Performance Optimizations of the Transcritical CO2 Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler
Abstract
:1. Instruction
2. Descriptions of the Refrigeration System Model
2.1. RSF1
2.2. RSF2
3. Thermodynamic Model
3.1. Energy Analysis
3.2. Exergy Analysis
4. Results and Discussion
4.1. Performance Impacts of Different and on Transcritical CO2 Two-Stage Compression Refrigeration Systems
4.2. Performance Impacts of the Auxiliary Gas Cooler on Transcritical CO2 Two-Stage Compression Refrigeration Systems
4.3. Performance Optimization of the Transcritical CO2 Two-Stage Compression Refrigeration System during Ambient Temperature Changes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
COP | coefficient of performance |
exergy destruction (kW) | |
e | specific exergy (kJ/kg) |
h | specific enthalpy (kJ/kg) |
m | mass flow rate (kg/s) |
P | pressure (atm, MPa) |
pressure at the outlet of gas cooler | |
total cooling load (kW) | |
heat exchange (kW) | |
q | cooling capacity per mass (kJ/kg) |
compression ratio | |
RSF1 | transcritical CO2 two-stage compression refrigeration system with an auxiliary gas cooler |
RSF2 | transcritical CO2 two-stage compression refrigeration system without any auxiliary gas cooler |
s | specific entropy (kJ/(kgK)) |
T | temperature (, K) |
temperature at the outlet of auxiliary gas cooler | |
condensation temperature () | |
evaporation temperature () | |
temperature at the outlet of gas cooler | |
compression power (kW) | |
W | power (kW) |
isentropic efficiency of compressor | |
exergy efficiency | |
Subscripts | |
1, 2, 2′, 3, 4, 5, 6, 7, 8, 9 state point | |
0 | reference state condition |
act | actual |
agc | auxiliary gas cooler |
b | boundary |
eev1 | electronic expansion valve 1 |
eev2 | electronic expansion valve 2 |
evap | evaporator |
gc | gas cooler |
HPS | high-pressure stage |
i | any state point |
in | Inlet |
inter | intercooler |
LPS | low-pressure stage |
out | outlet |
theo | theory |
tot | total |
difference |
References
- Ehsan, G.; Pedram, H.; Pouria, A. Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Appl. Therm. Eng. 2018, 137, 689–699. [Google Scholar]
- Sebastian, E.; Fabian, D.; Johannes, K.; Christoph, W.; Hartmut, S. Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa. Appl. Energy 2019, 240, 946–963. [Google Scholar]
- Kashif, N.; Ally, M.R. Options for low-global-warming-potential and natural refrigerants Part 2: Performance of refrigerants and systemic irreversibilities. Int. J. Refrig. 2019, 106, 213–224. [Google Scholar]
- Skacanová, K.Z.; Battesti, M. Global market and policy trends for CO2 in refrigeration. Int. J. Refrig. 2019, 107, 98–104. [Google Scholar] [CrossRef]
- Gabriele, R. Molecular simulation studies on refrigerants past-present-future. Fluid Phase Equilibria 2019, 485, 190–198. [Google Scholar]
- Heath, E.A. Amendment to the Montreal protocol on substances that deplete the ozone layer (Kigali amendment). Int. Leg. Mater. 2017, 56, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, A.; Behzad, N.; Ali, S.; Fabio, R. Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system. Appl. Therm. Eng. 2014, 65, 42–50. [Google Scholar]
- Gullo, P.; Hafner, A.; Banasiak, K. Thermodynamic Performance Investigation of Commercial R744 Booster Refrigeration Plants Based on Advanced Exergy Analysis. Energies 2019, 12, 354. [Google Scholar] [CrossRef] [Green Version]
- Gullo, P. Advanced Thermodynamic Analysis of a Transcritical R744 Booster Refrigerating Unit with Dedicated Mechanical Subcooling. Energies 2018, 11, 3058. [Google Scholar] [CrossRef] [Green Version]
- Hossein, G.; Ighball, B.A. The application of thermoelectric and ejector in a CO2 direct-expansion ground source heat pump; energy and exergy analysis. Energy Convers. Manag. 2020, 226, 113526. [Google Scholar]
- Bai, T.; Yu, J.L.; Yan, G. Advanced exergy analyses of an ejector expansion transcritical CO2 refrigeration system. Energy Convers. Manag. 2016, 126, 850–861. [Google Scholar] [CrossRef]
- Song, Y.L.; Wang, H.D.; Yin, X.; Cao, F. Review of Transcritical CO2 Vapor Compression Technology in Refrigeration and Heat Pump. J. Refrig. 2021, 42, 1–24. [Google Scholar]
- Wang, H.L.; Ma, Y.T.; Tian, J.R.; Li, M.X. Theoretical analysis and experimental research on transcritical CO2 two stage compression cycle with two gas coolers (TSCC+TG) and the cycle with intercooler (TSCC+IC). Energy Convers. Manag. 2011, 52, 2819–2828. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. A comparative study of CO2 refrigeration systems. Energy Convers. Manag. X 2019, X 1, 100002. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. A Theoretical Comparative Study of CO2 Cascade Refrigeration Systems. Appl. Sci. 2019, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Yan, G.; Hu, H.; Yu, J.L. Performance evaluation on an internal auto-cascade refrigeration cycle with mixture refrigerant R290/R600a. Appl. Therm. Eng. 2015, 75, 994–1000. [Google Scholar] [CrossRef]
- Ali, L.T.; Mushtaq, T.H.; Wasan, A.J. Thermal and exergy analysis of optimal performance and refrigerant for an air conditioner split unit under different Iraq climatic conditions. Therm. Sci. Eng. Prog. 2020, 19, 100595. [Google Scholar]
- Luca, C.; Manuel, C.; Marco, C.; Ezio, F.; Silvia, M.; Paolo, S.; Claudio, Z. Thermodynamic analysis of different two-stage transcritical carbon dioxide cycles. Int. J. Refrig. 2009, 32, 1058–1067. [Google Scholar]
- Zhang, Z.Y.; Wang, H.L.; Tian, L.L.; Huang, C.S. Thermodynamic analysis of double-compression flash intercooling transcritical CO2 refrigeration cycle. J. Supercrit. Fluids 2016, 109, 100–108. [Google Scholar] [CrossRef]
- Bruno, Y.K.D.C.; Cláudio, M.; Roberto, H.P. An experimental study on the use of variable capacity two-stage compressors in transcritical carbon dioxide light commercial refrigerating systems. Int. J. Refrig. 2019, 106, 604–615. [Google Scholar]
- Liu, S.C.; Lu, F.P.; Dai, B.M.; Victor, N.; Li, H.L.; Qi, H.F.; Li, J.Y. Performance analysis of two-stage compression transcritical CO2 refrigeration system with R290 mechanical subcooling unit. Energy 2019, 189, 116143. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.R.; Yu, J.L. Theoretical analysis on a novel two-stage compression transcritical CO2 dual-evaporator refrigeration cycle with an ejector. Int. J. Refrig. 2020, 119, 268–275. [Google Scholar] [CrossRef]
- Paride, G. Impact and quantification of various individual thermodynamic improvements for transcritical R744 supermarket refrigeration systems based on advanced exergy analysis. Energy Convers. Manag. 2021, 229, 113684. [Google Scholar]
- Zhang, Y.; Liang, T.Y.; Yang, C.; Zhang, X.L.; Yang, K. Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle. Energy Convers. Manag. 2020, 216, 112938. [Google Scholar] [CrossRef]
- Kumar, R. Computational energy and exergy analysis of R134a, R1234yf, R1234ze and their mixtures in vapour compression system. Ain Shams Eng. J. 2018, 9, 3229–3237. [Google Scholar]
- Sun, J.; Li, W.H.; Cui, B.R. Energy and exergy analyses of R513a as a R134a drop-in replacement in a vapor compression refrigeration system. Int. J. Refrig. 2020, 112, 348–356. [Google Scholar] [CrossRef]
- Xue, W. The Design of a Refrigeration Unit for Marine Reefer Container and its Performance Research. Master’s Thesis, Jimei University, Xiamen, China, 2013. [Google Scholar]
- Li, M.C. Performance of the Radiant Cooling System on the Roof of LNG-fueled Refrigerated Vehicles. Master’s Thesis, Zhongyuan University of Technology, Zhengzhou, China, 2019. [Google Scholar]
- Han, F.F. Simulation research on the cold storage LNG refrigerated truck with multi-temperature zone. Master’s Thesis, North China Electric Power University, Beijing, China, 2018. [Google Scholar]
- Zhao, X.X. Multi-temperature Distribution Optimization and Precise Temperature Regulation of Refrigerated Truck. Master’s Thesis, Shandong University, Jinan, China, 2014. [Google Scholar]
- Guo, Y.G. Research on Temperature Field Distribution of Cold Plate Refrigerated Truck and Effects on Preservation of Vegetables. Master’s Thesis, Tianjin University of Commerce, Tianjin, China, 2014. [Google Scholar]
- Sivakumar, M.; Somasundaram, P. Exergy and energy analysis of three stage auto refrigerating cascade system using Zeotropic mixture for sustainable development. Energy Convers. Manag. 2014, 84, 589–596. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, D.J.; Chen, Z.; Gao, X.; Ren, F.K.; Han, W. Performance Analysis and Evaluation of a Supercritical CO2 Rankine Cycle Coupled with an Absorption Refrigeration Cycle. J. Therm. Sci. 2020, 29, 1036–1052. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; He, Y.N.; Wang, Y.L.; Wu, X.H.; Jia, M.Z.; Gong, Y. Experimental investigation of the performance of an R1270/CO2 cascade refrigerant system. Int. J. Refrig. 2020, 114, 175–180. [Google Scholar] [CrossRef]
- Shen, J. Design of Refrigeration Units; Machinery Industry Press: New York, NY, USA, 2011. [Google Scholar]
- Guo, Y.J.; Xie, J.; Zhu, S.X.; Wang, J.F. Techno-economic analysis of two-staged compression and cascade compression refrigeration system. Chem. Ind. Eng. Process. 2015, 34, 3194–3201. [Google Scholar]
Parameters | Value | Unit |
---|---|---|
1.23 | kW | |
−23 | ||
Superheating in evaporator | 3 | |
Desuperheating in gas cooler | 3 |
COP | Exergy Efficiency | Total Exergy Destruction (kW) | Total Compression Power (kW) | |
---|---|---|---|---|
7.4 | 1.275 | 32.39% | 0.652 | 0.965 |
7.7 | 2.215 | 52.75% | 0.262 | 0.555 |
7.9 | 2.232 | 53.13% | 0.2582 | 0.5510 |
8.0 | 2.233 | 53.15% | 0.2580 | 0.5508 |
8.1 | 2.227 | 53.02% | 0.259 | 0.552 |
8.3 | 2.205 | 52.55% | 0.265 | 0.558 |
8.6 | 2.167 | 51.72% | 0.274 | 0.568 |
Parameter | RSF2 | Reference [14] | Deviation (%) |
---|---|---|---|
COP | 1.986 | 1.959 | 1.38% |
COP | Exergy Efficiency | |
---|---|---|
20 | 2.243 | 50.20% |
25 | 2.202 | 50.33% |
30 | 2.165 | 50.48% |
Maritime Areas/Design Parameter | Maximum Ambient Temperature | Sources of the Data |
---|---|---|
Design parameter | °C | Reference [27] |
Bohai Sea | °C | Standard Q/HS 3008-2016 |
East China Sea | °C | Standard Q/HS 3008-2016 |
Yellow Sea | °C | Standard Q/HS 3008-2016 |
South China Sea | °C | Standard Q/HS 3008-2016 |
Northwest Pacific Ocean | °C | Official website of ECMWF |
South Atlantic Ocean | °C | Official website of ECMWF |
Northwest Atlantic Ocean | °C | Official website of ECMWF |
Indian Ocean | °C | Official website of ECMWF |
Growth Rate of COP | Growth Rate of Exergy Effi-ciency | |
---|---|---|
32 | 0.1679 | 2.84% |
33 | 0.1740 | 2.95% |
35 | 0.1865 | 3.25% |
37 | 0.1990 | 3.56% |
39 | 0.2098 | 3.90% |
41 | 0.2089 | 4.09% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, J.; Xie, J. Performance Optimizations of the Transcritical CO2 Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler. Energies 2021, 14, 5578. https://doi.org/10.3390/en14175578
Sun Y, Wang J, Xie J. Performance Optimizations of the Transcritical CO2 Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler. Energies. 2021; 14(17):5578. https://doi.org/10.3390/en14175578
Chicago/Turabian StyleSun, Yuyao, Jinfeng Wang, and Jing Xie. 2021. "Performance Optimizations of the Transcritical CO2 Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler" Energies 14, no. 17: 5578. https://doi.org/10.3390/en14175578
APA StyleSun, Y., Wang, J., & Xie, J. (2021). Performance Optimizations of the Transcritical CO2 Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler. Energies, 14(17), 5578. https://doi.org/10.3390/en14175578