main levels as shown in Figure 1. In the last layer
(User Space), there are the model outputs.
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2.2.1. The Physical Space of an Industrial Process

The plant test used is an experimental plant located inside the Department of Industrial
Engineering and Mathematical Science (DIISM) of the Università Politecnica delle Marche
(Ancona, Italy).

The plant simulates a classic situation in extraction processes, such as exploiting the
pressure of a reservoir whose pressure is higher than the transport pressure to create a
suction on a reservoir whose pressure is not high enough for transport on the line. In the
actual case, the treated fluids are crude oil and natural gas, while water and air are used
in the experimental plant. Indeed, in the oil, chemical, and nuclear industries, there is
frequently the problem of transporting two-phase gas–liquid mixtures in a single pipeline.
Particularly in the oil industry, it is very often the case that oil pressure in a field is not
sufficient to bring it to the surface. In such circumstances, the most obvious solution is
installing appropriate pumps positioned at the surface and the bottom of the oil well.
An undoubtedly more efficient solution is to exploit a nearby well with higher pressure
than the transport pressure. To mix two phases at different pressures and to impress
the necessary transport energy, the use of gas–liquid ejectors is conceivable. The lack of
moving parts, the consequent extreme simplicity of the apparatus, the low maintenance
and installation costs, and the absence of sealing problems make the gas–liquid ejector
a machine with many possibilities of applications in the transport of both hydrocarbon
mixtures and corrosive, toxic, or radioactive gases. Figures 2 and 3 show the 3D picture
and the functional scheme of the mentioned plant.
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In particular, the pump (CO1) connected to the open tank (CO4) takes a flow of water
and sends it to the ejector (CO2) at a specific pressure. In the ejector, the transformation
from pressure energy into kinetic energy of the liquid takes place. The resulting depression
draws airflow from the outside at atmospheric pressure. In the final part of the ejector, the
two fluids are mixed and the pressure of the mixture is recovered from the current value in
the ejector chamber. The diverging cone at the ejector outlet, made of transparent material
(perspex), guarantees further pressure recovery.
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The two-phase mixture, formed at the ejector outlet, flows into a pressure vessel (CO3),
which acts as a vertical separator of the liquid and gaseous components. Through two
solenoid valves (VC1 and VC2), it is possible to control the water flow and the airflow
at the outlet, respectively; this system regulates the pressure and the liquid level inside
the tank.

2.2.2. The Ejector Functioning in Brief

The ejector carries out the primary process of this experimental plant. An ejector is
a machine without moving parts, used both as a compressor and as a pump to lower the
pressure of a fluid through the supply of fluid (of similar or different nature). Because of
their versatility, ejectors can be used for several applications, where requirements such as
“Constructive simplicity”, “Compactness”, “Reliability”, and “Safety” prevail.

Many different applications exploit the basic principle. A fluid with high momentum,
meeting one with low momentum, transmits the momentum from the first to the second as
an inelastic shock—the principle on which the operation of the Venturi tube is based.

2.2.3. The Communication System

This level is reserved to the data transfer between DT and the plant. The physical
equipment is supervised and perceived by specific devices for gathering data and device
control connected to cameras, sensors, actuators, and composite devices. This system
connects the visual system parts to the digital ones for the synchronization and vice versa.

The plant analyzed in this paper is equipped with a series of sensors (pressure, flow,
and level) that monitor the process. Table 1 describes the sensors and components equipped
on the plant. The 780 L vertical tank is examined and supplied with a 10 bar safety valve
(VS1). In the current configuration, a pump capable of providing a maximum pressure of
5.5 bar is used. The PVC pipes can be connected with bonded fittings, and they can resist
pressures up to 6 bar. However, as a safety measure, a 4.5 bar pressure has been fixed as
the maximum pressure limit.
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Table 1. Sensors and components equipped on the plant.

Component ID Description

CO1 Monobloc centrifugal pump Vergani 32–201
CO2 Ejector
CO3 Vertical separator Elbi 780-I
CO4 Open tank
LN4 Flow sensor Foxboro Magnetic Flowtransmitter
LN5 Absolute pressure sensor Setra 280E

LN11 Absolute pressure sensor Setra 280E
LN9 Absolute pressure sensor Setra 280E

LN19 Gauge pressure sensor Foxboro 841GM-CI1
LN20 Differential pressure sensor Foxboro IDP-10
LN8 Foxboro Vortez volume flow sensor DN 50
VC1 Pneumatic solenoid valve ECKARDT MB6713
VC2 Pneumatic solenoid valve ECKARDT MB6713
VM1 2-way shut-off valve FIP DN 50 PN 16
VM2 2-way shut-off valve FIP DN 50 PN 16
VM3 2-way shut-off valve FIP DN 50 PN 16
VM4 2-way shut-off valve FIP DN 50 PN 16
VM5 2-way shut-off valve FIP DN 50 PN 16
VM6 2-way shut-off valve FIP DN 50 PN 16
VM7 2-way shut-off valve FIP DN 50 PN 16

2.2.4. The DT Layer

The third layer consists of:
The Control-Execution Tool—this allows for the connection between the physical

and virtual spaces via sensors, transducers, etc., and it allows for the management and
control of the process plant. An Arduino Mega 2560 hardware platform, which integrates
an ATmega2560 microcontroller, manages the sensors readings. The Arduino platform
controls the solenoid valves VC1 and VC2 to maintain predefined pressure and liquid level
values in the tank.

Simulation and Anomaly Detection Tools—the simulation tool allows the company to
make a digital ejector model. It can work online or offline: in the first case, the inputs come
from the plant sensors, and, in the second case, they are introduced by the user. In the offline
mode, the item virtual representation allows managers to investigate what-if scenarios
without a physical realization, thus avoiding potential risk situations for operators. For
example, the tool can be used to run a new installation in a virtual way to identify risks for
the operators before effectively activating the installation or identifying the risk connected
to a simulated maintenance operation. In the online mode, it obtains measures from sensors
and changes the virtual object parameters value if the asset changes its condition. Thus,
it allows users to compare the data obtained by the simulation system. Sensors detect
conditions for activating warning advice if the discrepancy is greater than the thresholds.
This is the purpose of the anomaly detector.

A detailed analysis of the simulation tool developed in this work has been included in
the Results section.

The Platform of the Cloud Server—the platform captures readings by the plant sensors.
Consequently, a standard architecture of the server is not enough because of the huge
amount acquired by the environment. The same applies to traditional relational databases,
which cannot tolerate an excessive number of simultaneous access requests for reading
and writing. For this reason, the platform is designed specifically for the sensors readings’
acquisition, organizing, and visualization using cloud solutions.

2.2.5. The User Space

The last layer is the User, and it refers to a specific device, human, or system. The
proposed framework offers different types of services:



Energies 2021, 14, 5533 8 of 23

• Using virtual sensor data, energy costs or performance factors, optimization tools can
be stimulated to run a large amount of “what-if” simulations to assess the readiness
or the required adjustments for the considered set. They allow users to optimize
or control system operations during the operation to diminish risk, decrease energy
utilization, and increase the efficiency of the system.

• A cloud service platform connects the DT model to operators by displaying sensor
readings and analyzing results using cloud products. It provides extensive data
analysis, extraction, and value-added services for businesses, such as the activation
of operational instructions for the system management in terms of maintenance
and safety.

• Activation of warning messages. If the ML application foresees risk conditions,
wearable systems can warn operators of anomalies. In addition, corrective measures
can be carried out.

3. Results

The core of the DT framework proposed in this work is the simulation tool of the
ejector. For this reason, this section focuses on explaining what steps have been taken
to develop a supervised simulation model based on machine learning algorithms. The
Glossary Section summarizes and describes the terminologies and abbreviations adopted in
the text. All the realized algorithms have been implemented in a Matlab 2020 environment
for research purposes and in python to be uploaded on a Raspberry device positioned
onboard the ejector.

As mentioned above, it was chosen to opt for a supervised method because we needed
a low-computational-cost tool. The model must easily interface with other Digital Twins of
the plant (pump and tank).

The most-used supervised simulation models are Artificial Neural Networks (ANNs).
In this work, the Swarm Intelligence (SI) algorithms were also tried because operators need
to examine the relationships established among the various variables of the problem and
not only the model result through a “black box”.

The development of both types of algorithms (ANNs and SI) for the simulation models
followed the following steps:

• Preprocessing—this consists of the preparation of the dataset for analysis. The pre-
processing phase incorporates all the steps for the “preparation of the dataset”. The
feature engineering step plays a fundamental role in how the data and the analysis
previously made are used to create new entries within the dataset that allows the use
of the machine learning system with as much information as possible.

• Split Data—it is an analytical step to understand how best to train the machine learning
system. There are two parts to machine learning systems: the first is “training”, which
trains the system. Then, the system is ready to perform what has been learned and
test whether the training performed in the previous phase was successful; this is
conducted through the “score” or “test”.

• Choice of Models and Comparison Method—the training needs input from the theo-
retical model to be used and trained. It is not necessary to choose in advance what the
best model is. It is possible to train more models and choose the best performing one
after the results are obtained.

• Practical Comparison between the Models—the various algorithms are evaluated to
choose the one that performs best in the model designed and developed. In general,
the performance of the model in its generality is evaluated. Thus, the comparison of
the involved algorithms is performed in terms of computational time in the proposed
paper. All models are evaluated concerning the prediction accuracy, referring to the
Variance Inflation Factor (VIF) and other indicators [37].
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3.1. Dataset

The data available collected experimentally represent the operating conditions under
which the plant has worked over the years. In particular, taking into consideration the plant
characteristics, the pressure and flow rate of the motive fluid (see Figures 4 and 5), Pliq and
Qliq, vary from a minimum of 1.9 bar to a maximum of 10.38 bar and from a minimum of
1.44 m3/h to a maximum of 282.39 m3/h. The constraint pressure imposed on the tank,
Pserb, varies from a minimum of 1 bar (atmospheric pressure) to a maximum of 3.8 bar. All
possible ejector configurations are defined concerning the size of the fluid outlet nozzle
diameter, D1, and the diffuser, D2 (from a minimum of 5.2 mm to a maximum of 62 mm).
These parameters have a considerable influence on the determination of the flow rate of
air sucked by the ejector, Qgas, at atmospheric pressure (Pgas = Patm). The pressure inside
the diffuser, Pdiff, varies from a minimum of 0.96 bar to a maximum of 1.96 bar. Table 2
shows an extract of the data collected for the ejector configuration currently mounted on
the system (D1 = 11 mm and D2 = 29 mm).
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nozzle, where the pressure is reduced, and the speed of the motor fluid is increased by the Venturi
effect; and (3) the inlet port of the motive fluid.
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Figure 5. The ejector components analyzed in this work. (a) Shows the mixing chamber, which
allows the mixing and exchange of energy and momentum between motive fluid and sucked fluid;
(b) the diverging diffuser, which slows down the fluid mixture and contributes to a partial pressure
recovery of the fluid current.
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Table 2. Extract of operating data for current ejector configuration (D1 = 11 mm and D2 = 29 mm).

PresLiq (bar) Pdiff (bar) PresSerb (bar) Qliq (m3/h) Qgas (m3/h)

4 1.26 1.3 8.45 11.957
4.5 1.26 1.3 9.29 17.16
5 1.26 1.3 10.09 22.05

5.5 1.26 1.3 10.83 26.63
6 1.26 1.3 11.53 30.89

6.5 1.26 1.3 12.18 34.83
3.5 1.36 1.4 7.56 3.16
4 1.36 1.4 8.45 8.69

4.5 1.36 1.4 9.29 13.90
5 1.36 1.4 10.09 18.79

5.5 1.36 1.4 10.83 23.37
6 1.36 1.4 11.53 27.62

6.5 1.36 1.4 12.18 31.57
4 1.46 1.5 8.45 5.43

To identify the best model to be used for the digital twin realization, the available
dataset has been normalized and divided into two classes: one for the model training and
one for its testing. The same dataset has been used for both the ANN and SI evaluation to
compare them more significantly.

3.2. The ANNs Model

An ANN is a set of artificial neurons that model those in a human brain. Each
connection transmits a signal to the others like areal synapses. The “signal” is a real
number, and the output is computed by functions that reprocess those inputs. A weight
characterizes all neurons and connections and changes as learning progresses, increasing
or decreasing the strength of the signal in the connection under consideration. In addition,
neurons may have a threshold that inferiorly limits the transmitted signal. The learning rate
describes the number of corrective steps that must be taken to fix errors in the observation.
Specifically, a high learning rate shortens the training time with lower final accuracy, while
a lower learning rate takes longer but is characterized by better accuracy. To avoid network
oscillations, the improvements use an adaptive learning rate to increase or decrease as
appropriate. The momentum concept allows the balance between the gradient and the last
change to be weighted so that the weight adjustment depends to some extent on the last
change. In this work, the momentum and batch size parameters have been set to equal 0.9
and 150, respectively. The momentum has been fixed according to [38] since it is considered
to be optimal. For evaluating the other parameters, a systematic trial has been carried out
to evaluate the best configuration. Specifically, the number of network neurons increases
from 1 to 40; the hidden layers range between 1 and 2 (since the dataset is not so complex);
the epochs numbers range from 1 to 1000; and, finally, the learning rate is evaluated to be
0.01, 0.05, and 0.1. The activation function between the various layers is logistic, while the
optimization algorithm used is a gradient descent.

Once the systematic experimentation has been performed, the best configurations are
selected for each adapted learning rate (0.01–0.05–0.1), at 1–10 neurons, 10–20 neurons, and
20–40 neurons. At this stage, the best configuration is defined by evaluating the prediction
accuracy on the test dataset.

Comparing the observed variable with what was obtained from the neural model
with 1 hidden layer and 10 neurons (Figure 6) shows that the interpolation error is con-
tained. The model realized correctly follows the air intake flow rate measured by the
system. In particular, the mean quadratic error (MSE) obtained from the training dataset is
equal to 8.25 × 10−11 (comparable to zero, given the machine error committed using the
Matlab software).
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Figure 6. Comparison of observed and estimated intake air flow rate with NN at 1 hidden level and
10 neurons.

Using then, a percentage of about 15% of the original dataset both to perform a first
testing and model validation, we obtain for the first case an MSE equal to 3.29 × 10−9

and in the second case equal to 1.09 × 10−9. The correlation between the observed and
estimated signal is about 0.9123 (p-value equal to 3.2546 × 10−28 at a significance level set
at 5%). Given the R-value of the Pearson index and considering that the p-value is much
lower than the level of significance, there is a strong correlation.

The multilayer perceptron (MLP) neural network with two hidden levels, the number
of the input and output neurons, activation function, and activation algorithm that are
concerned, retains the same characteristics as the one-level hidden network.

The same considerations of the hidden-layer model can be made for the two-hidden-
layers neural network. Comparing the observed variable with the one obtained by the
neural model (Figure 7) shows how the interpolation error is contained and how the
realized model correctly follows the air intake flow rate measured by the system. In
particular, the mean quadratic error (MSE) obtained from the training dataset is equal to
1.49 × 10−10; therefore, given the machine error committed using the Matlab software, it is
comparable to zero.
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Comparing the results and the performance obtained with one-hidden-layer neural
network model (ten neurons) and two hidden layers shows that the improvements do not
differ. This implies that, with the same dataset, using a more complex network does not
improve the performance of the simpler network.

3.3. The SI Model

Among the bioinspired algorithms, a particular class of algorithms has been developed,
taking inspiration from the intelligence of the swarm. The algorithms in this class are
swarm intelligence, also called Si-based. In particular, the SI techniques aim to determine
the optimal solution of a given problem, exploiting the global behavior of a “swarm” of
homogeneous agents. While each agent can be considered “non-intelligent”, the whole
system of several agents shows a self-organizing behavior guaranteeing a sort of collective
intelligence. Each agent shares information and experiences, managing, in this way, to solve
even very complex tasks. The Swarm Intelligence group is vast and includes procedures
that take into consideration the collective behavior of insects, such as ants, bees, and fireflies,
and other animals such as flocks of birds, shoals of fish, and wolves. The main algorithms
belonging to this class are Particle Swarm Optimization (PSO), Artificial Bee Colony
algorithm (ABC), and Ant Colony Optimization (ACO). These are agent-based optimization
techniques specific to problems in which the objective function can be decomposed into
independent partial functions. Each agent maintains a hypothesis that is tested iteratively
by evaluating a randomly chosen partial objective function.

In this study, eight SI algorithms were tested to identify the ejector model, and several
functions were implemented concerning the parameters. Figure 8 briefly describes the
general framework used by SI algorithms.
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The user defines the swarm population size (nPop) and the maximum iterations
number (MaxIt) at the initial step. At this point, for each swarm member, an initial position
and its relative positional cost are defined according to a specific function decided by the
user. In this paper, the Root Mean Squared Error was chosen since it describes the data
concentration around the best fit line.

The position with the minimum cost value is assumed to be the temporary best
solution. The iterative phase starts until the maximum number of iterations is reached, or
the error between the solutions of two consecutive iterations is equal to a fixed threshold.
According to the specific SI algorithm adopted, each position is corrected with respect to
the best one during this phase. Specifically, it is possible to refer to Table 3 to analyze how
each algorithm defines the new position for each swarm member.

Table 3. References for a detailed study.

Algorithm Reference Algorithm Reference

Chicken Swarm [39] Particle Swarm Algorithm [40]
Bat Algorithm [41] Artificial Bee Colony [42]
Cuckoo Search [43] Firefly Algorithm [44]

Grey Wolf Optimizer [45] Artificial Fish-Swarm Algorithm [46]
Ant Colony Optimization [47] Krillheard [48]

Table 4 shows an extract of the analyzed scenarios (experiment number, intercept
present or not, function type, population size, and maximum iteration number). Table A1,
in Appendix A, shows all the functions, f, considered in the scenarios analysis.

Table 4. Extract of the analyzed scenarios (n—experiment number, C—intercept present or not,
f —function type, nP—population size, and MI—maximum iteration number).

n C f nP MI n C f nP MI n C f nP MI

1 0 1 30 30 49 0 1 30 60 97 0 1 30 90
2 1 1 30 30 50 1 1 30 60 98 1 1 30 90
3 0 2 30 30 51 0 2 30 60 99 0 2 30 90
4 1 2 30 30 52 1 2 30 60 100 1 2 30 90
5 0 3 30 30 53 0 3 30 60 101 0 3 30 90
6 1 3 30 30 54 1 3 30 60 102 1 3 30 90
7 0 4 30 30 55 0 4 30 60 103 0 4 30 90
8 1 4 30 30 56 1 4 30 60 104 1 4 30 90

. . . . . . . . .

The essential parameters for using the SI algorithms and the regression function are
the number of maximum iterations to perform (MaxIt) and the agents number to use for
the solution determination (nPop). Specifically, several simulations were carried out to
test the various algorithms examined, each of which considers a particular function, a
value of iterations between 30 and 90, and, finally, a swarm size between 30 and 90, for
144 simulative scenarios.

The different scenarios aim to identify the best parametric combination so that the
solution is the best possible in terms of error for the observed signal but at the same time
involves an acceptable computational effort and is evaluated in terms of calculation time.

In particular, the choice of the agents number in the swarm and the iterations number
is fundamental to the computational balance since the total iterations number up to the end
of the algorithm is equal to (nPop × MaxIt). The demonstration of the above is reported,
although only in some cases, in Table 5.
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Table 5. Extract of scenario results for a set of algorithms used (nP—population size, MI—maximum
iteration number, and R2a—R2 adjusted).

Alg nP MI R2a VIF Time [s] Alg nP MI R2a VIF Time [s]

GW 30 30 0.87 7.91 2.66 BC 30 30 0.88 8.29 5.07
GW 60 30 0.87 8.14 5.39 BC 60 30 0.86 7.33 9.96
GW 90 30 0.02 1.05 7.84 BC 90 30 0.03 1.07 15.13
GW 30 60 0.17 1.24 5.39 BC 30 60 0.21 1.30 10.44
GW 60 60 0.15 1.21 10.61 BC 60 60 0.17 1.24 20.67
GW 90 60 0.02 1.05 17.36 BC 90 60 −1.66 0.39 33.04
GW 30 90 0.33 1.53 8.97 BC 30 90 0.34 1.56 16.98
GW 60 90 0.46 1.92 17.55 BC 60 90 0.44 1.84 33.19
GW 90 90 0.32 1.51 26.70 BC 90 90 −9.24 0.10 50.04
BaC 30 30 0.02 1.05 2.67 PS 30 30 0.86 7.56 2.70
BaC 60 30 0.14 1.19 5.26 PS 60 30 0.87 8.15 5.37
BaC 90 30 −0.03 1.00 7.84 PS 90 30 0.05 1.08 7.97
BaC 30 60 −0.06 0.97 5.44 PS 30 60 0.20 1.28 5.47
BaC 60 60 0.17 1.24 10.67 PS 60 60 −0.15 0.89 10.89
BaC 90 60 0.08 1.12 17.70 PS 90 60 0.11 1.15 18.15
BaC 30 90 −0.03 1.00 9.03 PS 30 90 0.38 1.66 9.08
BaC 60 90 −0.03 1.00 17.83 PS 60 90 0.53 2.19 18.13
BaC 90 90 −49.68 0.02 26.68 PS 90 90 −0.39 0.74 27.12

It is evident that as the combination of swarm size and the maximum number of
iterations increase, the reliability of all the algorithms decreases enormously until the
algorithm in question cannot be used. An example is the Bat Colony that is computationally
expensive and without a positive effect on the system. The values are obtained considering
the averages of the parameters for all sixteen functions considered.

By limiting the analysis to only good computational and estimation accuracy algo-
rithms, Table 6 shows the models with high correlation and solution validity (Variance
Inflation Factor (VIF) is more significant than 5), which all correspond to the linear model
with zero intercept.

Table 6. Comparison of swarm intelligence algorithms analyzed in terms of VIF and computational
time for linear bonding.

VIF Time [s]

Mean STD Dev Tot Rel Mean STD Dev Tot Rel

Grey Wolf 8.03 0.12 1.47% 10.49 6.41 61.16%
Fish Colony 8.01 0.16 1.97% 46.66 33.26 71.30%
Water Cycle 7.51 0.63 8.41% 10.39 6.33 60.89%

Chicken Swarm 7.85 0.25 3.13% 10.50 6.40 60.98%
Particle Swarm 7.85 0.30 3.79% 10.70 6.56 61.32%

Bee Colony 7.81 0.49 6.26% 19.91 12.12 60.85%

Comparing VIF and Time composition for the considered algorithms, the best esti-
mating algorithm for the realization of the digital ejector twin through SI algorithms is the
Grey Wolf with a swarm size equal to 60 and the number of maximum iterations equal
to 60 (the mathematical model reported in Equation (1)). Regardless, Relative Standard
Deviation (RSD) analysis highlights how the SI algorithms are affected considerably by the
set of parameters since the high values referred to each algorithm [49].

An example of the fitting is shown in Figure 9. It shows a mean absolute error equal
to 0.4 m3/h and a standard deviation equal to 0.5 m3/h for an adjusted R2 value equal to
0.998 and a p-value close to 0, considering an alpha of 0.05.

Q∗
gas = −0.60·Pliq − 0.87·Pserb + 1.75·Qliq (1)
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3.4. Model Selection

Several tests have been performed to evaluate the optimal model to be implemented as
Digital Twins of the ejector, and some are summarized in Table 7. Specifically, they concern
possible operating situations of the plant in question considering the current configuration,
i.e., with D1 = 11 mm and D2 = 29 mm.

Table 7. Excerpt of tests performed for performance evaluation.

Pliq (bar) Pdiff (bar) Pserb (bar) Qliq (m3/h) Qgas (m3/h)

Test 1 6.30 1.46 1.50 11.92 26.77
Test 2 4.00 1.26 1.30 8.45 11.95
Test 3 5.00 1.66 1.70 10.09 9.01
Test 4 6.50 1.76 1.80 12.18 18.52

Figure 10 shows the comparisons between the airflow rate measured on the system
and those estimated using the neural network at a hidden level and ten neurons and the
Grey Wolf model. Both the neural network and the SI model correctly follow the real
one, despite the oscillations it shows. In any case, the neural network constantly shows a
significant deviation from the actual value.
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Tests 1 and 2 show an overestimation of the actual value, while tests 3 and 4 show an
underestimation. By contrast, the model realized through swarm intelligence algorithms
presents a behavior constantly superimposed on the real one and much more stable than
the neural model.

Table 8 and Figure 11 show how the variability of the estimation error obtained with
the neural network presents a minor variability but a very high average estimation error.
The average error ranged from a minimum of about 0.42 m3/h to a maximum of 1.33 m3/h
on all the tests considered. The standard deviations of the error, when related to the relative
mean value, show very low relative standard deviations. By contrast, the variability of
the estimation error obtained with the Grey Wolf algorithm has a higher variability but a
deficient average estimation error. The average error ranged from a minimum of about
0.38 m3/h to a maximum of 0.57 m3/h on all tests considered. The standard deviations of
the errors, when related to the relative mean value (Relative Standard Deviation), show
very high, albeit minor, relative standard deviations.

Table 8. Summary of the responses of the neural network models and Grey Wolf for the analyzed tests.

MEAN STD DEV RSD

Test 1

Observed 26.74 0.12 0.45%

NN
Estimate 27.37 0.11 0.40%

Error 0.63 0.19 29.84%

SI
Estimate 26.71 0.08 0.28%

Error 0.06 0.05 84.41%

Test 2

Observed 11.92 0.12 1.04%

NN
Estimate 13.25 0.14 1.04%

Error 1.33 0.21 15.44%

SI
Estimate 11.90 0.10 0.83%

Error 0.07 0.06 77.39%

Test 3

Observed 8.97 0.15 1.62%

NN
Estimate 7.87 0.14 1.74%

Error 1.10 0.16 14.85%

SI
Estimate 8.98 0.11 1.17%

Error 0.08 0.06 74.98%

Test 4

Observed 18.51 0.14 0.74%

NN
Estimate 18.12 0.03 0.19%

Error 0.39 0.13 33.40%

SI
Estimate 18.49 0.09 0.49%

Error 0.08 0.05 67.42%

Following these experiments and considering the need to realize a light computational
application, between ANN and the one through Swarm Intelligence, the second one was
chosen to realize the Digital Twin of the ejector present in the plant. The demonstration is
summarized in Table 9 and Figure 12.

The t-test returns an evaluation on the null hypothesis that the estimated data origi-
nated from a Gaussian distribution with a zero mean and unknown variance. The alterna-
tive hypothesis is that the distribution has no null mean. The H0 result, in Table 9, is 1, if
the test rejects the null hypothesis at the 5% (or 10%) significance level and 0 otherwise. The
value p is the probability of observing a more extreme test statistic than the value observed
under the null hypothesis. Small values of p question the validity of the null hypothesis,
and, in particular, for all tests obtained with ANN, the null hypothesis is rejected (H0 = 1),
and the p-value is close to zero. The Pearson test computes the correlation coefficients
and p-values of a normally distributed variable. Table 9 shows in the Pearson section the
correlation coefficient R and the relative p-values for testing the null hypothesis. Moreover,
Rl and Ru identify the lower and upper bounds for a (1-α) confidence interval.
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Table 9. Statistical summary of fitting and comparisons procedure (p-v—p value, T-v—T value,
Rl—Person index lower bound, and Ru—Person index upper bound).

α = 0.05
T Test Pearson

H0 p-v CI T-v SD DF R p-v Rl Ru

T1
NN 1 4.6 × 10−8 0.41 0.85 5.7 192 0.11 −0.31 9.6 × 10−6 −0.43 −0.17
SI 0 0.92 −0.16 0.14 −0.1 192 0.075 0.77 1.2 × 10−40 0.71 0.82

T2
NN 1 3.7 × 10−18 1.1 1.6 9.6 192 0.13 −0.23 0.001 −0.36 −0.096
SI 0 0.84 −0.22 0.17 −0.21 192 0.098 0.67 3.5 × 10−27 0.59 0.74

T3
NN 1 9.9 × 10−14 −1.4 −0.83 −8.0 192 0.13 0.33 2.4 × 10−6 0.2 0.45
SI 0 0.91 −0.19 0.22 0.11 192 0.1 0.74 2.7 × 10−35 0.67 0.8

T4
NN 1 2.1 × 10−23 −0.45 −0.32 −0.11 192 0.034 0.33 1.8 × 10−6 0.2 0.45
SI 0 0.89 −0.19 0.17 −0.14 192 0.091 0.73 8.5 × 10−34 0.66 0.79

α = 0.1
T Test Pearson

H0 p-v CI T-v SD DF R p-v Rl Ru

T1
NN 1 4.6 × 10−8 0.44 0.81 5.6 192 0.11 −0.31 9.68 × 10−6 −0.42 −0.20
SI 0 0.91 −1.3 0.11 −0.1 192 0.075 0.78 1.29 × 10−4 0.73 0.82

T2
NN 1 3.6 × 10−18 1.1 1.5 9.6 192 0.13 −0.24 1.01 × 10−3 −0.34 −0.12
SI 0 0.83 −018 0.14 −0.2 192 0.098 0.68 3.51 × 10−27 0.61 0.74

T3
NN 1 9.9 × 10−14 −1.3 −0.87 −8 192 0.13 0.33 2.46 × 10−6 0.22 0.43
SI 0 0.91 −0.16 0.18 0.11 192 0.1 0.74 2.77 × 10−35 0.69 0.79

T4
NN 1 2.1 × 10−23 −0.44 −0.32 11 192 0.03 0.34 1.81 × 10−6 0.23 0.44
SI 0 0.88 −0.16 0.13 −0.14 192 0.09 0.73 8.52 × 10−34 0.67 0.78

The smaller p-values related to SI interpolations than NN underline how the SI
algorithms perform a better estimation than the artificial neural network. Indeed, by
analyzing Figure 12, it is possible to see how the relationship between the actual inlet air
flow rate and the esteemed one is quite linear.

The realized estimator was connected to the actual plant, and the working conditions,
not used for the estimation phase, were tested to validate the obtained estimator. Figure 13
compares the actual airflow rate (blue line) and the esteemed one (red line) considering the
inlet water flow rate (Qliq) to be equal to about 10 m3/h at a pressure (PresLiq) equal to
about 5.5 bar and the internal tank pressure (PresSerb) equal to 1.5 bar.
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The actual mean value for the inlet air flow rate (Qgas) is about 13.9 m3/h with a
standard deviation equal to 0.22 m3/h; conversely, concerning the esteemed variable Q*gas,
its mean value is equal to 14.12 m3/h, and standard deviation is equal to 0.04 m3/h.

Always considering the working conditions explained before, at cycle 142 for 500 cy-
cles, the valve VM7 (see Figure 3) was opened to simulate a tank loss of pressure. The VM7
total opening implies a value of pressure inside the tank approximately equal to that of
the atmosphere. In the absence of a pressure constraint, the actual inlet air flow rate is
more significant than 13.9 m3/h, the value identified in the regime condition. By analyzing
Figure 14, this increase is evident both for the actual value (blue line) and the esteemed one
(red line).
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Figures 13 and 14 show a reasonable estimation of the inlet air flow rate with an esti-
mation error close to 3% that can be considered suitable since the numerical approximation
is due to the adopted algorithms and the noise introduced by the sensors. The research
has highlighted the necessity of revamping some old sensors with a high noise level on
the readings.
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4. Discussion and Conclusions

This paper proposes a reference model for implementing a Digital Twin of an ejector
system operating with multiphase flows to analyze and predict the system performance.

The model encompasses all the critical phases of Digital Twin design and implemen-
tation. It starts with the analysis of the existing system. It ends by developing a helpful
platform for researchers and technicians to provide a means to simulate and investigate
scenarios that are otherwise too costly to explore. Moreover, the realization of a Digital
Twin of the ejector aims at allowing the operators to have real-time control of the suction
and motive fluids mixture performance.

The DT platform must be lean and easy to use. It must allow for the integrated
management of all installation components and the prediction of the ejector performance.
It involves implementing digital components that can be integrated without excessive
computational effort so that the platform can be used by many users and on many different
devices simultaneously. For this reason, a machine learning supervised model is necessary.
Artificial Neural Networks and Swarm Intelligence algorithms were compared to identify
the best one. Artificial Neural Networks were identified as the most used tool for the
multiphase flow ejector, but, at the same time, no applications of Swarm Intelligence
algorithms were identified for the same purpose. Swarm Intelligence algorithms were
analyzed since they allow operators to examine the relationships established among the
various variables of the problem in every individual stage of elaboration. Moreover,
they require low computational complexity and low need for computational resources to
minimize system latency.

Swarm Intelligence algorithms were identified as the best-performing ones for predic-
tion error and computational effort by comparing the results. In particular, the Grey Wolf
optimizer proved to be the best one among those used. The ease of implementation and
use of the approach based on SI algorithms guarantees the possibility to realize the Digital
Twin without problems. Moreover, its computational lightness allows for the improvement
of the model continuously and almost instantaneously after new acquisitions.



Energies 2021, 14, 5533 20 of 23

During the test in the lab, it was possible to highlight the advantages and disadvan-
tages of the use of the two methodologies.

Thanks to their structure, ANNs can work in parallel to process a lot of data while, in
traditional calculators, each datum is processed individually and in succession. However,
if some system units were to malfunction, the whole network would have performance
reductions but would hardly meet with a blockage. Likewise, for SI algorithms, multiple
agent systems can be easily parallelized so that large-scale optimization becomes more
practical and faster from the implementation point of view. This property defines the
ability of agents to perform a multitude of actions in different locations at the same time.
It is fundamental, as it allows for the development of more flexible systems capable of
self-organizing into groups that simultaneously consider different aspects of a particular
problem. The multilayer perceptron has a nonconvex loss function in the presence of
multiple local minima, highlighting how, in these cases, different random initializations
of the weights can lead to different validation accuracies. Furthermore, the multilayer
perceptron is related to numerous hyperparameters (the number of hidden neurons, layers,
and iterations) and is sensitive to scaling characteristics.

By contrast, the search for an optimal solution in Swarm Intelligence does not rely on
derived functions but on different social interaction mechanisms between artificial individuals.

Among the disadvantages of swarm intelligence, it is possible to mention premature
convergence. Some types of SI (such as PSO) usually suffer from premature convergence
when multiple optimization problems occur. The basis of this problem is that the particles
converge at a single point, which is on the line between the best global positions and the
best personal positions. In this way, the chances of being trapped in the local minimum
are significantly reduced. The second disadvantage of SI algorithms is related to their
sensitivity to the setting of various parameters. For example, increasing the value of inertia
weight, w (in the PSO), increases the particle velocity resulting in increased exploration
(global research) and lower concentration (local research) and vice versa. Setting parameters
is therefore not an easy task and varies from problem to problem.

In this context, further research should focus on developing less sensitive approaches
to the data provided with the same reliability as the results obtained.
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Glossary

Acronym Description Acronym Description

PresLiq Pressure of inlet water flow Pdiff Diffuser pressure

PresSerb Internal tank pressure Qliq Inlet water flow rate

Qgas Actual inlet air flow rate Q*gas Esteemed inlet air flow rate

Pgas Pressure of inlet airflow Patm Atmospheric pressure

D1 D2

nPop Number of agents for GWO MaxIter Maximum number of iterations for GWO

n Simulation number (*) C Bool value to identify the use of intercept (*)

f Type of function (*) nP Number of agents for GWO (*)

NN Neural network SI Swarm intelligence

T1 Test 1 (*) T2 Test 2 (*)

T3 Test 3 (*) T4 Test 4 (*)

MI Maximum number of iteration for GWO (*) MEAN Mean value

STD DEV Standard deviation RSD Relative standard deviation

α Significance level H0 Null hypothesis

p-v p-value (*) T-v T-value (*)

CI Confidence interval (*) SD Standard deviation (*)

DF Degree of freedom (*) R Pearson indicator

Rl Person indicator lover bound (*) Ru Pearson indicator upper bound (*)

(*) These symbols have been adopted to improve the readability of the tables.

Appendix A. List of Function

Table A1. List of functions used to determine the simulated ejector model.

Function f(x) Intercept Description

Linear 1 false b1 ∗ x1 + b2 ∗ x2 + b3 ∗ x3 + b4 ∗ x4

Linear 1 true b1 + b2 ∗ x1 + b3 ∗ x2 + b4 ∗ x3 + b5 ∗ x4

Simple quadratic 2 false b1 ∗ x2
1 + b2 ∗ x2

2 + b3 ∗ x2
3 + b4 ∗ x2

4

Simple quadratic 2 true b1 + b2 ∗ x2
1 + b3 ∗ x2

2 + b4 ∗ x2
3 + b5 ∗ x2

4

Structured quadratic 3 false b1 ∗ x2
1 + b2 ∗ x2

2 + b3 ∗ x2
3 + b4 ∗ x2

4 + b5 ∗ x1 ∗ x2 + b6 ∗ x1 ∗ x3 + b7 ∗ x2 ∗ x3 + b8 ∗ x1 ∗ x4 +
b9 ∗ x2 ∗ x4 + b10 ∗ x3 ∗ x4

Structured quadratic 3 true b1 + b2 ∗ x2
1 + b3 ∗ x2

2 + b4 ∗ x2
3 + b5 ∗ x2

4 + b6 ∗ x1 ∗ x2 + b7 ∗ x1 ∗ x3 + b8 ∗ x2 ∗ x3+
b9 ∗ x1 ∗ x4 + b10 ∗ x2 ∗ x4 + b11 ∗ x3 ∗ x4

Simple cubic 4 false b1 ∗ x3
1 + b2 ∗ x3

2 + b3 ∗ x3
3 + b4 ∗ x3

4

Simple cubic 4 true b1 ∗ 1 + b2 ∗ x3
1 + b3 ∗ x3

2 + b4 ∗ x3
3 + b5 ∗ x43

Structured cubic 5 false

b1 ∗ x3
1 + b2 ∗ x3

2 + b3 ∗ x3
3 + b4 ∗ x3

4 + b5 ∗ x2
1 ∗ x2 + b6 ∗ x1 ∗ x2

2 + b7 ∗ x2
1 ∗ x3+

b8 ∗ x1 ∗ x2 ∗ x3 + b9 ∗ x2
2∗x3 + b10 ∗ x1 ∗ x2

3 + b11 ∗ x2 ∗ x2
3 + b12 ∗ x2

1 ∗ x4 + b13 ∗ x1 ∗ x2 ∗ x4+

b14 ∗ x2
2∗x4 + b15 ∗ x1 ∗ x3 ∗ x4 + b16 ∗ x2 ∗ x3 ∗ x4 + b17 ∗ x2

3 ∗ x4 + b18 ∗ x1 ∗ x2
4+

b19 ∗ x2 ∗ x2
4 + b20 ∗ x3 ∗ x2

4

Structured cubic 5 true

b1 ∗ x3
1 + b2 ∗ x3

2 + b3 ∗ x3
3 + b4 ∗ x3

4 + b5 ∗ x2
1 ∗ x2 + b6 ∗ x1 ∗ x2

2 + b7 ∗ x2
1 ∗ x3+

b8∗x1 ∗ x2 ∗ x3 + b9 ∗ x2
2 ∗ x3 + b10 ∗ x1 ∗ x2

3 + b11 ∗ x2 ∗ x2
3 + b12 ∗ x2

1 ∗ x4 + b13 ∗ x1 ∗ x2 ∗ x4+

b14 ∗ x2
2∗x4 + b15 ∗ x1 ∗ x3 ∗ x4 + b16 ∗ x2 ∗ x3 ∗ x4 + b17 ∗ x2

3 ∗ x4 + b18 ∗ x1 ∗ x2
4+

b19 ∗ x2 ∗ x2
4 + b20 ∗ x3 ∗ x2

4 + b21

Logarithmic 6 false b5 ∗ exp(b1 ∗ x1 + b2 ∗ x2 + b3 ∗ x3 + b4 ∗ x4)

Logarithmic 6 true b6 + b5 ∗ exp(b1 ∗ x1 + b2 ∗ x2 + b3 ∗ x3 + b4 ∗ x4)

Exponential 7 false b1 ∗ log(x1) + b2 ∗ log(x2) + b3 ∗ log(x3) + b4 ∗ log(x4)

Exponential 7 true b1 ∗ 1 + b2 ∗ log(x1) + b3 ∗ log(x2) + b4 ∗ log(x3) + b5 ∗ log(x4)

Power 8 false xb1
1 + xb2

2 + xb3
3 + xb4

4

Power 8 true b1 + xb2
1 + xb3

2 + xb4
3 + xb5

4
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5. Ryoo, S.; Rahmani, A.R.; Yoon, K.Y.; Prodanović, M.; Kotsmar, C.; Milner, T.E.; Johnston, K.P.; Bryant, S.L.; Huh, C. Theoretical

and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous media. J. Pet.
Sci. Eng. 2012, 81, 129–144. [CrossRef]

6. Narimani, E.; Sorin, M.; Micheau, P.; Nesreddine, H. Dynamic modeling of an R245fa ejector based refrigeration system. Int. J.
Refrig. 2019, 107, 262–274. [CrossRef]

7. Galanis, N.; Sorin, M. Ejector design and performance prediction. Int. J. Therm. Sci. 2016, 104, 315–329. [CrossRef]
8. Kim, M.I.; Kim, O.S.; Lee, D.H.; Kim, S.D. Numerical and experimental investigations of gas–liquid dispersion in an ejector. Chem.

Eng. Sci. 2007, 62, 7133–7139. [CrossRef]
9. Li, C.; Li, Y. Investigation of entrainment behavior and characteristics of gas–liquid ejectors based on CFD simulation. Chem. Eng.

Sci. 2011, 66, 405–416. [CrossRef]
10. Zheng, P.; Li, B.; Qin, J. CFD simulation of two-phase ejector performance influenced by different operation conditions. Energy

2018, 155, 1129–1145. [CrossRef]
11. Mazzelli, F.; Giacomelli, F.; Milazzo, A. CFD modeling of condensing steam ejectors: Comparison with an experimental test-case.

Int. J. Therm. Sci. 2018, 127, 7–18. [CrossRef]
12. Zhu, Y.; Cai, W.; Wen, C.; Li, Y. Shock circle model for ejector performance evaluation. Energy Convers. Manag. 2007, 48, 2533–2541.

[CrossRef]
13. Schluse, M.; Rossmann, J. From simulation to experimentable digital twins: Simulation-based development and operation of

complex technical systems. In Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE), Edinburgh,
UK, 3–5 October 2016; pp. 1–6. [CrossRef]

14. Weyer, S.; Meyer, T.; Ohmer, M.; Gorecky, D.; Zühlke, D. Future Modeling and Simulation of CPS-based Factories: An Example
from the Automotive Industry. IFAC-PapersOnLine 2016, 49, 97–102. [CrossRef]

15. Schluse, M.; Priggemeyer, M.; Atorf, L.; Rossmann, J. Experimentable Digital Twins—Streamlining Simulation-Based Systems
Engineering for Industry 4.0. IEEE Trans. Ind. Inform. 2018, 14, 1722–1731. [CrossRef]

16. Seman, L.O.; Miyatake, L.K.; Camponogara, E.; Giuliani, C.; Vieira, B.F. Derivative-free parameter tuning for a well multiphase
flow simulator. J. Pet. Sci. Eng. 2020, 192, 107288. [CrossRef]

17. Kanin, E.; Osiptsov, A.; Vainshtein, A.; Burnaev, E. A predictive model for steady-state multiphase pipe flow: Machine learning
on lab data. J. Pet. Sci. Eng. 2019, 180, 727–746. [CrossRef]

18. Zhu, Y.; Jiang, P. Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance.
Int. J. Refrig. 2014, 40, 31–42. [CrossRef]

19. Allouche, Y.; Bouden, C.; Varga, S. A CFD analysis of the flow structure inside a steam ejector to identify the suitable experimental
operating conditions for a solar-driven refrigeration system. Int. J. Refrig. 2013, 39, 186–195. [CrossRef]

20. Li, F.; Tian, Q.; Wu, C.; Wang, X.; Lee, J.-M. Ejector performance prediction at critical and subcritical operational modes. Appl.
Therm. Eng. 2017, 115, 444–454. [CrossRef]

21. Wu, Y.; Zhao, H.; Zhang, C.; Wang, L.; Han, J. Optimization analysis of structure parameters of steam ejector based on CFD and
orthogonal test. Energy 2018, 151, 79–93. [CrossRef]

22. Farmani, Z.; Azin, R.; Fatehi, R.; Escrochi, M. Analysis of Pre-Darcy flow for different liquids and gases. J. Pet. Sci. Eng. 2018, 168,
17–31. [CrossRef]

23. Fu, W.; Li, Y.; Liu, Z.; Wu, H.; Wu, T. Numerical study for the influences of primary nozzle on steam ejector performance. Appl.
Therm. Eng. 2016, 106, 1148–1156. [CrossRef]

24. Quiroz-Pérez, E.; Vázquez-Román, R.; Lesso-Arroyo, R.; Barragán-Hernández, V.M. An approach to evaluate Venturi-device
effects on gas wells production. J. Pet. Sci. Eng. 2014, 116, 8–18. [CrossRef]

25. Nasseh, S.; Mohebbi, A.; Jeirani, Z.; Sarrafi, A. Predicting pressure drop in venturi scrubbers with artificial neural networks. J.
Hazard. Mater. 2007, 143, 144–149. [CrossRef] [PubMed]

26. Shippen, M.E.; Scott, S.L. A Neural Networkmodel for Prediction of Liquid Holdup in Two-Phase Horizontal Flow. In Proceedings
of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 September–2 October 2002. [CrossRef]

27. Osman, E.-S.A. Artificial Neural Network Models for Identifying Flow Regimes and Predicting Liquid Holdup in Horizontal
Multiphase Flow. SPE Prod. Facil. 2004, 19, 33–40. [CrossRef]

http://doi.org/10.1109/icpads.2017.00098
http://doi.org/10.1145/2973750.2973759
http://doi.org/10.1109/taeece.2015.7113614
http://doi.org/10.1109/MPRV.2006.89
http://doi.org/10.1016/j.petrol.2011.11.008
http://doi.org/10.1016/j.ijrefrig.2019.08.013
http://doi.org/10.1016/j.ijthermalsci.2015.12.022
http://doi.org/10.1016/j.ces.2007.08.020
http://doi.org/10.1016/j.ces.2010.10.041
http://doi.org/10.1016/j.energy.2018.04.066
http://doi.org/10.1016/j.ijthermalsci.2018.01.012
http://doi.org/10.1016/j.enconman.2007.03.024
http://doi.org/10.1109/syseng.2016.7753162
http://doi.org/10.1016/j.ifacol.2016.12.168
http://doi.org/10.1109/TII.2018.2804917
http://doi.org/10.1016/j.petrol.2020.107288
http://doi.org/10.1016/j.petrol.2019.05.055
http://doi.org/10.1016/j.ijrefrig.2013.11.008
http://doi.org/10.1016/j.ijrefrig.2013.07.027
http://doi.org/10.1016/j.applthermaleng.2016.12.116
http://doi.org/10.1016/j.energy.2018.03.041
http://doi.org/10.1016/j.petrol.2018.05.004
http://doi.org/10.1016/j.applthermaleng.2016.06.111
http://doi.org/10.1016/j.petrol.2014.03.002
http://doi.org/10.1016/j.jhazmat.2006.09.005
http://www.ncbi.nlm.nih.gov/pubmed/17030418
http://doi.org/10.2118/77499-ms
http://doi.org/10.2118/86910-PA


Energies 2021, 14, 5533 23 of 23
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