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Abstract: With the formation of an international carbon-neutral framework, interest in reducing
greenhouse gas emissions is increasing. Ammonia is a carbon-free fuel that can be directly combusted
with the role of an effective hydrogen energy carrier, and its application range is expanding. In
particular, as research results applied to power generation systems such as gas turbines and coal-fired
power plants have been reported, the technology to use them is gradually being advanced. In the
present study, starting with a fundamental combustion research case conducted to use ammonia as a
fuel, the application research case for gas turbines and coal-fired power plants was analyzed. Finally,
we report the results of the ammonia-air burning flame and pulverized coal-ammonia-air co-fired
research conducted at the authors’ research institute.
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1. Introduction

Energy is a driving force for national industrial development and economic growth,
and for the affluent life of people, and its consumption inevitably increases continuously.
Humans have led economic and industrial development by using hydrocarbon-based fossil
fuels such as coal and petroleum, and they are prevalent in developing countries. As the
severity of the climate change problem increased about 150 countries agreed to co-operate
and a climate change agreement was adopted at the Rio Environmental Conference in
June 1992, and the Kyoto Protocol in 1996 to solve the global warming problem in earnest.
This gradually expanded and led to the international treaty of the Paris Agreement in
2015, and governments were advised to submit long-term low greenhouse gas emission
development strategies to the international community by 2020 in accordance with the
Paris Agreement. At the same time, each country had declared that it will achieve carbon
neutrality by 2050 or at the longest by 2060. Most of them set the target for 2050 because
the Intergovernmental Panel on Climate Change (IPCC) suggested to limit the increase in
global average temperature to 1.5 ◦C by 2100. This is because it suggested a path that global
carbon dioxide emissions should be reduced by at least 45% compared to 2010 by 2030,
and that carbon-neutrality should be achieved by 2050. Therefore, in line with the Paris
Agreement’s guidelines, and the goal of limiting the increase in global average temperature
to 1.5 ◦C or less, most countries aim to reduce greenhouse gas emissions from human
activities to the fullest extent; to absorb and remove emitted carbon, and bring the actual
emissions to zero. Achieving carbon neutrality is a very challenging goal; however, the
international community is demanding a higher achievement. Further details on this are
contained in the biennial update reports, and COP26 will be held in the UK to discuss the
latest developments [1]. To realize greenhouse gas reduction through innovation in the face
of tightening environmental regulations, the development and early commercialization of
prospective energy technology and investment to support them are emphasized.

The Netherlands Environmental Assessment Organization estimates that the world
emitted 57.4 Gt CO2eq greenhouse gases in 2019 [2]. Among them, global energy-related
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carbon dioxide (CO2) emissions are 33.4 Gt CO2eq. This amount is also consistent with
that reported by the IEA [3]. The continuous increase of CO2 in the atmosphere is mainly
driven by fossil fuel combustion and calcination of carbonates. The dominant drivers
of CO2 are the combustion of coal, oil, and natural gas, representing 89% of global CO2
emissions, with respective shares of 39%, 31%, and 18%. In particular, the combustion of
fuel in thermal power plants is a major cause of large-scale CO2 generation and accounts
for the dominant proportion of the electricity generation sector. In the field, coal, a solid
fuel, is mainly used in coal-fired power plants, and gaseous fuels such as natural gas are
mainly used in combined cycle power plants, including gas turbines.

The dominance of greenhouse gas emissions from fossil fuel combustion has already
been well demonstrated in existing analysis data, and associated researchers in the fields of
combustion, energy, and the environment are well aware of this fact. Therefore, it is unnec-
essary to say that innovative development of fuel combustion technology is needed to meet
the future carbon-neutral system goals. However, the innovation in energy conversion is
being promoted more rapidly than in the past, and intensive R&D activities are needed to
support this technology. Although global R&D activities to move towards a renewable and
hydrogen society are mainly centered on transportation and fuel cells, there are still many
goals to be achieved for the full-cycle, large-scale practical use of hydrogen production,
transport, supply, and utilization for commercialization. As it has been consistently men-
tioned in the past, it will take a long time as well a huge socio-economic investment for the
government and private sector to establish an infrastructure for the supply of hydrogen.

Therefore, to implement the rapidly changing carbon emission reduction regulations
and fulfill the promises made with the international community, technologies that are
relatively easy to commercialize need to be implemented. Methods for reducing green-
house gases include improving the thermal system efficiency and capturing CO2 through
downstream facilities. However, it would be economical in terms of post-treatment cost if
the combustion stage uses a fuel that does not emit carbon from the source. The cost of
producing a carbon-free fuel and the CO2 footprint must be considered together. Ammonia
(NH3) is expected to be a carbon-free fuel. To realize a carbon-neutral society in 2050,
for example, Japan has presented an action plan for 14 important areas that are expected
to grow in the future as a greenhouse gas reduction industry in terms of growth strate-
gies. In particular, they emphasized that ammonia is an effective fuel when combusted
with pulverized coal in a coal-fired boiler. In addition, R&D was conducted to apply
fuel ammonia to coal-fired power plants, gas turbine combustion, and industrial furnace
combustion through the cross-ministerial strategic innovation promotion program (SIP)
project from 2014 to 2018 [4]. Through this project, the technical feasibility of using fuel
ammonia has been verified, and research is underway with the goal of commercializing
the related technology through the new energy and industrial technology development
organization (NEDO) project, a follow-up task [5]. Because the advantages (carbon-free
fuel) and disadvantages (low reactivity and fuel-NOx production) of using ammonia as
a fuel clearly exist, research has been conducted to overcome these technical bottlenecks
and supply problems, and some of the results linked to demonstrations show the effect of
reducing greenhouse gas emissions [6–9].

Ammonia was first studied as an alternative fuel for internal combustion engines
rather than for reducing greenhouse gas emissions. As available resources became scarce
due to World War II, interest was drawn in fuels other than fossil fuels, and accordingly,
the possibility of using ammonia as a fuel drew attention [10–16]. The technology of using
ammonia as a fuel in automobile internal combustion engines has been used for trucks in
Norway since the 1930s, and was developed in Belgium in 1943 [17]. In the 2000s, there
was a research case of a compression ignition engine to which a mixed combustion system
of ammonia-diesel and ammonia-DME fuel was applied [18,19]. The optimal ammonia
co-firing rate was 60%, and when it was lower than this, the flame temperature decreased
and the amount of NOx produced decreased compared to when only diesel fuel was used.
However, as the ammonia ratio increased, the amount of NOx produced due to nitrogen
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contained in the fuel increased sharply. Currently, research is underway to apply ammonia
to spark-ignition engines [20,21]. In addition, there are quite a lot of research results aimed
at overcoming the challenge of its low reactivity, and most of the results have proposed
to achieve this by blending ammonia with a high-reactivity fuel [22,23]. Regarding the
production of prototype vehicles using ammonia as fuel, in 2007, the University of Michigan
developed an ammonia-gasoline combustion engine and operated it from Detroit to San
Francisco [24]. In 2013, the Korea Institute of Energy Research developed an ammonia-
gasoline engine, called AmVeh, by remodeling a gasoline-LPG fueled engine [25]. Recently,
the development of fuel-powered ships utilizing LNG, hydrogen, and ammonia for low-
carbon emissions has been notable [26,27]. Ammonia-fueled propulsion ship development
plans are being reported mainly by companies [28–32]. In addition, research on the concept
of a marine engine for hydrogen-ammonia co-firing is in progress [33–35]. Kim et al.
conducted environmental and economic assessments associated with an alternative ship
propulsion system fueled by ammonia [36]. Technologies capable of emitting greenhouse
gases from the operational aspects of ships were reviewed by Bouman et al. [37].

In the field of thermal power generation that we discuss in this study, the combustion
characteristics of ammonia and their application to gas turbines and coal-fired boilers are
being studied mainly in Japan, the United Kingdom, and Korea. Looking at what these
countries have in common, they are surrounded by sea rather than connected to other
countries (South Korea is a militarily divided country) and continents, and are characterized
by high energy-use intensity. To achieve hydrogen economy and a carbon-neutral society,
it is necessary to increase the production and use of hydrogen fuel. It is well known that
hydrogen is produced by processes such as reforming and water electrolysis, unlike fuels
mined in nature [38–42]. However, there is a limit to the amount of hydrogen that can
be produced in these countries. It is necessary to supplement it by shipping from other
countries with abundant renewable energy for the introduction of green-hydrogen that does
not emit CO2 during the water electrolysis process using solar power or blue-hydrogen
by the reforming process with carbon capture and storage (CCS) facilities. Therefore, it is
necessary to develop a material that can act as a carrier for hydrogen, and ammonia has
been considered the most appropriate material [43–45]. There are also a number of studies
comparing the transport mediums of hydrogen [46–53]. Hydrogen can be produced by
cracking ammonia; however, ammonia itself is a combustible material with a calorific value
and can be used as a fuel in a thermal system. Therefore, ammonia could be used directly as
a fuel, and combustion characteristics were studied because the ammonia-cracking process
required another energy source. This also has the advantage that the unit cost of ammonia
is much lower than that of hydrogen [43–45].

Figure 1 shows the CO2-free ammonia value chain used in a direct combustion system
through the transport process after the green-hydrogen, produced through the water
electrolysis process using renewable energy, and the blue-hydrogen, through the fossil
fuel reforming process with CCS, are synthesized into ammonia. The current large-scale
ammonia production is achieved by the Haber-Bosch process. In the future, the power used
to maintain the operating conditions in the Haber-Bosch process must also be produced
from renewable energy sources to achieve a truly carbon-neutral system [54].

In the present study, the recent R&D trends associated with gas turbines and coal-
fired boilers using fuel ammonia are summarized by presenting the application results
for demonstration. The experimental research results of the institutions that have been
investigating fundamental combustion characteristics for a long time are summarized for
the development of such commercial facilities. Finally, the brief research results of the
Korea Institute of Energy Research, which is leading the ammonia combustion technology
in Korea, are reported.
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Figure 1. A schematic flow on CO2-free ammonia value chain.

2. Researches on Fundamental Combustion Characteristics of Fuel Ammonia

An important challenge to overcome for the direct use of ammonia as a fuel is its
low reactivity and high NOx production [55–57]. The low reactivity is due to the low
laminar flame burning velocity, flame temperature, and flammability limit compared
to conventional hydrocarbon fuels. The high NOx production is due to the fuel-NOx
mechanism, which has a higher reaction rate at a lower temperature than conventional
thermal-NOx. Therefore, to maximize the advantage of ammonia, which is a carbon-free
fuel, these two disadvantages must be overcome. Although basic combustion studies are
complementary, they can be broadly divided into laminar and turbulent flame studies.
Laminar flame studies focus on combustion rate, ignition energy, flammability limit, and
ignition delay time, whereas turbulent flame studies concentrate on flame stabilization
characteristics in turbulent fields. In addition, based on the combustion experimental
results of ammonia-air and mixed fuels such as ammonia-hydrogen-methane under laminar
and turbulent flow conditions, the existing reaction mechanism is modified or improved
for the accuracy of ignition delay and NOx composition in a high-pressure environment.
As the study on the mechanism of ammonia combustion is an early one, it is necessary to
compare and verify various mechanisms according to combustion conditions before use.

2.1. Apparent Observation on Ammonia Flame

Even though the thermodynamic properties of ammonia are similar to those of
propane, its calorific value per unit mass is lower than that of other fuels, and its auto-
ignition temperature is higher than that of other fuels. Table 1 shows the thermal properties
and fundamental combustion characteristics of ammonia and other hydrocarbon fuels [55].

Table 1. Thermodynamic characteristics of ammonia and other hydrocarbon fuels [55].

NH3 H2 CH4 C3H8

Boiling temperature at 1 atm [◦C] −33.4 −253 −161 −42.1
Condensation pressure at 25 ◦C [atm] 9.9 n/a n/a 9.4

Lower heating value [MJ/kg] 18.6 120 50 46.4
Flammability limit [Equivalence ratio] 0.63–1.4 0.1–7.1 0.5–1.7 0.51–2.5

Adiabatic flame temperature [◦C] 1800 2110 1950 2000
Maximum laminar burning velocity [m/s] 0.07 2.91 0.37 0.43
Minimum auto ignition temperature [◦C] 650 520 630 450

As shown in Figures 2 and 3, in the case of methane, a blue flame is formed by
high-temperature luminescence of CH*, whereas in ammonia, a yellow or orange flame
is observed by NH2* and superheated H2O vapor [58,59]. Hayakawa et al. investigated
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through flame self-luminescence spectra that the NH2 concentration rapidly increased
under fuel-rich conditions, resulting in a darker color.
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Figure 3. NH3-air flames stabilized on the nozzle-type burner and radiation intensity analysis: (a) Images of NH3-air
premixed flame at stoichiometric condition; (b) Relationship between radiation intensity, Eλ, and wavelength, λ, of ϕ = 1.0
at p = 0.1 MPa. Modified from [59]. Courtesy of the Japan Society of Mechanical Engineers [59].

In addition, it can be seen that ammonia, which shows a relatively longer flame than
methane under the same conditions, has a very low combustion rate compared to methane,
and it can be predicted that the radiative heat transfer characteristics are also changed due
to different wavelengths emitted from the flame.

2.2. Laminar Reacting Flow of Ammonia Flame

The most important combustion characteristic in combustor design is the laminar
flame burning velocity. Figures 4 and 5 indicate the experimental results of spherical
flame propagation [55,60]. Similar to the hydrogen flame, the equivalence ratio condition
having the highest burning velocity is biased toward the fuel-rich condition. This is a result
of the preferential diffusion of hydrogen molecules dissociated from ammonia at high
temperature, and the burning velocity is up to 7 cm/s under the condition of an equivalence
ratio of 1.1, which corresponds to 20% of the CH4-air burning velocity. Therefore, it can be
seen that the measurement range of the burning velocity using the spherical propagation
flame of ammonia-air combustion is approximately 0.7 to 1.25 of the equivalence ratio,
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which is slightly lower than the flammability limit of 0.63 to 1.4 suggested by NIST, as
indicated in Table 1.
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In general, when measuring the burning velocity using a spherical propagation flame,
the change in the flame radius over time was measured, and the burning velocity according
to the strain rate was derived from the change in the flame curvature and subsequently
the laminar burning velocity is calculated in the unstretched condition. In this case, the
sensitivity (slope) of the burning rate according to the strain rate is generally expressed
as the Markstein length or the Markstein number divided by the thickness of the flame
zone. In general, when the Markstein number is negative, an unstable flame could be
observed, and a stable flame for a positive value. However, depending on the degree of
thermal-diffusive instability, if the Markstein number is a relatively low positive number,
cellular instability may occur. Ammonia has a Lewis number lower than 1 under fuel-lean
conditions similar to CH4-air and H2-air flames, and the Markstein number is negative
number under conditions below an equivalence ratio of 0.9. In addition, the Markstein
number is further reduced with increasing pressure, and there is a possibility that flame
instability due to thermal-diffusive instability is strengthened under the same equivalence
ratio.
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As shown in Figure 6, the burning velocity decreased with an increase in pressure. As
the experimental results under high-pressure conditions are still lacking, it is considered
that additional experiments are needed to design a combustor operating at 10 bar or higher.
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2.3. Turbulent Reacting Flow of Ammonia Flame

As the flame forms a turbulent field inside a practical combustor, it is very important
to understand the turbulent combustion characteristics. The flame formed by turbulent
flow expands as it corrugates or warps. At this time, the flame can be extinguished by
excessive strain rate due to the local unsteady velocity gradient. Fundamental research on
turbulent flames of pure ammonia-air combustion has less information than laminar flow
studies. Ichimura et al. conducted experiments on the stabilization region of ammonia-air
flames under turbulent flow conditions by controlling the fan rotation speed in a static
chamber, as shown in Figure 7 [61].
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The turbulence intensity according to the rotational speed of the fan was measured
using particle image velocimetry (PIV) to confirm linearity. In the experiment, the Karlovitz
number at the time of flame extinguishing was derived while increasing the turbulence
intensity under the same equivalence ratio condition. The larger the Karlovitz number,
longer the chemical reaction characteristic time, and the relatively shorter flow characteristic
time due to the velocity fluctuation component in the turbulent flow field, that is, the
turbulence intensity.

As shown in Figure 8, the stabilization region of the ammonia-air flame under the
turbulence condition has the widest range when the equivalence ratio is 0.9, indicating that
the resistance to high turbulence intensity is the highest at this ratio. The reason why the
flame stabilization region is widened at 0.9 instead of 1.1, which has the maximum laminar
burning velocity of ammonia-air combustion, is explained by the Markstein number in
the turbulent flow field. In the case of an ammonia-air flame, it has a negative Markstein
number in the fuel-lean condition, and the burning velocity increases due to thermal-
diffusive instability from stretching. Therefore, the turbulent flame stabilization area can be
determined by the flame strain rate effect, thermal-diffusive instability, and the Markstein
number according to the increase in turbulence intensity.
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2.4. Effect of Ammonia-Hydrogen and -Methane Mixture on the Combustion Characteristics

As mentioned earlier, the burning velocity of ammonia-air flames is very low com-
pared to that of other fuels, up to 7 cm/s. From a practical point of view, various methods
can be considered to overcome the low burning velocity. The combustion rate of fuel is
proportional to the fuel consumption rate per unit mass, and a low value means that the
time required for the chemical reaction is large. Therefore, in an environment with a low
flow characteristic time, such as a turbulent flow field, the flame cannot be maintained
or the flame stabilization range is narrowed. This is the reason why the length of the
ammonia flame is relatively longer, as shown in Figure 2. Therefore, to widen the flame
stabilization area and for high-load combustion in a relatively narrow space, it is necessary
to increase the combustion rate of ammonia through an appropriate technique. Methods for
increasing the combustion rate of ammonia include mixing with a fuel having a relatively
high burning velocity, enriching oxygen, and preheating the fuel with an oxidizer. In terms
of fuel mixing, the most studied method is to mix fuels such as hydrogen and methane in
an appropriate ratio to be similar to general hydrocarbon fuels, and research to determine
the combustion rate under oxygen-enriched conditions is also in progress.
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Ichikawa et al. studied the change in burning velocity when hydrogen and methane
were added to an ammonia-air flame [62,63]. The experimental equipment for hydrogen
addition is as shown in Figure 4, and is at the level of adding a hydrogen supply line.
As shown in Figure 9, it can be seen that the combustion rate increases up to 30 times
depending on the hydrogen fraction of the mixed fuel. It is important to observe that when
about 40% of hydrogen is mixed with ammonia, it has a burning rate of 40 cm/s, which is
similar to the maximum value of the methane-air flame. In contrast, as the burning velocity
decreases as the pressure increases, additional means are required to design a combustion
operated machine under high pressure conditions, such as a gas turbine.
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Markstein length, Lb, and the H2 ratio, XH2. Courtesy of Elsevier [62].

As shown in Figure 10, Ku et al. investigated the combustion characteristics of
expanding spherical premixed methane-ammonia-air flames [64]. The premixed methane-
ammonia-air flames produced less CO2; however, the flames became thicker and propa-
gated slower than the pure methane-air flames. When 20–40% of methane was replaced
with ammonia, it was possible to reduce CO2 emissions approximately by 25% with mod-
erate reduction in laminar burning velocities. However, NOx increased because of the
fuel-NOx mechanism, which was found to be more dominant than the potential NOx
reduction with reduced flame temperature, resulting in the maximum values of the NOx
mole fraction.

Lee et al. investigated the fundamental combustion characteristics of hydrogen-
ammonia-air flames [65]. Specifically, the effects of partial ammonia co-firing on hydrogen-
air flames were experimentally investigated. Ammonia is capable of reducing the flame
temperatures and laminar burning velocities of hydrogen-air flames. In particular, the
relative amount of decrease in laminar burning velocities with ammonia addition is more
substantial for fuel-rich conditions. At fuel-rich conditions, the amount of NOx emissions
increased and then decreased with ammonia addition and the increased amount of NOx
and N2O emission with ammonia addition is much lower than that under fuel-lean con-
ditions. Figure 11 shows the shadowgraph images of ammonia-substituted hydrogen-air
flames with various equivalence ratios. The laboratory additionally conducted a study
on the combustion stability and NOx emission characteristics during hydrogen-ammonia
co-firing [66,67].
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Figure 11. Shadowgraph photographs of NH3-substituted H2-air flames. SFA means the volumetric fraction of H2 replaced
by NH3: (a) ϕ = 0.6; (b) ϕ = 1.0; (c) ϕ = 1.67 at normal temperature and pressure. Courtesy of Elsevier [65].

Tang et al. investigated the laminar premixed flame of ammonia mixed with hy-
drogen and methane [68]. They found that hydrogen was an effective substitution for
the combustion performance of ammonia fuel. The experimental results show that the
ammonia-hydrogen flame has a smaller lower blowout limit and lean combustion rate, and
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a higher rich combustion limit. Figure 12 shows the flame images and effects of equivalence
ratio of ammonia-hydrogen and ammonia-methane on blowout limits of flames.
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Zhang et al. investigated the effect of methane and hydrogen substitution on the
emission characteristics of ammonia-air flame in a model gas turbine combustor [69]. The
instantaneous OH profile and the global outlet emission were measured using planar
laser-induced fluorescence (PLIF) and Fourier transform infrared (FTIR) spectroscopy,
respectively. When the co-firing rate of hydrogen or methane was 10%, the composition
of the flue gas was similar to that of ammonia burning, as shown in Figure 13. When the
methane co-firing rate was 30%, the concentrations of NOx and CO in the flue gas increased
rapidly, and as the co-firing rate increased, hydrogen was found to be more advantageous
in terms of environmental emissions.
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In other experimental research activities, results regarding flame characteristics for
ammonia-methane co-firing [70–75], ammonia-hydrogen co-firing [76–79], and ammonia-
syngas co-firing [80] have been reported, respectively. As a common opinion, it was
reported that the ignition characteristics and flame velocity were improved when gas fuel
with a higher reactivity than ammonia was mixed. Chai et al. reviewed the combustion
characteristics of ammonia-mixed fuel gas [81].
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2.5. Oxygen Enrichment and Plasma Application for Ammonia-Flame Enhancement

As mentioned earlier, there are several methods for flame stabilization. The method of
injecting pure oxygen instead of air as an oxidizing agent or increasing oxygen concentra-
tion is a traditional scheme. In ammonia combustion, it has been attempted to improve
the stability of ammonia flame through oxygen enrichment [82–89]. Figure 14 shows that
turbulent flame speed increases with the intensity of turbulence and higher oxygen concen-
tration [83]. This leads to higher flame temperatures and improves burning flame velocity.
Figure 15 indicates that oxygen enrichment accelerates the spherically expanding flames
and consequently reduces the buoyancy effect on the flame propagation [85].
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Recently, research on stabilization of ammonia flame through plasma has also been
conducted [90]. This is a usual method for flame stabilization that has been performed
for a long time [91–96]. However, in this study, it was experimentally demonstrated that
flame stabilization and NOx generation could be simultaneously reduced through plasma-
assisted combustion. The authors concluded that a large quantity of HO2 is formed in the
plasma region and the HO2 consumes NO and NO2 through chemical reactions NO + HO2
→ OH + NO2 and NO2 + HO2 → HONO + O2. For NH2, NO + NH2 → NNH + OH and
NH2 + NO→ N2 + H2O are shown in Figure 16.



Energies 2021, 14, 5604 13 of 29

Energies 2021, 14, x FOR PEER REVIEW 13 of 29 
 

 

 
Figure 14. Flame radius verses time and turbulent flame speed against mean flame radius with in-
creasing turbulent intensity, O2 concentration and pressure at 298 K. Courtesy of Elsevier [83]. 

 
Figure 15. Schlieren images of stoichiometric NH3-O2-N2 flames with the O2 content varying from 
21% to 45% at 1 atm. Courtesy of Elsevier [85]. 

Recently, research on stabilization of ammonia flame through plasma has also been 
conducted [90]. This is a usual method for flame stabilization that has been performed for 
a long time [91–96]. However, in this study, it was experimentally demonstrated that 
flame stabilization and NOx generation could be simultaneously reduced through 
plasma-assisted combustion. The authors concluded that a large quantity of HO2 is 
formed in the plasma region and the HO2 consumes NO and NO2 through chemical reac-
tions NO + HO2 → OH + NO2 and NO2 + HO2 → HONO + O2. For NH2, NO + NH2 → 

NNH + OH and NH2 + NO → N2 + H2O are shown in Figure 16. 

Figure 15. Schlieren images of stoichiometric NH3-O2-N2 flames with the O2 content varying from
21% to 45% at 1 atm. Courtesy of Elsevier [85].

Energies 2021, 14, x FOR PEER REVIEW 14 of 29 
 

 

 
Figure 16. Experimental apparatus and direct photographs of flame with and without plasma: (a) 
Combustor; (b) and (c) are at φ = 0.94, (d) and (e) are at φ = 0.71. Courtesy of Elsevier [90]. 

3. R&D Activities on Gas Turbine System 
3.1. Lab-Scale Model Burner for Ammonia-Rich Mixture Combustion 

A research team from Cardiff University in the UK worked on an ammonia gas tur-
bine [97–100]. The superiority of ammonia as a storage material for hydrogen and the 
possibility for direct combustion was evaluated. Finally, they announced that an ammo-
nia-hydrogen dual-fuel approach will be applied in their facility, with the hydrogen gen-
erated in a pre-combustion ammonia cracking step. Valera-Media et al. conducted an ex-
periment for stable combustion operation when hydrogen was added using a 70% NH3-
30% H2 (mol%) blend [97]. 

Figure 17 shows an optical generic swirl-burner and OH* intensity results. Under 
fuel-rich conditions, the measurement results showed that the OH* intensities were still 
high, along with an increase in the consumption of OH* at the flame front at high inlet 
temperatures. They also investigated ammonia-methane combustion in swirl burners, as 
shown in Figure 18 [98]. A fully premixed injection was not appropriate for optimized 
ammonia combustion, and flame instabilities were produced at a medium swirl burner; 
hence, a lower swirl and another injection method were required. 

 
 

(a) Burner schematic (b) Gas turbine system for 50 kW 

Figure 17. Burner device and visualization results to investigate H2-NH3 mixed combustion characteristics: (a) Burner 
schematic; (b) De-convoluted OH intensity at different φ and normalized intensities at highest value (φ = 1.0). Modified 
from [97]. Courtesy of Elsevier [97]. 

Figure 16. Experimental apparatus and direct photographs of flame with and without plasma:
(a) Combustor; (b) and (c) are at ϕ = 0.94, (d) and (e) are at ϕ = 0.71. Courtesy of Elsevier [90].

3. R&D Activities on Gas Turbine System
3.1. Lab-Scale Model Burner for Ammonia-Rich Mixture Combustion

A research team from Cardiff University in the UK worked on an ammonia gas
turbine [97–100]. The superiority of ammonia as a storage material for hydrogen and the
possibility for direct combustion was evaluated. Finally, they announced that an ammonia-
hydrogen dual-fuel approach will be applied in their facility, with the hydrogen generated
in a pre-combustion ammonia cracking step. Valera-Media et al. conducted an experiment
for stable combustion operation when hydrogen was added using a 70% NH3-30% H2
(mol%) blend [97].

Figure 17 shows an optical generic swirl-burner and OH* intensity results. Under
fuel-rich conditions, the measurement results showed that the OH* intensities were still
high, along with an increase in the consumption of OH* at the flame front at high inlet
temperatures. They also investigated ammonia-methane combustion in swirl burners, as
shown in Figure 18 [98]. A fully premixed injection was not appropriate for optimized
ammonia combustion, and flame instabilities were produced at a medium swirl burner;
hence, a lower swirl and another injection method were required.
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Figure 18. Gas turbine model combustor and direct images on NH3-CH4 flames of 61% NH3 and 39% CH4: (a) Gas turbine
model combustor with NH3-CH4 blend flame at equivalence ratio 1.31 for 31.7 kW; (b) Instantaneous photographs on flame
position change (instability). Modified from [98]. Courtesy of Elsevier [98].

3.2. 50 kW Small-Scale System

A research team in Japan succeeded in generating a 41.8 kW class gas turbine using
ammonia as fuel. This development was carried out in close cooperation with the group at
Tohoku University and the National Institute of Advanced Industrial Science and Technol-
ogy (AIST). The combustion and power generation system optimized for bi-fuel supply
was developed by remodeling the combustor of Toyota Turbine and System Inc.’s micro
gas turbine. In the early stage of development, approximately 30% of ammonia was mixed
with methane to generate 21 kW of power. Subsequently, R&D was carried out with the
goal of operating a gas turbine using ammonia as the main fuel. In 2016, the ammonia
supply facility and the methane supply facility were repaired, and a demonstration test
for gas turbine power generation using ammonia as the main fuel was conducted. The
main performance goals were to maintain compatibility with the existing power generation
system and to minimize NOx emissions.

Figure 19 shows the ammonia combustor (prototype bi-fuel combustor) and the
overview of the gas turbine system. Although NOx concentration in the exhaust gas of
ammonia combustion exceeded 600 ppm, as shown in Figure 20, NOx removal equipment
(SCR) can reduce NOx concentration below 10 ppm [101]. They have reported the results
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of related studies every year, and recently [102–106], they have also conducted research on
burning liquid ammonia by directly spraying it into a combustor [107].
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3.3. 2 MW Medium-Scale System

IHI Corporation is a representative company participating in the organization for the
commercialization of ammonia combustion technology for gas turbines, coal-fired power
plants, and fuel cells in the SIP program. IHI evaluated the NOx emission characteristics
and efficiency of the power generation system by co-firing ammonia up to 20% based on
the calorific value in the existing 2 MWe class LNG gas turbine [108,109]. Figure 21 shows
the overview of the gas turbine of the power generation system. When ammonia was not
added during rated load operation, about 100 ppm of NOx was emitted; however, as the
co-firing rate of ammonia increased, the NOx emission increased up to three times. Similar
to the results of AIST, in this study, NOx emissions of up to 6 ppm were achieved using
the downstream SCR facility, and performance to satisfy environmental regulations was
secured using a commercial SCR facility. A dramatic increase in NOx emissions during
ammonia co-firing is an issue that must be overcome, and to apply ammonia to a medium-
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to-large gas turbine system in the future, it is necessary to minimize NOx emissions from
the combustor itself.
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Figure 21. IHI’s 2 MW-class NH3 gas turbine system: (a) Apparatus of NH3 supply unit; (b) Apparatus of gas turbine.
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When the ammonia co-firing rate was 5%, the efficiency tended to decrease slightly;
however, when the ammonia co-firing rate was 10% or more, the overall efficiency increased.
As the mixing ratio was controlled based on the calorific value, the input amount of
ammonia having a relatively low calorific was increased, and thus the turbine inlet flow
rate increased, as shown in Figure 22.
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Recently, IHI announced that it has raised the liquid ammonia co-firing ratio on a
2 MW-class gas turbine to 70% on a heating value basis [110]. This technology enables the
spraying of liquid ammonia directly into the combustor for mixing with natural gas while
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constraining NOx emissions. IHI has attained 100% liquid ammonia-fueled combustion
with this technology on a limited basis. It aims to ensure operational stability and suppress
NOx and other emissions for commercializing a fully ammonia-fired gas turbine by 2025.

3.4. Developmet Plan of Commercial Large-Scale System

Hundreds of MW-class large gas turbines are being developed mainly for fuel supply
systems. Unlike small- and medium-sized systems, large gas turbines are expected to
have more severe restrictions on the size of the combustor for complete combustion of
ammonia and more difficult control of NOx under high-temperature combustion conditions.
Mitsubishi Power announced the start of the development of a 40 MW-class ammonia gas
turbine in March 2021, and aims to commercialize it in 2025 after undergoing combustion
and related operation tests [111]. Again, a technical bottleneck is the generation of NOx
due to the nitrogen component of the fuel, and Mitsubishi is trying to solve the problem
with a new ammonia combustor and SCR in the H-25 series gas turbine. Figure 23 shows
the H-25 series gas turbine model of Mitsubishi.
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General Electric (GE) and IHI have signed a memorandum of understanding for the
development of a retrofit of an existing gas turbine for the combustion of ammonia fuel
and a new gas turbine [112]. As the ammonia gas turbine market is widely distributed in
Asia, including Korea and Japan, GE seems to have an idea to use ammonia in their own
gas turbine technology. IHI is also planning to strengthen IHI’s competitiveness through
GE, which has flexible fuel combustion technology in the gas turbines.

4. R&D Activities on Coal-fired Power System
4.1. Fundamental Coal-Ammonia Combustion Characteristics

Studies on the fundamental characteristics of coal-ammonia mixed combustion tech-
nology were recently presented at the 38th International Combustion Society. Xia et al.
conducted an experiment to examine the characteristics of spherical flame propagation in
a turbulent flow field during the co-firing of pulverized coal and ammonia fuel [113,114].
The spherical propagation velocity of the coal-ammonia flame was faster than that of
coal burning under all conditions, regardless of the ammonia-oxidizer equivalent ratio;
however, the velocity changed according to the ammonia-oxidizer equivalent ratio. In the
lean condition of ammonia fuel, a luminous flame by combustion of coal particles was
emitted as radiant heat, and at the same time, the local equivalence ratio was increased
in the flame zone due to the addition of volatile matter emitted from the coal particles,
thereby increasing the flame propagation velocity. Moreover, as there is enough oxygen
to react with the volatile matter, the authors created a scenario in which this leads to an
increase in the propagation velocity. Conversely, in the rich condition of ammonia fuel,
a luminous flame was not formed, and a large amount of thermal energy was used to
increase the temperature of the particles. As a result, the volatile matter emission rate was
slowed. In addition, the amount of local oxygen used for combustion was small, resulting
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in a relatively slow flame velocity. Figure 24 shows the experimental apparatus and the
image processing procedure to derive the propagation velocity of spherical flame.
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4.2. MW Medium-Scale System Experiment

The Central Research Institute of Electric Power Industry (CRIEPI), one of Japan’s coal
combustion research institutes, has conducted a co-firing experiment in a single burner test
furnace for the generation of fuel-NOx, a key problem to overcome while using ammonia as
a fuel. Figure 25 shows the facilities of the burner and the test furnace, and the experimental
conditions. The combustion load was 760 kW (=100 kg/h), the oxygen concentration at the
rear of the combustion chamber was 4%, and the air volume for multi-stage combustion
was 30% of the total air volume [115]. The injection location was set as a variable with
a maximum co-firing rate of 20%. When ammonia is injected into the pulverized coal
burner and combusted, and the co-firing rate is less than 10%, it is at a level similar to the
amount of NOx generated during conventional coal combustion. The NOx concentration
increased with the increase of the co-firing rate. As a result, it was possible to reduce NOx
generation by injecting ammonia at an optimal distance from the burner. This is because the
selective non-catalytic reduction (SNCR) reaction reduces the amount of NOx generated.
In addition, when ammonia was injected into the coal burner, the flame temperature was
lowered, resulting in more unburned coal. However, the amount of unburned ammonia
was extremely small, even during co-firing.

The goal of IHI was to demonstrate an existing 1000 MW-class coal-fired power plant
after a co-firing test in a 10 MWth test boiler, as shown in Figure 26 [116]. Based on the
ammonia co-firing rate of 20%, the goal was to generate less than 200 ppm of NOx, and for
this, the test was conducted with an input amount of 1.0–1.6 kg/h of coal and 0.4 ton/h
of ammonia. As a result of the experiment, a stable flame was obtained through the swirl
control of the combustion air, and the NOx concentration at 20% co-firing was measured to
be equal to or lower than the value generated during 100% coal combustion. Ammonia and
N2O in the exhaust gas were below detectable levels. However, the particle emissivity and
radiant heat transfer were reduced due to the decrease in coal usage, so the heat flux to the
boiler wall was reduced. It was estimated that this was due to the change in the properties
related to heat transfer [117]. In addition, the amount of NOx generated varied depending
on the location of ammonia injection, and in the case of optimization, the NO concentration
was measured to be lower than that during coal burning. This was because ammonia
contributed to the denitrification reaction during ammonia injection. When ammonia was
injected into the flame area at a distance from the burner tip, it led to a greater reduction of
NOx and CO in quantity than when ammonia was injected from an inlet with coal particles
based on 20% ammonia co-firing condition.
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4.3. Commercial Large-Scale System Demonstration

Chugoku Electric Power attempted a coal-ammonia co-fired power plant in Japan’s
Mizushima power plant unit 2 (156 MW output). In this demonstration test, the CO2
emissions were reduced by the amount of ammonia co-fired, and there was no change in
the metal temperature of the heat exchanger, such as in the superheater and reheater. The
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ammonia used as fuel was completely burned and not discharged to the outside. It was
confirmed that the environmental standards were satisfied without any difference. The
co-firing rate was 0.6% to 0.8% due to the capacity restrictions of the ammonia vaporizer;
however, above all, it was confirmed that the coal-ammonia co-firing technology can be
applied without any problem to power plants in commercial operation as a measure to
reduce greenhouse gas emissions. Figure 27 shows an overall overview of the project [118].
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A Japanese power generation company, JERA, plans to close all inefficient coal-fired
power plants by 2030 and introduce ammonia combustion technology to coal-fired power
plants by 2040. JERA and IHI announced that they would demonstrate 20% ammonia
co-firing technology in a 1000 MW-class coal-fired power plant. The period of the research
and demonstration project is from June 2021 to March 2025. The target power plant is
Hekinan power plant unit 4, and the goal of the demonstration project is to prove and build
co-firing technology in a large-capacity commercial plant, check boiler heat absorption,
and evaluate the environmental impact of exhaust gas. It is planned to partially modify
the design of the 48 burners for optimal injection of ammonia. IHI will be in charge of the
burner development, and JERA will be in charge of ammonia procurement and related
construction. Figure 28 shows a conceptual diagram of the ammonia combustion plan in
the target power plant and boiler [119].
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5. Ammonia Combustion Experiments in Korea Institute of Energy Research

In this section, we briefly report the information regarding an ammonia combustion
experiment conducted by Korea Institute of Energy Research. A preliminary experiment
was conducted to observe the characteristics of ammonia burning flame for gas turbines
and coal co-fired flame for coal fired boiler applications. This experiment was conducted in
accordance with the safety regulations put forth by the Korean government on the use of
toxic gases.

5.1. Experimental Appratus and Method

Figure 29 shows the schematics of the model combustor and the experimental ap-
paratus. The combustor was swirl stabilized with a bluff body. The axial swirler fitted
to a central support rod has eight vanes with a swirl angle, α = 45◦. According to the
formula, swirl number was estimated to be 0.77 [120]. High purity NH3 (99.99%) and
dry air, accurately metered by mass flow controllers (Brooks 5850E) within 2% error, were
fully premixed before being supplied to the combustor. The detailed device structure was
presented in the following paper [121]. The ammonia flow rate was 22 SLPM (5 kWth
capacity), and the air flow rate was determined based on the equivalence ratio of 1. When
coal-ammonia-air combustion experiment was conducted, the ammonia flow rate was
reduced to fix the total capacity to 5 kWth. In the lower part of the combustor injector, a
honeycomb (20 mm in length) was installed to straighten the mixture flow uniformity. An
inverted cone-shape bluff body, whose flat surface was extruded from the dump plane,
was used to enhance the flame stabilization. A quartz tube was built for liner role and
flame visualization. The flame was observed using a Sony FDR-AX700 camera.

The proximate and ultimate analysis data of the fuel coal are presented in Table 2. The
particles within a size range of 100~125 µm were dropped down slowly into a glass funnel
by a micro-syringe injector and were entrained with a carrier gas at room temperature,
as described in Figure 29. The flow rate of the carrier gas was independently controlled
considering the mass of solid particles falling into the glass funnel. This design allowed the
number and density of particles and main air flow rate to be varied independently. When
the coal-ammonia-air combustion experiment was conducted, particle feeding rate was
kept to 0.02–0.1 g/s to observe the behavior according to co-firing rate 10–50%. The gas
condition was not affected by particle combustion. The equipment for the supply system,
including the coal feeder, is detailed in a study carried out by Lee and Choi [122–124].
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Table 2. Coal properties.

Rank Proximate (Air-Dried) (wt%) Ultimate (Air-Dried) (wt%) Heating Value (MJ/kg)

W V.M. F.C. Ash C H O N S
Bituminous 2.38 35.32 49.62 12.68 70.38 4.65 7.91 1.48 0.52 27.98

5.2. Flame Observation on Gaseous Ammonia and Co-Fired with Coal Particles

Figure 30 shows an ammonia burning flame and an ammonia-coal co-fired flame.
Because of the slow reaction rate of ammonia and the narrow flammability limit, it was
judged that a premixed flame was more appropriate than a diffusion flame. In this exper-
iment, a premixed flame was formed and observed. Ignition of gaseous ammonia fuel
in the cold state was not easy, but ignition was easily achieved when the combustor was
sufficiently warmed up. However, after being ignited once, the flame was maintained at an
equivalence ratio of 1.0, or in a somewhat fuel-rich state. This phenomenon occurred due
to the narrow flammability limit and high ignition energy, which can be explained by the
results of related previous studies, as mentioned in Section 2. When the ammonia flame
was extinguished, there was a peculiar smell of ammonia; however, when the flame was
attached, the smell was not felt.
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Coal particles burned relatively well with ammonia flame, which has a relatively low
flame temperature. The ammonia-coal flame showed a longer shape than when gaseous
ammonia was burned alone, as shown in Figure 30. Consequently, it is considered to be
the result of taking longer time for volatile matter and char combustion processes. There
will be effects depending on the particle size and the type of coal; however, as the current
study was conducted with only one type of coal and particle size, we plan to proceed with
this work in future research. Ammonia-coal flames in burner types, not spherical flames,
are reported for the first time in this study. As the experimental device is designed as a
model of a gas turbine combustor, we plan to re-create an experimental facility suitable for
coal-fired burners.

6. Conclusions

Ammonia, a carbon-free fuel, is being studied mainly in many countries to reduce CO2
emissions. In particular, Korea and Japan, as countries with some of the top 10 greenhouse
gas emissions in the world, are making great efforts to reduce carbon emissions. Technology
development for the use of carbon-free fuels such as hydrogen and ammonia is intensively
in progress, and research for ammonia direct-combustion and hydrogen production by the
cracking of ammonia as an enabler towards a hydrogen society are in progress. Ammonia
is a part of hydrogen fuel as an energy carrier rather than a separate fuel, and the use of
ammonia will drive development towards a hydrogen society faster.

Thermal power plants, including coal-fired power plants and gas turbines, are a large
source of CO2 emissions, and the carbon emission reduction effect can be maximized when
ammonia combustion is applied in the systems. However, there are still challenges to be
solved for ammonia combustion technology to be commercialized in thermal power plants.
As ammonia combustion features high NOx emissions and low flame stability, a meticulous
study is required. In fundamental experiment fields, burning velocity and ignition char-
acteristics have been investigated in laminar and turbulent flow conditions. In addition,
flame structures and associated reaction mechanisms have been numerically investigated
under pressure conditions up to 5 bar for application to gas turbines. These fundamental
results can provide insight for future scale-up and engineering for commercialization. In
the gas turbines, the combustor pressure is 20 bar or more, and experimental results in such
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a high-pressure environment are necessary. In high-pressure conditions, the NOx formation
mechanism should be investigated based on the experimental results, at the same time.
Ammonia combustion or co-firing mechanisms should be elucidated in terms of chemical
kinetics in detail. This information is important to prevent excessive NOx generation
and enhance flame stabilization. Likewise for coal-ammonia co-combustion, an accurate
reaction mechanism must be derived beyond the current level of reaction scenario predic-
tion in order to present a solution based on physical theory rather than research based on
experience. It enables design optimization of burners. In fundamental research, the weak
flammability of ammonia-air flame could be enhanced through substituting other fuels
such as methane and hydrogen for ammonia, preheating inlet gases, and increasing oxygen
concentration. However, it is difficult to inject additional fuel gases or pure oxygen into a
practical combustion system for power generation. The fuel co-firing in ammonia requires
additional expenses because it is accompanied by a gas supply facility, pipeline, control,
and safety system. It is necessary to develop a combustion technology that can reduce NOx
emissions without downstream equipment such as SCR for gas turbine applications. The
current NOx emission level during ammonia combustion in gas turbine experiments is
several hundred ppm, and NOx emission produced from combustion has been separated
through the downstream facility. Strictly speaking, this approach offsets the benefits of
using carbon-free ammonia fuels. Therefore, it is necessary to develop a technology to
reduce NOx generation, for example, by deriving SNCR reaction during combustion. In
the most common way, the methods such as multi-stage (rich-lean) combustion have been
used to reduce NOx practically.

At the pilot or demonstration experimental level, design technology should be verified.
Most plant operators are retrofitting the existing facilities to reduce costs. As a power plant
is a large-scale facility, the investment amount is large and the risk is large in hardware
replacement. Therefore, it is important to obtain accurate data while changing many factors
during pilot- and demo-scale experiments. Among the results currently reported, in the
case of coal-fired power plants, the ammonia co-firing rate in large power plants is less than
1%. Although it was reported that there were no differences from the previous operation
results, problems that may occur when the ammonia co-firing rate increases by 20% or
more are expected. As the flame temperature decreases, for example, the amount of heat
transfer to the water-steam pipe will decrease, which will change the steam output of the
boiler. Along with this, there is a possibility of unburned carbon generation, and it may be
necessary to control the amount of oxidizing agent for complete combustion in over-fire air
ports. Therefore, to apply the ammonia co-firing technology in the existing boiler, the boiler
water circulation system analysis should be accompanied and reviewed with corrosion
between unburned ammonia and metallic part. In ammonia co-firing demonstration
studies, although it was announced that injecting ammonia together with coal particles
at the center of the burner had a low NOx reduction effect, ammonia was injected into an
oil burner for startup due to the difficulty of design changes. There are various injection
methods such as spraying into the coal flame, for example, on a demo-scale to maximize
ammonia utilization.

Many researchers are working to solve these issues, and the authors’ institutions
are also conducting research for this purpose. The present study reported the apparent
observation of the pulverized coal-ammonia co-firing flame structure for the first time, and
detailed analysis results will be continuously reported in the future. Ammonia combustion
technology, centered on gas turbines and coal-fired power plants, is in the full-scale demon-
stration stage, and the results will be reported from 2025 to 2030 in most projects. For
carbon neutrality, combustion majors should strive with great responsibility in preparing
for developing technology to reduce CO2 emission. It is hoped that this study will be
used as an informative resource for researchers working on carbon-free and high-efficiency
ammonia combustion.
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