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Abstract: The development of green energy conversion devices has been promising to face climate
change and global warming challenges over the last few years. Energy applications require a
confident performance prediction, especially in polymer electrolyte fuel cell (PEFC), to guarantee
optimal operation. Several researchers have employed optimization algorithms (OAs) to identify
operating parameters to improve the PEFC performance. In the current study, several nature-based
OAs have been performed to compute the optimal parameters used to describe the polarization
curves in a PEFC. Different relative humidity (RH) values, one of the most influential variables
on PEFC performance, have been considered. To develop this study, experimental data have been
collected from a lab-scale fuel cell test system establishing different RH percentages, from 18 to
100%. OAs like neural network algorithm (NNA), improved grey-wolf optimizer (I-GWO), ant
lion optimizer (ALO), bird swarm algorithm (BSA), and multi-verse optimization (MVO) were
evaluated and compared using statistical parameters as training error and time. Results gave enough
information to conclude that NNA had better performance and showed better results over other
highlighted OAs. Finally, it was found that sparsity and noise are more present at lower relative
humidity values. At low RH, a PEFC operates under critical conditions, affecting the fitting on OAs.

Keywords: optimization algorithm; relative humidity; polarization curve; PEFC; optimal parameter

1. Introduction

In the last few years, several studies related to renewable energy technologies have
been performed [1–4]. The development of new energy sources with high efficiency and
environmentally friendliness is one of the challenges of today’s world. The fossil fuels
currently used are unsustainable and have considerable impacts on the environment. The
mentioned fossil fuels are the primary source to produce the consumed energy, causing
severe environmental problems like climate change and pollution. In 2005, they were
estimated to produce 80% of the world’s primary energy [5]. In the same year, 16.5% of
the world’s primary energy was produced by renewable energy and expected to replace
80% of fossil fuels up to 2050, i.e., in about four decades [6]. This aim is in line with the
European Green Deal proposed in 2011 [7].

Polymer electrolyte fuel cells (PEFCs) are presented as one of the applications of hydro-
gen technology that can be used to meet energy requirements. PEFCs are electrochemical
devices that transform the energy from chemical reactions into electrical energy [8]. The
energy conversion is done in a single process compared to combustion engines engines, in
which the energy conversion is performed in multiple steps [9]. Furthermore, the energy
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conversion process in a PEFC is based on three main stages: hydrogen as the fuel flow
at the anode while oxygen as oxidant flows through the cathode, the gas molecules are
split at the active region of the membrane electrode assembly (MEA), and, finally, free
electrons are transported out to the cell producing clean electrical energy. Apart from this,
it can categorized in different types [10,11]. PEFCs are one of the most promising energy
conversion devices to produce electricity with zero emission. In addition, it can work at
low pressure, low temperature, noiseless manner, and at different current densities with
high efficiency [8].

To study the behavior of a PEFC, polarization curves are typically used. The different
parameters that affect their performance like temperature, relative humidity (RH), pres-
sure, oxidant/fuel flow, and dry conditions are usually varied [12–14]. The polarization
curves present the voltage as a function of the current density. In the mentioned curves,
three regions are clearly distinguished: activation, ohmic, and concentration region. The
activation region represents the energy required to start reactions at low current densities.
On the other hand, the ohmic region occurs at moderate current densities and represents
the ohmic losses inside the PEFC. Finally, the region of concentration losses occurs due to
the abundant generation of liquid water blocking the pores of the diffusion media (DM) at
high-density currents, and this impairs the development of electrochemical reactions [15].

To accomplish the optimum operation of PEFCs, several studies have been dealing
with the problem of accurately identifying its internal electrochemical and mechanical pa-
rameters by modeling and simulation [16,17]. The modeling procedures may be classified
as mechanical or experimental modeling. Mechanical modeling deals with the electro-
chemical, heat, and mass transport parameters. The experimental modeling is performed
partially from the mechanical one and formulated as empirical equations [18–22].

The models of PEFCs should be viable, computationally effective, and capable of pre-
dicting their performances over a wide range of operating environmental conditions [23].
Appropriate model identifications can be ensured by entering correct input parameters
in the governing equations of the PEFC, which comprise chemical and physical proper-
ties. The modeling methodologies of PEFCs can either be theoretical, semi-empirical, or
empirical [24–26].

Over the last few decades, there has been a variety of studies related to PEFCs param-
eters’ identifications using heuristic-based methods, such as particle swarm optimization
(PSO) [27], which is used to define the parameters of steady-state PEFC models. In addition,
an improved grey-wolf optimizer algorithm (I-GWO) and multiverse optimization (MVO)
algorithm have been applied to accomplish the same goal. The ant–lion optimizer (ALO)
algorithm has also been implemented to model PEFCs [28].

Correctly identifying the unspecified parameters leads to the actual model of a PEFC.
Previous studies related to determining the optimal parameters of FCs are described as
follows. For example, Priya et al. [29] utilized a simple genetic algorithm to obtain the
accurate model of a PEFC by identifying the optimal parameters and used the derivative
of power with respect to current as the objective function (OF). Gong et al. [30] applied a
differential evolution method to obtain the optimal parameters of a PEFC. This algorithm
can also include a ranking-based operator to accelerate the convergence of the solutions.
On the other hand, Ye et al. [31] used PSO to identify PEFC parameters to minimize its OF,
which was based on the calculated and measured stack voltage. Likewise, Fathy et al. [32]
introduced an MVO methodology to determine the optimal parameters of a PEFC. Ali
et al. [33] applied I-GWO to successfully identify the unknown parameters of five types of
commercial PEFCs.

Applying optimization algorithms (OAs) to the PEFC performance gives excellent
results, which will allow the researchers to obtain the representative equation of a PEFC
model successfully. The main idea behind this is that they can escape from the local
minimum, which leads them to obtaining almost the global optimum [34]. Taking into
consideration the mentioned methods and their promising results in generating high-
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quality solutions, these meta-heuristic processes have been widely used to model PEFCs,
so there is much potential for improvement in this area [35].

A few applications of heuristic-based methods to define models of PEFCs are ad-
dressed. However, due to the high nonlinearity of PEFC models, the extraction of optimal
values of parameters is crucial, which means that small deviations of these values may
dramatically affect the quality of such models [23]. Therefore, the nonlinear behavior of the
models motivates the researchers to develop and use improved algorithms like I-GWO to
define the parameters of a PEFC. According to the aforementioned, OA can deal efficiently
with uni and multi-modal engineering optimization problems [36].

This paper focuses the study on the computation of the optimal parameters for polar-
ization curves’ prediction of PEFCs by using different OAs, which are based on natural
phenomena. The collected data come from a lab-scale FC test system employing different
conditions of RH. It is one of the most critical variables that affect the performance of a
PEFC [37,38]. Thus, the main contributions of this work are:

• Analyze the RH impact on the performance of a PEFC, the sparsity and noise of the
collected data, and its influence on optimization problems;

• Compare the OA efficiency through an error metric in the computation of the optimal
parameters for the mathematical model of a PEFC;

• Build prediction models for the polarization curves of a PEFC at different RH levels.

The rest of this article is organized as follows: the experimental setup, which includes
the lab-scale FC test system description and the experimental parameters setup, is given
in Section 2. In Section 3, the mathematical model of PEFC based on the generalized
steady-state model is presented. In Section 4, the principles of employed OAs, as well as a
short description about them, are given. The methodology to build the OF, the conditions
for the mathematical model of the PEFC, the initial parameters for the different OAs, and
the metric error are presented in Section 5. Finally, the results and conclusions are drawn
in Sections 6 and 7, respectively.

2. Experimental Setup
2.1. Lab-Scale FC Test System

The test system used to conduct this study is the 850e Multi-Range FC Test System
from Scribner Associates, Inc. It allows for monitoring and evaluating the performance
variables of a PEFC in real-time and in an automated way. The system is constituted by a
flow controller to set the stoichiometric ratio of the inlet gasses, water humidifier tanks,
and heating resistors at the anode/cathode input. A heating resistor inside the PEFC
hardware and a DC load to evaluate the PEFC voltage response under a specific current are
part of the equipment. The system obtains different polarization curves based on several
parameter setups. The collected data were obtained with the help of the FuelCell® software
from Scribner Associates Inc, North Carolina, USA . It was installed in a peripheral device
connected to the FC test system. For additional technical information, readers can refer to
the manual [39].

In detail, the single-cell has the following characteristics: an effective area of 25 cm2,
two graphite end plates with triple serpentine channels with a depth and width of 1 mm.
Furthermore, a Membrane Electrode Assembly (MEA) with five layers composed of one
polymeric membrane Nafion 212®, two GDLs woven carbon cloth type with micro-porous
layers (MPL), and two catalyst layers with 60 wt% of platinum nano-particles on Vulcan
carbon from the cell. A representative schematic of a single PEFC is shown in Figure 1.
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Figure 1. Representative internal scheme of a Polymer Electrolyte Fuel Cell (PEFC) [37].

2.2. Experimental Parameters Setup

Ultrapure Hydrogen (H2) and medical Oxygen (O2) were employed as fuel and
oxidant, respectively. In addition, Nitrogen (N2) was used as purge gas at the pipes system.
The inlet pressure of the gases was established at 55 PSIG, while ASTM Type I water (with
18 MΩ/cm minimum resistivity) was used to humidify the inlet gases. Since obtaining
different polarization curves as a function of RH was proposed, the gas temperature was
initially established at 40 ◦C, increasing in steps of 10 ◦C until reaching 80 ◦C. Then, the
fixed temperature of the MEA was configured at 80 ◦C under ambient pressure conditions.
Note that 100% of RH is reached when the gas temperature and the fixed temperature
of the MEA have the same value. The RH was computed using empirical correlations
provided by Espinoza-Andaluz et al. [38]. Furthermore, a current sweep was applied in
the experiment with an increasing rate of 0.25 A/min, from 0 to a maximum value of
50 A. Finally, the stoichiometric ratio of the H2 and O2 flows were settled at 1.2x and 2.5x,
respectively, where x represents the current load applied in the PEFC according to [40].

3. Mathematical Model of PEFC

Several mathematical models to predict the performance of PEFCs can be found in
the literature [41–44]. In this work, that proposed by Maan [43] is implemented since it
has been widely used in previous studies [18,45]. It has been shown to perform well for
modeling the polarization curves considering all polarization losses. Herein, the cell output
voltage is represented by the subtraction between the Nernst voltage and the polarization
losses. The polarization losses are represented by three voltage drop regions (activation,
ohmic, and concentration). Additionally, the expression can be multiplied by ncells, which
represent the number of cells. In this case, as it corresponds to a single cell, ncells has the
value of 1. The resulting expression is given as follows:

VFC = ncells · (ENernst −Vact −VΩ −Vcon) (1)

Initially, the cell voltage drops rapidly and exponentially due to the over-potential
of activation necessary to begin the reactions defined by Vact. Then, the voltage drops
gradually and linearly as it enters the ohmic zone (VΩ). Finally, at high current densities,
the voltage drops quickly again due to the effects of concentration (Vcon).
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ENernst is defined as a thermodynamic potential of the cell, also known as reversible
voltage. Considering the reference temperature at 25 ◦C, the Nernst voltage can be deter-
mined as follows:

ENernst = 1.229− 0.85 · 10−3 · (Tf c − 298.15)

+ 4.3085 · 10−5 · Tf c · ln(PH2 ·
√

PO2)
(2)

where Tf c is the PEFC operating cell temperature (K), while PH2 and PO2 are the partial
pressures (atm) of hydrogen and oxygen, respectively, defined as:

PH2 =
RHa · PH2O

2


1

RHa ·PH2O
Pa

· e
1.635·

I f c
Am

T1.334
f c

− 1

 (3)

PO2 = RHc · PH2O


1

RHc ·PH2O
Pc

· e
4.192·

I f c
Am

T1.334
f c

− 1

 (4)

where Am is the membrane area (cm2), RHa and RHc are the RHs of the gases flowing at
the anode and cathode, respectively. I f c is the operating current (A) of the PEFC, and PH2O
is the saturation pressure of water (atm) defined as:

PH2O = 2.95 · 10−2 · (Tf c − 273.15)− 9.18 · 10−5 · (Tf c − 273.15)2

+ 1.44 · 10−7 · (Tf c − 273.15)3 − 2.18
(5)

Following the describing equations, the activation losses Vact can be determined as
follows:

Vact = −
[
ξ1 + ξ2 · Tf c + ξ3 · Tf c · lnCO2 + ξ4 · Tf c · lnI f c

]
(6)

where ξ1, ξ2, ξ3, and ξ4 are semi-empirical coefficients that describe the electrochemical
processes in the activation over-potential zone. The oxygen concentration is represented by
CO2 (mol/cm3). Both CO2 and ξ2 are calculable parameters defined in Equations (7) and (8),
respectively, whereas ξ1, ξ3, ξ4 are unknown in the first instance:

CO2 =
PO2

5.08 · 106 · e
− 498

Tf c

(7)

ξ2 = 2.86 · 10−3 + 2 · 10−4 · lnAm + 4.3 · 10−5 · lnCH2 (8)

Furthermore, CH2 is the hydrogen concentration (mol/cm3), which is computed as:

CH2 =
PH2

1.09 · 10−6 · e
77

Tf c

(9)

Next, the concentration losses are represented by Vcon, and can be computed as follows:

Vcon = −β · ln Jmax − J
Jmax

(10)

where β is a temperature-dependent parametric coefficient that proportionally modifies the
concentration factor. In this mathematical model, it is presented as an unknown coefficient.
J is the current density (A/cm2), and Jmax is the maximum value for J.
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The last polarization loss to describe is ohmic losses, VΩ, defined as:

VΩ = I f c · (Rm + Rc) (11)

where Rc (Ω) is the connection resistance, i.e., the resistance to the electron flow due to all
conductive elements. It should be constant when the PEFC works between 40 to 90 ◦C. In
general, it is difficult to predict its value, so Rc is initially unknown. On the other hand, Rm
represents the membrane resistance (Ω) and can be computed as:

Rm =
ρm · l
Am

(12)

where l is the thickness of the membrane (cm) and ρm is the membrane resistivity (Ω·cm),
defined as:

ρm =

181.6 ·
[

1 + 0.03 ·
( I f c

Am

)
+ 0.062 ·

( Tf c
303

)2
·
( I f c

Am

)2.5
]

[
λ− 0.634− 3 ·

( I f c
Am

)]
· e

4.18·
(

Tf c−303
Tf c

) (13)

where λ is a modifiable parameter representing the degree of the polymeric membrane
performance and is influenced by the feed gases’ relative humidity and stoichiometric ratio.
In this work, lambda has a maximum possible value of 23 to assure better fitting according
to [43] and a minimum value of 13 under ideal conditions.

Eventually, it is clear that, in the above equations, there are six unknown parameters
required to be defined: ξ1, ξ3, ξ4, λ, β, and Rc. They were briefly described as the necessary
parameters to complete the polarization curves modeling. For more detailed information
and deductions of the mentioned parameters, readers are referred to the following stud-
ies [43,44]. Generally, these parameters are obtained from experimental tests with the use
of thermodynamics-electrochemical constants. Hence, there is not a manual where values
of these parameters are stipulated. The unknown parameters demand great accuracy
in order to effectively model the PEFC performance. For this, several studies have de-
fined some limits to these parameters intending to establish bounds over the computation
works [33,45–49]. Upper and lower limits for the mentioned parameters are presented in
Table 1.

Table 1. Upper and lower limitsfor unknown parameters of a PEFC mathematical model.

Limits ξ1 ξ3 (1 × 10−5) ξ4 (1 × 10−5) λ Rc (mΩ) β

Upper −0.8532 9.80 −9.54 23.00 0.80 0.5000
Lower −1.1997 3.60 −26.00 13.00 0.10 0.0136

4. Optimization Algorithms
4.1. Principles

Mathematically, optimization aims to search a decision space supported by a set
of decision variables that would produce the maximum acceptability considering the
defined goal. The maximum acceptability is based on the objective function (OF) initially
defined [50]. Thus, computational intelligence (CI) has been able to make meaningful
contributions to solving such optimization problems (OPs) thanks to the development of
several efficient and competitive search algorithms.

CI-based OAs are centered around their inspiration sources. Thus, based on their
origins, OAs could be classified as nature-based and non-nature-based. Nature-inspired
computing (NIC) is a CI branch dedicated to studying any nature-based strategy used in
optimization. Many phenomena in nature have been a source of inspiration for developing
new problem-solving techniques [51]. Biology-based algorithms are some of the most
popular in nature-based OAs. Figure 2 shows the general flowchart that an OA follows
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in order to achieve its aim, where it can be highlighted that p1, p2, p3, ..., pn are the initial
conditions or parameters with any OA that start to work.

Biology-based OAs like grey-wolf, ant–lion, and bird behavior are considered in
the current study. At the same time, astronomy-based OAs like multi-verse and neural-
network-based OA are also considered. The mentioned OAs are described in order to give
an overview of them and their operation.

Integrator software

START

Select an optimizer algorithm

Generate uniform initial population

Y

NConstraints were
satisfied?

Solve modeling problem

Generate new points Generate new points

YN Objective function 
is converged?

p1, p2, p3, ..., pn

STOP

Figure 2. General flowchart for OAs, considering the main steps of the optimization procedure.

4.2. Multi-Verse Optimization (MVO)

The multiverse concept comprehends the fact that universes interact and even collide
with each other. The multi-verse theory inspires the MVO algorithm based on three main
concepts of cosmology: white holes, black holes, and wormholes. The search process of
this population-based algorithm is divided into two phases: exploration and exploitation.
White and black holes in MVO are applied to explore search spaces by the algorithm.
Wormholes help the algorithm to work with the exploitation of the search spaces. We
assume each solution is equal to a universe and each variable in this solution represents an
object of this universe [32].

4.3. Improved-Grey Wolf Optimizer (I-GWO)

The GWO algorithm imitates the leadership hierarchy and hunting mechanism of
grey wolves in nature. The hunting technique and the social hierarchy of grey wolves are
employed to design a mathematical model, so the optimization process will take place
using the GWO [36]. Several GWO variants have been developed to avoid the local optima
and accelerate convergence speed by making specific modifications to the mechanism of
GWO. The improvement in the algorithm is supposed to alleviate the lack of population
diversity, the imbalance between exploitation and exploration, and will also avoid the
premature convergence in GWO [52].
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4.4. Ant–Lion Optimizer (ALO)

ALO mimics the hunting behavior of ant–lions in the early growth stage or larvae
stage, so ALO mathematically models ant–lions hunting behavior. The ants play the role of
search agents and move over the decision space while ant–lions can hunt them and become
fitter [53]. The new ant positions will be constantly evaluated and compared with those of
ant–lions. If an ant becomes fitter than its ant–lion, its position will be taken by the ant–lion.
If the best ant–lion reached in the current iteration becomes fitter than the elite, then the
elite will be updated. This process will continue until it finds the best solution.

4.5. Bird Swarm Algorithm (BSA)

Many bird species are gregarious, such as finches. They may roost in communes
and fly in flocks [54]. These behaviors are considered emergent behaviors and are based
on simple rules such as separation, alignment, and cohesion. Swarm behaviors develop
complex motions and interactions through simple social interaction. Thus, based on these
birds’ behavior and specific rules that can summarize the whole iteration process, the
BSA can be developed. For more information about BSA, we recommend the reader to
check [55], an article that simplifies the understanding of social behaviors of birds’ swarm
in a few steps. Once the previously mentioned rules are defined, the proposed algorithm
can be developed.

4.6. Neural Network Algorithm (NNA)

Artificial neural networks (ANN) are constructed out of computational models in-
spired by the natural nervous systems. The ANN structure comprises a few artificial
neurons associated with each other to form the neural network (NN). NNs can be classified
based on the structure into two kinds: feedforward and recurrent. Recurrent NNs have ei-
ther a local or global feedback structure dependent on its sort. As with all the metaheuristic
algorithms, the NNA begins its process by creating an initial population entitled example
arrangements inside the search space [18].

5. Methodology
5.1. OF Construction

An OF, or a loss function, is the used function to minimize or maximize the cost
function to find a feasible solution, which is considered the optimal solution. During this
process, the aim is to find the global maximum or minimum since it guarantees that the
cost function has entirely been optimized, instead of a local minimum or maximum that
says loss function has been optimized but not wholly.

The total of the squared errors (TSE) between the measured (V) and computed or
predicted (V̂) voltage points integrates the defined loss function [18], which in this case is
represented by Equation (14). The predicted voltage points are computed in terms of the
six aforementioned unknown parameters:

OF = minimized(TSE) = minimized

(
N

∑
i=1

[
Vi − V̂i

]2
)

(14)

where i represents each voltage point, and N is the total of voltage points.
Generally, an OF is subjected to a set of inequality constraints since it helps to reduce

and adjust the search space where the OA tries to find the optimal solution. For this case,
the used constraints are displayed in Table 1 where, for each unknown variable, an upper
and lower bound is defined.

5.2. Boundary and Initial Conditions for the Mathematical Model of the PEFC

As it was mentioned in Section 2.2, five RH levels were computed and used in the
experiments, according to the different gases’ temperatures. Following the description
of the mathematical model displayed in Section 3, specifically in Equation (10), there is a
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variable called Jmax, which indicates that the maximum value of the current density. This
value is found when the PEFC voltage of the polarization curve reaches zero.

Thus, with the collected datasets and by using the Curve Fitting tool from MATLAB,
Jmax values are computed and showed in Table 2.

Table 2. RH and Jmax values for the different gases temperature tested in the experiments.

Gas Temperature (◦C) RH (%) Jmax (A/cm2)

40 18.00 1.0277
50 27.70 1.6372
60 42.62 2.1890
70 65.57 2.3779
80 100.00 2.4529

5.3. Input Parameters for OAs

Every OA is characterized by having input parameters that begin the optimization pro-
cess and search for the optimal solution. The most common parameters are the maximum
number of iterations and the total population. Similar to other heuristic-based techniques,
the choice of parameters is achieved based on trial and error methodologies over a lot
of independent experiments and observing the performance reached of the OA under
analysis. Sometimes, equations are adequately defined by OAs, which help to find the best
or the most recommended values for its input parameters.

The numerical simulations of this work are implemented by using MATLAB environ-
ment (version R2091b-9.7.0.1190202) under Windows 10 Pro for Workstations 64-bit, with a
processor Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz and 12 GB of RAM.

For the five OAs implemented in this paper, Table 3 shows the used input parameters.
As mentioned, the values were selected based on trial and error and according to authors’
recommendations of the original papers.

Table 3. Input parameters for OAs (* means NOT APPLICABLE).

OA M p d c1 c2 a1 a2 FQ

NNA [56] 500 50 6 * * * * *
BSA [55] 500 50 6 1.5 1.5 1 1 3
ALO [53] 500 50 6 * * * * *

I-GWO [52] 500 50 6 * * * * *
MVO [57] 500 50 6 * * * * *

M is the maximum number of iterations until reaching the convergence, p is the
population size which is an important parameter, and it directly influences the ability to
search for an optimum solution in the defined search space, and d is the dimension of the
problem to be solved, i.e., the number of unknown parameters/variables.

On the other hand, for BSA, other additional parameters need to be defined:

• c1 and c2 are two positive constants which can be respectively called cognitive and
social accelerated coefficients into the birds’ foraging behavior.

• a1 and a2 are two positive constants’ values between 0 and 2, related to the birds’
vigilance behavior.

• FQ is the frequency in which each bird flies to another place.

For more details related to the BSA parameters, please refer to [55].

5.4. Error Metric for Predictions

To validate the different results computed through the OA, it is intended to compare
the voltage points experimentally obtained with the predicted voltage points. To achieve
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this, root mean square error or RMSE (Equation (15)) is used as a common error metric in
regression problems:

RMSE =

√√√√ 1
N
·

N

∑
i=1

[
Vi − V̂i

]2
(15)

where V is the measured voltage point, V̂ is the predicted voltage point, and N defines the
number of data points considered in the training of the OA.

5.5. Noise Metric for Experimental Data

When data are noisy, it can also be interpreted as there are outliers in itself, i.e., values
that break down the smoothness or continuity in most cases. Particularly in this kind of
experimentally collected data, these two effects are typical.

Thus, to analyze the noise in data, a vector with all values can be considered, and
taking each successive point, the absolute difference is calculated. Assuming that data
describe a smooth curve, these differences must be so small. However, if an outlier is
detected, the difference is larger and more significant. This concept is based on total
variation (TV) metric [58], which is applied as a basic distance norm in bounded data
into a mathematics area. Equation (16) shows the expression to compute the average total
variation (aTV):

aTV =
1

K− 1
·

K−1

∑
t=1
|Vt+1 −Vt| (16)

where K is the length of the vector of values, Vt+1 is the voltage point taken at time t + 1,
and Vt is the voltage point taken at time t.

6. Results and Discussion
6.1. RH Impact on Performance of a PEFC

The polarization curve is a characteristic performance curve of a PEFC that shows the
operating range according to the independent variables settled. Each polarization curve
is composed of three defined polarization regions: activation, ohmic, and concentration.
The activation polarization zone is characterized by a rapid voltage drop at the beginning
of the curve. It is produced by irreversibilities that PEFC has to overcome to operate in a
stable form. The irreversibilities are the back diffusion and crossover fuel, which take place
in the polymeric membrane. The next region is the ohmic polarization zone. Its name is
attributed to ohm’s law; this zone is characterized as the fuel cell voltage is proportional to
the current density, and its slope depicts the cell’s resistance. Finally, it is the concentration
polarization zone; to enter this region, the polarization curve suffers a second rapid drop. It
is produced commonly due to the lack of fuel at the catalyst layer. At high current density,
the water generation within the PEFC increases, obstructing the porous media. Thus, the
electrochemical reactions can not hold, and the performance drops sharply.

In Figure 3, the polarization curves obtained in the present study are shown for
different RH of the reactant gases. RH is one of the most important independent variables
that affect the performance of a PEFC, as shown in studies [37,38,59]. It is caused mainly
for the polymeric membrane used in PEFC. The membrane performance is higher when
the RH of the gases is close to 100%, while the performance is lower when the RH falls in
low values. This is the reason because the reactant gases have to enter humidified inside
the PEFC. However, there are applications for PEFC that need to operate at low RH; for
this, studies to analyze and quantify the effect of this variable are required.
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Figure 3. Polarization curves obtainedexperimentally: cell voltage as a function of current density
for different relative humidities.

As shown in Figure 3, the polarization curve with the best performance is tagged with
808080, i.e., 100% RH. It is reached when the temperature of the reactant gases is equal
to the temperature of the PEFC. In this case, the maximum current density for the PEFC
is around 2.0 A/cm2. However, the recommended range to operate is between 0.2 up
to 1.8 A/cm2, which depicts the ohmic polarization zone, i.e., the more stable region for
operating in real applications. Then, it can be noted that the PEFC performance decreases
when the RH decreases too. The lower RH presented in this study is when the temperature
of the reactant gases is 40 ◦C, while the cell’s temperature is maintained at 80 ◦C. In this
regard, a 16% RH value is obtained. The maximum current density with previously settled
conditions is around 0.9 A/cm2. At the same time, its ohmic polarization zone is a little
unstable and has a reduced operating range concerning the other curves. This will be
discussed in the later section. In addition, there is a difference of 1.4 A/cm2, comparing
the maximum current densities for 100% RH and 16% RH. This indicates the significant
influence of HR on the performance of a PEFC.

6.2. Sparsity and Noise of Experimentally Collected Data

All polarization curves were obtained using the same experiment configuration, where
the sample rate to collect data was 0.25 A/s. The test range goes from 0 to 50 A, which is the
current load maximum limit of the system. Data are obtained until the experiment drops
on its own due to the performance based on conditions settled. In addition, the threshold
voltage set up is 0.20 V for all cases. This setup of parameters is according to [40]. When
the RH has low values, data are obtained in lower amounts due to decreased operating
efficiency, which is considered sparsity in data. Hence, at low RH, the threshold voltage is
probably reached for low current density, making the test stop because PEFC would be
working in critical conditions.

On the other hand, concerning noise in data, Table 4 shows the aTV computed for all
collected subsets, where each one is associated with a RH.
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Table 4. Noise metric applied to measured voltage points in each polarization curve.

RH (%) 18.00 27.70 42.62 65.57 100.00

aTV (1× 10−3) 7.550 4.351 3.055 2.565 2.028

At first glance, in Figure 3, not much could be inferred about the data dispersion.
However, the aTV parameter shows that there is greater dispersion for curves with lower
RH than when working with higher RH. This means that, with a higher value of RH, the
experiment becomes more efficient and can reach 2.0 A/cm2 without stopping due to a
voltage drop, which is very usual at low RH values. Furthermore, the prediction of the OAs
at a low value of RH could cause less efficient results than at a high value of RH. As there
are less data and more noise, it could originate trends not so fitted with the experimental
curve compared to the predicted curves at low and high RH.

6.3. Computed Unknown Parameters

Before computing the parameters, it is important to mention that the unknown pa-
rameters can be influenced by temperature, relative humidity, the stoichiometric ratio of
the feed gases, and the composition or microstructural configuration of the MEA. For each
configuration of the aforementioned variables, the unknown parameters will have their
corresponding associated values. Despite this, the microstructural configuration does not
change in the current study since the MEA used was the same in all tests. Furthermore, the
stoichiometric ratio remained constant in all tests. Hence, in the current study, the primary
variable that determines the parameters is the relative humidity.

With the described parameters in Section 5.3, OAs were performed and the unknown
parameters are obtained according to the different RH employed in each experiment. To
make this methodology reproducible and more statistically significant, the OAs were repli-
cated 100 times. It was similarly done in the described tests in the articles corresponding
to each different OA. Next, Tables 5–9 resume the computed unknown parameters, the
calculated prediction errors for each OA, which are defined by the RMSE metric, the infor-
mation about the training time elapsed by the OAs, and the computed global optima (GO),
during those training stages.

Table 5. Unknown parameters computed and performance information for the modeled polarization
curve at 18% RH.

Parameters NNA BSA ALO I-GWO MVO

ξ1 −1.1149 −1.1149 −1.1994 −1.1154 −1.1997
ξ3(1× 10−5) 9.7999 9.7999 7.9154 9.7918 7.9091
ξ4(1× 10−5) −25.9999 −25.9999 −25.9999 −25.9999 −25.9999

λ 13.0000 13.0000 13.0000 13.0004 13.0000
Rc (mΩ) 0.8000 0.8000 0.8000 0.7997 0.8000

β 0.0645 0.0645 0.0645 0.06440 0.0645

ε (1× 10−2) 1.8664 1.8664 1.8665 1.8664 1.8665
ttraining (s) 35.8161 28.1427 34.8917 87.3449 30.7480

GObest (1× 10−2) 3.1351 3.1351 3.1353 3.1352 3.1353
GOworst (1× 10−2) 3.1353 3.4024 3.6350 3.1376 3.3613
GOstd (1× 10−7) 7.2980 9504.9800 11,392.5770 48.9820 5320.4450
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Table 6. Unknown parameters computed and performance information for the modeled polarization
curve at 28% RH.

Parameters NNA BSA ALO I-GWO MVO

ξ1 −1.0192 −1.0320 −1.1828 −1.1194 −1.1997
ξ3(1× 10−5) 9.7997 9.5129 6.1490 7.5609 5.7752
ξ4(1× 10−5) −24.4553 −24.4632 −24.4484 −24.4732 −24.4214

λ 14.2717 14.2110 22.2903 14.2064 14.1801
Rc (mΩ) 0.8000 0.7994 0.8000 0.7993 0.8000

β 0.0582 0.0578 0.0587 0.05779 0.0579

ε (1× 10−3) 5.8480 5.8490 5.8490 5.8490 5.8500
ttraining (s) 68.9683 88.9019 82.6906 201.3102 80.6157

GObest (1× 10−2) 4.9934 4.9944 4.9949 4.9955 4.9959
GOworst (1× 10−2) 5.2459 6.3568 6.6148 5.1094 6.4502
GOstd (1× 10−7) 6.5355 4079.0520 4193.5260 163.7320 4009.5830

Table 7. Unknown parameters computed and performance information for the modeled polarization
curve at 43% RH.

Parameters NNA BSA ALO I-GWO MVO

ξ1 −0.9891 −0.9891 −1.1605 −1.0420 −1.1997
ξ3(1× 10−5) 9.7999 9.8000 5.9719 8.6177 5.0981
ξ4(1× 10−5) −20.3072 −20.3074 −20.3087 −20.3098 −20.2981

λ 22.9999 22.9999 23.0000 22.9994 22.6254
Rc (mΩ) 0.7999 0.7999 0.8000 0.7996 0.7997

β 0.0753 0.0753 0.0753 0.07520 0.07435

ε (1× 10−3) 7.9120 7.9120 7.9130 7.9130 7.9190
ttraining (s) 191.0309 135.0847 111.0385 385.0889 108.358416

GObest (1× 10−2) 1.1456 1.1455 1.1458 1.1459 1.1476
GOworst (1× 10−2) 1.3451 1.4892 1.4107 1.1553 1.6837
GOstd (1× 10−7) 6011.3840 7731.1360 7497.3040 142.4000 9409.8590

Table 8. Unknown parameters computed and performance information for the modeled polarization
curve at 66% RH.

Parameters NNA BSA ALO I-GWO MVO

ξ1 −0.9696 −0.9692 −1.0620 −1.0076 −1.1997
ξ3(1× 10−5) 9.7916 9.7999 7.7240 8.9422 4.6376
ξ4(1× 10−5) −15.0015 −15.0028 −14.9989 −14.9991 −15.0440

λ 22.9999 22.9999 23.0000 22.9785 23.0000
Rc (mΩ) 0.7999 0.7999 0.8000 0.7997 0.8000

β 0.0657 0.0657 0.0658 0.0657 0.0655

ε (1× 10−3) 5.7980 5.7980 5.7990 5.8000 5.8000
ttraining (s) 298.3339 141.1235 88.8788 168.1751 130.6152

GObest (1× 10−2) 0.6724 0.6724 0.6725 0.6728 0.6729
GOworst (1× 10−2) 0.9459 1.2206 9.0701 0.6787 1.1342
GOstd (1× 10−7) 6883.3250 10,564.2350 5710.6560 116.0200 8616.5400
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Table 9. Unknown parameters computed and performance information for the modeled polarization
curve at 100% RH.

Parameters NNA BSA ALO I-GWO MVO

ξ1 −0.9843 −0.9843 −1.1993 −0.9906 −1.1997
ξ3(1× 10−5) 9.8000 9.7999 4.9772 9.6620 4.9669
ξ4(1× 10−5) −9.5400 −9.5400 −9.5400 −9.5413 −9.5400

λ 23.0000 23.0000 23.0000 22.9963 23.0000
Rc (mΩ) 0.8000 0.7999 0.8000 0.7988 0.8000

β 0.0703 0.0703 0.0703 0.0701 0.0705

ε (1× 10−3) 3.5840 3.5840 3.5850 3.5870 3.5850
ttraining (s) 95.4813 75.8022 159.2261 230.6826 110.6548

GObest (1× 10−2) 2.3894 2.3894 2.3903 2.3931 2.3907
GOworst (1× 10−2) 3.8519 6.7273 3.9850 2.5145 5.4944
GOstd (1× 10−7) 3668.1860 7889.4520 3649.9570 173.5280 5206.5160

As observed, for all OAs, the error is computed at different RH percentages. Compar-
ing the algorithm, the efficiency of the OA is contrasted in both training error and training
time. As it has been mentioned, NNA is one of the most recent proposals in the OA field,
which has shown a better accuracy over other OAs, considering variables of analysis like
the training error and training time.

Following that hypothesis, in this work, NNA once again shows an advantage in
general over BSA, ALO, I-GWO, and MVO. For example, for RH values such as 18%, 66%,
and 100%, the training error is the lowest, while, in other RH values like 28% and 43%,
the training error of I-GWO or BSA is lower than NNA. If the training time is analyzed, in
the two most recently mentioned RH percentages, NNA is better since it takes less time
to train the model. Thus, in a nutshell, NNA applied to this optimization problem shows
excellent performance, considering that these experiments have been developed under
different operation conditions.

Another point of analysis of OAs is about the convergence curves, which indicate how
the OA has optimized the unknown parameters to reach the global minimum or maximum
of its cost function through the training in the established epochs or iterations. In this case,
Figure 4 shows the convergence curves for all trained OAs, considering the performed
experiment under 100% RH, where it is clear that all curves reach the convergence along the
iterations; nevertheless, the way in which each OA operates in its search space is different,
and it varies along the iterations as it can be seen in Figure 4.

Furthermore, for performance information given in the global optima reached through
OAs, it is important to understand the statistical significance and level of reproducibility
of the models. For instance, in the aforementioned tables, the global optima obtained
along the trained OA models are similar, though the standard deviation could be high
or low, which indicates that, if the standard deviation is high, it is highly likely that
the model is not reproducible since, each time, the results can present large variations.
Instead, if the standard deviation is low, it is highly likely that the model is reproducible,
since the obtained results each time are very similar and reliable. Following this analysis,
NNA shows a better advantage over the rest of the OAs in the GOstd computed in all the
trained models.
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Figure 4. Convergence curves for the trained OAs, considering 100% RH.

Next, Figures 5–9 show the prediction curves for the best OA, i.e., in this case NNA, at
different RH values.
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Figure 5. Modeled polarization curve using the computed unknown parameters through NNA, at
18% RH.
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Figure 6. Modeled polarization curve using the computed unknown parameters through NNA, at
28% RH.
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Figure 7. Modeled polarization curve using the computed unknown parameters through NNA, at
43% RH.
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Figure 8. Modeled polarization curve using the computed unknown parameters through NNA, at
66% RH.
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Figure 9. Modeled polarization curve using the computed unknown parameters through NNA, at
100% RH.

On the other hand, in Figures 5–9, the modeled polarization curves are presented
according to the OA with the best performance, where it is also clear that data points do not
trace a smooth curve in low RH percentages. By contrast, there is a bit of noise in the data.
As the RH values increment, this noise vanishing and data points describe curves more
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smoothly. To justify this, it is crucial to analyze the operating conditions under the lab-scale
FC test system works from a technical point of view, as it is described in Section 6.2.

The results have shown how the OAs help obtain the best parameters missing for
modeling the polarization curves with a considerably reduced time since the experimental
methods for obtaining the unknown parameters involve extensive time and resources
consumption. Furthermore, as previously mentioned, the NNA had the best performance
compared with other natural OAs, even in tests with noise (low relative humidity). More-
over, the models run in the current study yield as final results modeling polarization
curves with higher accuracy that can be used in the future for designing, controlling, and
simulating complex engineering problems of PEFC.

7. Conclusions

Some different OAs have been applied to this engineering problem to define the
optimal values of PEFCs’ unknown parameters so correct modeling, control, and simulation
can be carried out for a specific experiment related to some of the PEFCs’ applications as
polarization curves. The tests are performed at different RH values to show the effectiveness
of OAs for every dataset that was experimentally obtained. According to the numerical
results, several conclusions can be made as shown next:

• In all cases, for the five different OAs (NNA, MVO, BSA, ALO, and I-GWO) applied
in this PEFC optimization problem, well fittings between measured and predicted
voltage points are reached when using the optimal values of the unknown parameters
for PEFCs.

• Statistical performance measures have been made to evaluate the efficiency and
competency of the five algorithms used to carry out this experiment, concluding
that NNA proves to give the best results for the optimal values of PEFCs’ unknown
parameters in almost all scenarios.

• NNA and MVO show a better response than the other three algorithms when only
referring to the training time. Although NNA optimal values are better, focusing on
the metric used to measure the error between measured and predicted voltage points.

• The optimal values for PEFCs’ unknown parameters were obtained at different RH
percentages. The NNA optimizer performed the best training in three out of five
scenarios, as, at RH values of 28% and 43%, I-GWO and BSA showed more accurate
results when focusing on the statistical performance measures.

• The comparisons that are properly detailed in this paper give the authors enough
information to confirm and conclude that the NNA optimizer has a better performance
and shows the best results, comparing it with other highlighted OAs.

Likewise, about the experimental section, a few conclusions have also been performed,
as follows:

• The polarization curves obtained show the great influence that the RH has on the per-
formance of a PEFC, obtaining a significant decrease in range operation of 1.4 A/cm2

when the RH is modified from 100% RH to 16% RH.
• Another RH impact on the performance of a PEFC is the increased presence of data

sparsity and noise at low RH due to the PEFC works under critical operating condi-
tions. Therefore, it also affects predicted curves that have a lower fit.

• To sum up, the data sparsity and noise also affect OAs, since it represents a higher
difficulty in finding the optimal parameters that allow for reaching the best fitting of
the polarization curves to data through the PEFC mathematical model.
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