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Abstract: Greenhouse gas (GHG) emission from electricity generation has been recognized as one of
the most significant contributors to global warming. The GHG emission factor of electricity (hereafter,
electricity emission factor) can be expressed as a function of three different (average, minimum, and
maximum) fuel emission factors, monthly fuel consumption, and monthly net power generation.
Choosing the average fuel emission factor over the minimum and maximum fuel emission factors
is the cause of uncertainty in the electricity emission factor, and thus GHG emissions of the power
generation. The uncertainties of GHG emissions are higher than those of the electricity emission
factor, indicating that the uncertainty of GHG emission propagates in the GHG emission computation
model. The bootstrapped data were generated by applying the bootstrap method to the original
data set which consists of a 60-monthly average, and minimum and maximum electricity emission
factors. The bootstrapped data were used for computing the mean, confidence interval (CI), and
percentage uncertainty (U) of the electricity emission factor. The CI, mean, and U were [0.431, 0.443]
kg CO2-eq/kWh, 0.437 kg CO2-eq/kwh, and 2.56%, respectively.

Keywords: GHG emission; electricity emission factor; fuel emission factor; uncertainty; bootstrap

1. Introduction

The greenhouse gas (GHG) emission factor of electricity (hereinafter, electricity emis-
sion factor) has been used widely to quantify GHG emissions from the generation and use
of electricity [1]. GHG emissions from electricity generation and use are one of the most
significant sources of GHG emissions in the world [2–6]. In particular, according to U.S.
Energy Information Administration (USEIA), in 2019 the total U.S. electricity generation by
the electric power industry was 4.13 trillion kilowatt-hours (kWh) from all energy sources,
which resulted in the emission of 1.72 billion metric tons of CO2. To be specific, power
plants that burned coal, natural gas, and petroleum fuels were the source of about 62%
of total U.S. electricity generation, but they accounted for 99% of U.S. electricity-related
CO2 emissions. The other 1% of CO2 emissions came from other fuels and gases derived
from fossil fuels and some types of geothermal power plants. USEIA considers electricity
generation from biomass, hydro, solar, and wind to be carbon neutral [7].

A challenge of the environmental assessment of a power system is the steady variabil-
ity of electricity generation due to the variabilities of the demand, some production sources
such as renewable sources, and the set of technical constraints [8]. Marginal electricity
generation has been considered an important application to meet strong seasonal and
diurnal variation in electricity demand [9]. Although there is a notable difference among
different electrical grids, Collinge et al. [9] observed that resource mix and regional grid
systems are particularly important for any LCA involving the use phase of buildings, which
was supported consistently by similar findings [9].
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The marginal emissions are the emissions that would come online if the new load was
added. When electricity load surges and thus the marginal power plant is in operation,
GHG emission from the marginal plant is usually higher than normal plants. Thus, the
marginal emissions factor, which is the change in CO2 emissions relating to a unit change
in electricity demand, needs to be secured [10].

The marginal emission factor is the emission factor of the marginal electricity, which
is the electricity generated by all the marginal sources [11]. There are two types of emission
factors in use: the global emission factor representing the average emission rate of the
power grid (of all power generators) and the marginal emission factor representing the
emission rate of the power grid due to a change in the power demand (emission rate of
the marginal generators) [12]. The electricity emission factors in this paper are the average
emission factors (global emission factor), which is the average CO2 emissions per average
unit of electricity delivered for an entire electrical system.

In the consequential LCA (CLCA) where the product system expansion is used to
avoid allocation, the marginal emissions including the marginal electricity emission have a
strong influence on the LCA results [13]. As such, the proper marginal electricity emission
factor is a crucial element to the accuracy and reliability of the CLCA results.

There are uncertainties associated with the average (global) and marginal emission
factors. Kono et al. [14] highlighted potential underestimation and overestimation of
emissions by using the annual average emission factor which ranged from +22% (weekday
nighttime of October 2015) to −34% (weekend daytime of May 2015). They suggested
that the application of hourly emission factor may be necessary to quantify the respective
emission from the consumers that use electricity during the weekend daytime and weekend
nighttime. For consumer use at other times, the emissions could be quantified appropriately
by using the conventional annual average emission factor [14].

Assessing the uncertainty enables the comparison of different information and com-
munication technology (ICT) systems. The IEEE [15] compared two ICT systems with
different uncertainties: 23.8 +/− 3% versus 25.3 +/− 20%. If expressed in a confidence
interval (CI), the former can be [23.1, 24.5], the latter [20.2, 30.4]. Assuming that the confi-
dence level of both cases is equal (e.g., 95%), the CI width overlaps such that one cannot
claim that the former is different from the latter. In this case, however, the latter has the
percentage uncertainty (U) of 40.3%, while the former has 5.9%, which shows that the
latter has 6.8 times higher uncertainty than that of the former. This indicates that direct
comparison between the two may be problematic. Nonetheless, this example shows an
important application of the uncertainty information to ascertain which product system
emits less GHG emissions.

The electricity emission factor has been presumed constant in many parts of the world.
For instance, 0.957 tCO2/MWh, 0.928 kgCO2-eq/kWh in South Africa, 0.555 kgCO2-eq/kWh
in China, 0.708 kgCO2-eq/kWh in India, 0.506 kgCO2-eq/kWh in Japan, 0.495 kgCO2-eq/kWh
in Korea, 0.8800 kgCO2-eq/kWh in Australia, 0.4258 kgCO2-eq/kWh in the United Arab
Emirates, 0.13 kgCO2-eq/kWh in Canada, 0.45322 kgCO2-eq/kWh in the United States,
0.074 kgCO2-eq/kWh in Brazil, etc. [16–21]. However, it can also be considered a random
variable [22,23]. Lee et al. [22] compared the effect of the feedstock emission factors under
the constant and random variable assumptions in quantifying GHG emissions from dairy
farms [24,25].

For the electricity emission factor case, the factor was treated as both constant and
random variable [26]. In general, the electricity emission factor varies continually because
of the variations in fuel consumption and net power generation, and the presence of other
powers such as the nuclear and renewable powers in the electricity grid [27,28]. Fossil
fuel consumption for power generation varies continually due to variations in power
generation. The variation comes from several sources including demand for power (either
higher or lower demand), the shutdown of the power plant due to repair and maintenance,
and changes in the power grid, etc. [28–34].
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The electricity emission factor, Y, is a function of various random variables (i.e., here
factors). Some of the factors may be dependent on each other, such as ambient temperature
and demand for cooling. However, there are independent factors such as industrial
production/consumption, ambient temperature, fuel mix, fuel composition, among others.
Since an electricity emission factor is a function of (depends on) these independent random
variables, the factor can be considered an independent random variable. However, it may
also be considered an independent random variable as an approximation. This is because
there are so many factors at play and some factors are interrelated or duplicative such
that independence among the numerous factors cannot be ensured. Thus, we consider the
electricity emission factor an independent random variable as an approximation.

The objective of this paper is to (1) assess the effect of three different fuel emission fac-
tors (average, minimum, and maximum) on the electricity emission factor and (2) propose a
modified approach for computing the electricity emission factor based on the bootstrapping
simulation which incorporates three fuel emission factors, fuel consumptions, and net
power generation.

2. Materials and Methods

Fossil fuel consumption data for generating power in Korea from January 2015 to
December 2019 were collected from the website of the Korea Electricity Corporation [28].
Four different types of fossil fuel for power generation include: Anthracite coal, Bituminous
coal, Heavy oil, and Liquified Natural Gas (LNG). For each type of fuel, we collected
the monthly fuel consumption (GJ) and power generation (Gwh) data. In addition, the
total power generation data in the Korean electricity grid, including the nuclear and
renewable powers during the same time period, were also collected. The in-plant power
consumption and transmission loss data were available in the form of the percentage of the
total power generation.

Equation (1) is an equation to calculate the net power generation factor from the entire
electricity grid. The Korean electrical grid is a single grid.

Net power generation factor = 1 − ft − fp (1)

where,
ft = transmission loss factor
fp = in-plant loss factor.
The values of the ft and fp in Equation (1) were given by the power generator as the

average during the five-year period. As such, they are constants. Equation (2) was used to
compute the net power generation from the entire electricity grid by multiplying the net
power generation factor to the total power generation of the grid mix.

Net power generation = (1 − ft − fp) * total power generation, Gwh (2)

Equation (3) is based on the Tier I approach for computing the electricity emission
factor for the single electricity grid [35].

Electricity emission factor (Tier I approach) =
average fuel emission factor * fuel consumption/net power generation

(3)

The GHG emission factor of fuels is termed as fuel emission factors in this paper.
Table 1 lists the average, minimum, and maximum values of the fuel emission factor [35].
For fossil fuel combustion, uncertainties in CO2 emission factors are relatively low. How-
ever, there are likely to be intrinsic differences in the uncertainties of CO2 emission factors
of petroleum products, coal, and natural gas. Emission factors for CH4 and especially N2O
are highly uncertain. Default uncertainty estimates of CH4 vary from 50 to 150%, and that
of N2O is on the order of magnitude. Such variability obviously will also contribute to the
uncertainty in the emission estimates [35].
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Table 1. Fuel emission factor (kg CO2-eq/kg fuel).

Gas Anthracite Bituminous Heavy Oil LNG

CO2 avg 98,300 94,600 74,100 64,200
CO2 min 94,600 89,500 72,600 58,300
CO2 max 101,000 99,700 74,800 70,400
CH4 avg 32 32 96 96
CH4 min 10 10 32 32
CH4 max 96 96 320 320
N2O avg 447 447 179 179
N2O min 149 149 60 60
N2O max 1490 1490 596 596

Equation (3) uses the average fuel emission factor of each fuel type listed in Table 1,
and fuel consumption/net power generation of each fuel type [27,28]. The average fuel
emission factor for Bituminous coal, for instance, is the sum of CO2 avg, CH4 avg, and
N2O avg of the Bituminous column where 94,600 + 32 + 447 = 108,904 kg CO2-eq/kg
Bituminous coal.

The uncertainty of emission factors has been considered a major challenge to the
estimation of GHG emissions by the Intergovernmental Panel on Climate Change (IPCC).
The IPCC recommends reporting a mean estimate of the GHG emissions as the point
estimate. The uncertainty analysis focuses on the quantification of the random errors
with respect to the mean estimate using the classical inference statistics, such as the 95%
confidence interval (CI) here [36]. They recommend reporting the uncertainty as the
percentage uncertainty (U) where U is the ratio of the half-width ((the upper bound–lower
bound of the CI)/2) divided by the mean of the two bounds in percent [36].

In this study, we adopted the IPCC approach in reporting and comparing the un-
certainty with respect to U. In addition, we advocated in this paper that use of a point
estimate can be misleading without U. Most of the electricity emission factors reported a
point estimate without U. As such, we prefer to report the electricity emission factor and
GHG emissions with respect to the 95% CI and U, although we report the point estimate
at the same time. The main point here is that a point estimate alone is misleading, for it
imparts the notion that the electricity emission factor and GHG emission is a single value.
The fact is that the true mean (unknown) lies between the lower bound and upper bound
of the CI for 95% of the time. A point estimate is one of the many possible values of the
electricity emission factor and GHG emission within the CI such that their accuracy cannot
be estimated by the point estimate alone.

Interval estimate using the 95% CI approach based on the observed data is often
used in estimating the CI of the electricity emission factor and GHG emission [36,37].
Stochastic simulation improves the accuracy of the interval estimate; thus, use of the
stochastic simulation method such as the bootstrap method [38–41] is necessary. In this
study, the bootstrap method was used to obtain the CI of the electricity emission factor and
GHG emission.

We propose an approach in this paper to obtain the electricity emission factors.
Equation (4) is the proposed approach for computing the electricity emission factor as
a function of the three different fuel emission factors, monthly fuel consumption, and
monthly net power generation.

Y = AX (4)

where,
Y = electricity emission factor (proposed approach), kg CO2-eq/kwh,
A = fuel emission factor matrix, kg CO2-eq/MJ fuel,
X = random variable vector = {X1, X2} = X1/X2,
X1 = fuel consumption per fuel type, MJ/fuel type,
X2 = net power generation, kwh.
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As shown in Equation (4), only X1 and X2 are random vectors. The A matrix, ft, and fp
are constants. In Equation (4), the A matrix (matrix size: 9 × 4 = 36) is the same as shown
in Table 1. The X random variable vector consisting of two random variables, X1 and X2,
represent the monthly fuel consumption and monthly net power generation of each fuel
type, respectively. The X1 vector has 60-monthly fuel consumption data of the four types
of fuels (60 × 4 = 240), and the X2 vector has 60-monthly net power generation data of the
four types of fuel (60 ×4 = 240), each in a matrix form.

The three fuel emission factors (minimum, average, and maximum) in matrix A are
independent of each other; thus, all computations of the electricity emission factors based
on the three fuel emission factors were made independently. Therefore, there are three
different electricity emission factors obtained from Equation (4).

When calculating the CI of the electricity emission factor, bootstrapping was applied
to X1 and X2, while keeping A matrix constant to generate the bootstrapped data for each
of the three electricity emission factors. As such there are different CI and U for each of the
three-electricity emission factors.

The bootstrapping gives narrower CI, as such it increases accuracy of the Y compared
to the non-bootstrapping case (e.g., using raw data for computing Y) [21–23,42]. A computer
program was coded using R, a programming language specialized in statistics, to compute
the electricity emission factors and GHG emissions based on the bootstrap method [39].

The reason for choosing five latest years for the time period is that the mean yearly
electricity emission factors were relatively similar (0.429, 0.439, 0.444, 0.432, 0.436) during
this time period, indicating that the fuel consumption/net electricity generation during
the same time period remains relatively flat. The reason for using the monthly average
electricity emission factor is that there are neither daily nor weekly average electricity
emission factors available. If daily or weekly data were available, these data can be used
in lieu of the monthly data to reflect continual fluctuation of the type and amount of fuel
consumption per net power generation.

The time period of the Tier I approach, however, is not transparent. Often there is no
disclosure of the time period covered and the number of data used [43]. In fact, most of the
electricity emission factors in the literature are not transparent and do not disclose the time
period and the number of data used [17,19,20].

The difference between the proposed approach and the Tier I approach can be sum-
marized as (i) use of the three different (average, minimum, and maximum) fuel emission
factors versus the average fuel emission factor, and (ii) specified time period of the fuel con-
sumption and known number of data used versus unspecified time period and unknown
number of data used.

GHG emission computation equation in Equation (5) is a product between the electric-
ity emission factor and the net power generation.

GHG emission= electricity emission factor * net power generation (5)

The relative difference (RD) is defined as the half-width between the maximum and
minimum values divided by the average value as shown in Equation (6). Conceptually the
RD is similar to the U defined in IPCC [36].

RD = (maximum value-minimum value)/(2 * average value) * 100 (6)

3. Results and Discussions

Figure 1 shows the variation of several factors including the transmission loss (a),
in-plant loss (b), net power generation factor (c), and power generation factor (d) over the
60-month period from 2015 to 2019. The power generation factor includes the net power
generation factor as well as the transmission plus in-plant loss factor.
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Figure 1. Variation of the transmission loss (a), in-plant loss (b), net power generation factor (c), and
power generation factor (d).

The transmission loss factor (a) and in-plant loss factor (b) vary considerably over the
months. As such, the net power generation factor (c) also varies considerably. Figure 1d
shows both the net power generation factor and the transmission plus in-plant loss factor,
where the value of the former is 0.926, while the latter 0.074. Thus, approximately 7.4%
of the total power generated is lost, and only 92.6% is used by the end-user, which is the
net power.

Figure 2a shows the fossil fuel consumption during the 60-month period. Bituminous
coal was the fuel consumed most (77.1%), followed by LNG (19.2%), Heavy oil (2.3%), and
Anthracite coal (1.4%). Total energy consumption of fossil fuels for 5 years was 12,538,220 TJ,
or 2,507,644 TJ/year. The total fossil fuel consumption varies considerably from month to
month, most fluctuations occur in the Bituminous coal and LNG consumption. Figure 2b
shows that the monthly net fossil fuel power generation. It fluctuates considerably over
the 60-month period.

The monthly electricity emission factors (average, minimum, and maximum) were
plotted in Figure 3a. The three fuel emission factors (minimum, average, and maximum) in
matrix A were multiplied by common elements of X vector (X1/X2) to generate three dif-
ferent electricity emission factors from Equation (4). An assumption made in Equation (4)
is that no GHG emission occurs from the nuclear and other sources of power generation
processes. We will use the term average electricity emission factor as the one based on the
average fuel emission factor. The same applies to the minimum and maximum electricity
emission factors. Figure 3a shows that the average, minimum, and maximum electricity
emission factors fluctuate considerably over the month. Figure 3b shows that the monthly
GHG emissions based on the average, minimum, and maximum electricity emission fac-
tors fluctuate considerably over the month. Figure 3b indicates a similar trend as that
in Figure 3a. However, the degree of fluctuation is more prominent compared to that in
Figure 3a.
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Causes of the monthly fluctuations of the electricity emission factors may be due to
the factors listed below.

(i) The power mix from the fossil fuels, nuclear, and other sources of energy vary continually.
(ii) The transmission loss and in-plant loss (consumption) vary continually.
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(iii) The amount and the proportion of the fossil fuels consumed for the fossil fuel power
generation vary continually.

(iv) Power plant operating time varies due to repair and maintenance and changing
demand for electricity.

Table 2 shows that the overall and five-yearly mean values of the three (average,
minimum, and maximum) electricity emission factors are different. Here the overall
electricity emission factor is a simple average of the five-yearly electricity emission factors
(2015~2019). The coefficient of variations of the average, minimum, and maximum values,
7.38, 7.39, and 7.37%, respectively, are essentially identical. This indicates that differences in
the three electricity emission factors originate from the different fuel emission factors, not
from the number of data used for computing the electricity emission factor (i.e., 12 vs. 60).

Table 2. The U, mean and RD of the average, minimum, and maximum electricity emission factors.

Year
U (%) Mean Electricity Emission Factor

(kg CO2-eq/kwh)
RD (%)

Avg Min Max Avg. Min Max

overall 3.91 4.02 3.93 0.455 0.427 0.487 6.55
2015 8.15 7.91 7.91 0.429 0.403 0.459 6.52
2016 10.37 10.53 9.97 0.439 0.412 0.470 6.56
2017 9.7 10.74 9.59 0.444 0.416 0.473 6.55
2018 8.08 7.83 8.02 0.432 0.406 0.462 6.53
2019 4.96 4.75 4.84 0.436 0.409 0.466 6.57

To verify the difference among the three (average, minimum, and maximum) electricity
emission factors statistically, the box plot, the analysis of variance (ANOVA) test, and the
Tukey Honest Significance Difference (HSD) test [44] were performed. The box plot shown
in Figure 4a supports that there are differences among the three electricity emission factors.
The ANOVA test [45], results not shown here, indicates that there is a statistically significant
difference among the three. The 95% family-wise confidence level (b) from the HSD test
shown in Figure 4b indicates that the three are significantly different.

The U of the three different electricity emission factors shown in Table 2 range from
3.91% to 10.37% (for the average electricity emission factor case) but are essentially the
same in a given year. The same U value indicates that it does not change among the three.
However, different U among the five different years may be due to the difference in fuel
consumption and net power generation in each year. Smaller U of the overall average
electricity emission factor was due to the smoothing effect resulting from more data points
(60) compared to fewer data points (12) for each of the five-yearly average electricity
emission factors. Note that the overall U is not a simple average of the five U values.

Table 3 shows different mean monthly GHG emissions based on the average, mini-
mum, and maximum electricity emission factors. The coefficient of variation of the mean
monthly GHG emissions based on the three electricity emission factors were 11.77, 11.76,
and 11.78%, respectively, and they are essentially identical. This is the same observation
as in the case of the electricity emission factor discussed in Table 2. That is, the difference
among the three different GHG emissions originates from the different electricity emission
factors, and thus GHG emissions, not from the number of data used for computing GHG
emissions (i.e., 12 vs. 60).

To verify the difference among the three (average, minimum, and maximum) GHG
emissions statistically, we performed the same analysis as the electricity emission factors
case. The box plot supports that there are differences among the three different GHG
emissions. The ANOVA test results indicate that there is a statistically significant difference
among the three different GHG emissions. The 95% family-wise confidence level from the
HSD plot indicates that the three different GHG emissions are significantly different. These
are essentially the same observations as discussed in the electricity emission factor case.
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Table 3. The U, mean, and RD of the monthly GHG emissions based on the average, minimum, and
maximum electricity emission factors.

Year
U (%) Mean Monthly GHG Emissions (Gg

CO2-eq/Month)
RD (%)

Avg. Min Max Avg. Min Max

overall 14.04 13.98 14.11 18,507 17,375 19,791 6.55
2015 15.68 15.55 15.75 18,335 17,213 19,609 6.52
2016 14.64 14.67 14.62 18,638 17,494 19,938 6.56
2017 11.79 11.84 11.78 18,988 17,824 20,310 6.55
2018 14.25 14.18 14.31 18,379 17,255 19,656 6.53
2019 9.34 9.35 9.35 18,452 17,318 19,740 6.57

The U of the overall and yearly GHG emissions shown in Table 3 range from 9.34% to
15.75% but are essentially the same in a given year. The same U indicates that it does not
change among the three different GHG emissions. However, different U of the three GHG
emissions among different years is attributed to the difference in fuel consumption and net
power generation in each year.

The RD among the overall and yearly GHG emissions shown in Table 3 are essentially
identical, ranging from 6.53% to 6.57%. The same was observed in the electricity emission
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factor case. This indicates that there are inherent differences among the average, minimum,
and maximum electricity emission factors originating from the differences in the three dif-
ferent fuel emission factors. Thus, choosing the average fuel emission factor over the other
two is the cause of uncertainty in the electricity emission factor and GHG emissions.

The U ratio between the GHG U value and the electricity emission factor U value of
the three cases shown in Table 4 indicate that there is no difference in the U ratio in a given
year. However, there are significant differences among different years, the ratio ranging
from 1.22 to 3.63 (in the case of minimum electricity emission factors). Again, this is the
same observation as above.

Table 4. The U ratio (GHG U value/electricity emission factor U value).

Year Average Minimum Maximum

overall 3.59 3.63 3.55
2015 1.92 1.93 1.91
2016 1.41 1.42 1.38
2017 1.22 1.22 1.22
2018 1.76 1.75 1.76
2019 1.88 1.85 1.90

Tables 2–4 show that the uncertainties of GHG emissions are higher than those of the
electricity emission factors, indicating that the uncertainty of GHG emission propagates.
This is because of two different sources of uncertainties involved in computing GHG
emission. They are the uncertainty of the electricity emission factor and that of the net
power generation. The net power generation has been involved twice in computing GHG
emission, once in the electricity emission factor computation, and the other in the GHG
emission computation.

Table 5 shows the statistics of the electricity emission factors including the mean, CI
and U computed under the proposed and Tier I approach, each with two different scenarios.
The proposed approach under the 5-yearly scenario shows approximately two times higher
U value compared to that of the 60-monthly scenario. This was expected that the former
has only 5 data, while the latter has 60. More data gives smaller variance and thus smaller
CI and U compared to the fewer data case. Both scenarios under the proposed approach
have the same mean of 0.437 kg CO2-eq/kwh.

Table 5. The mean, CI, and U of the electricity emission factors for different scenarios.

Proposed Approach Tier I Approach

5-Yearly 60-Monthly Single 60-Monthly

Mean (kg CO2-eq/kwh) 0.437 0.437 0.435 0.435
CI (kg CO2-eq/kwh) [0.424, 0.449] [0.431, 0.443] - [0.427, 0.444]

U (%) 5.62 2.56 - 3.82

The two different scenarios under the Tier I approach have the same mean of
0.435 kg CO2-eq/kwh. A point estimate cannot represent the variability of the data used
for computing the electricity emission factor. This indicates that the point estimate may not
be used alone. Instead, the CI can be used, for it represents the variability of the data.

The CI and U among the three different scenarios (two under the proposed approach
and one under the Tier I approach) are different. The 60-monthly scenario under the
proposed approach gives the smallest CI and U. This is because the 60-monthly scenario
under the proposed approach considers three different fuel emission factors explicitly. This
is in contrast to the use of the average fuel emission factor in the 60-monthly scenario of
the Tier I approach.

There is a limited number of research on the uncertainty of the electricity emission
factors today. The weak law of large numbers (WLLN) states that the probability of the
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absolute difference between the sample mean Mn and the true mean of the sample (a
sequence of random variable Xj) approaches 0 for every ε > 0 when n approaches infinity,
in accordance with the probability in convergence [46]. Here ε is termed accuracy, and
often the value of ε is chosen around 3 percentage points of the absolute difference between
Mn and the expected value of X of the sample in most of the statistical inference.

The U defined as the half-width of the CI divided by the mean of the upper and lower
bound of the CI can be considered similar to the accuracy ε in WLLN. Hence, the U can be
envisaged as the accuracy of the CI. This study reports that the U of the electricity emission
factor is 2.56%. The 2.56% accuracy can be a reasonable accuracy.

The electricity emission factor is used for computing GHG emissions from electricity
generation and consumption. A prerequisite for an accurate estimation of GHG emissions
is the accurate estimation of the electricity emission factor. In this respect, the electricity
emission factor should be expressed as an interval estimate, and the CI and U should
have the smallest values. In addition, a suitable time period should be chosen, and a large
number of data points should be available. Furthermore, different fuel emission factors
should also be considered to reflect the variability of the electricity emission factor. This
leads to the conclusion that the 60-monthly scenario is the best scenario for computing the
electricity emission factor in this study. The CI and mean of the electricity emission factor
can then be used to compute GHG emissions from the electricity generation.

In addition to the bootstrap method, there are other simulation methods such as the
Monte Carlo Simulation (MCS) method. However, prerequisite of the MCS method is
the identification of the probability density function of the raw data, which is the most
difficult to estimate accurately such that inaccurate results from the MCS method may
arise [21–23,42].

The current GHG emission estimation method by IPCC focuses on the point estimate
of the data [34]. The Tier I approach (60-monthly) in Table 5 treated fuel consumption and
net power generation as random variables; as such it can address the variability of the
input data and can be compared with the proposed approach. Although the mean of GHG
emissions in both approaches was the same, the U of the Tier I approach was 1.5 times
higher than that of the proposed approach. This indicates that the Tier I approach based
on the average fuel emission factors would generate less accurate GHG emission values
compared to the proposed approach.

This observation is a piece of assuring evidence that the electricity emission factor
must incorporate different fuel emission factors (average, minimum, and maximum), and
fuel consumption per net power generation within a time period covered and the number
of data used. Furthermore, the propagation of error (uncertainty) from the electricity
emission factor to GHG emission indicates that there is a need for future research that
minimizes the propagation error. This may suggest that Bayesian inference statistics may
need to be applied instead of the classical inference statistics adopted in this study.

The percent contribution of CO2, CH4, and N2O to GHG emission from fossil fuel
power generation was also analyzed. The percent contribution of CO2, CH4 and N2O to
GHG emission from the fossil fuel power generation showed that most GHG emissions
came from CO2 (>99.5%). Contributions from CH4 and N2O were less than 0.05 and 0.44%
on average, respectively.

4. Conclusions

Conclusions from this study are:

1. The electricity emission factor can be expressed as a function of the three different
(average, minimum, and maximum) fuel emission factors, monthly fuel consumption,
and monthly net power generation.

2. The bootstrapped data based on the 60-monthly average, minimum, and maximum
electricity emission factors under the proposed approach can be used for computing
the mean, CI, and U of the electricity emission factor and GHG emission. The CI, mean,
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and U values of the electricity emission factor were (0.431, 0.443) kg CO2-eq/kwh,
0.437 kg CO2-eq/kwh and 2.56%, respectively.

3. The uncertainties of GHG emissions are higher than those of the electricity emission
factors, indicating that uncertainty of GHG emission propagates.

4. Choosing the average fuel emission factor over the minimum and maximum fuel
emission factors is the cause of uncertainty in the electricity emission factor and
GHG emissions.

Author Contributions: K.M.L. conceived the research idea, analyzed the results, coded R programs,
and drafted manuscript. M.H.L. collected data, processed the data using the coded R program, and
contributed to the discussion. Both authors have read and agreed to the published version of the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brander, M.; Sood, A.; Wylie, C.; Haughton, A.; Lovell, J. Electricity-Specific Emission Factors for Grid Electricity; Technical Paper;

Ecometrica: London, UK, 2011.
2. International Energy Agency. CO2 Emissions from Fuel Combustion 2019 Highlights; International Energy Agency: Paris,

France, 2019.
3. Edelenbosch, O.Y.; Kermeli, K.; Crijns-Graus, W.; Worrell, E.; Bibas, R.; Fais, B.; Fujimori, S.; Kyle, P.; Sano, F.; van Vuuren, D.P.

Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models. Energy 2017, 122,
701–710. [CrossRef]

4. Olivier, J.G.J.; Schure, K.M.; Peters, J. Trends in Global CO2 and Total Greenhouse Gas Emissions; PBL Netherlands Environmental
Assessment Agency: The Hague, The Netherlands, 2017; p. 5.

5. Chuang, J.; Lien, H.-L.; Den, W.; Iskandar, L.; Liao, P.-H. The relationship between electricity emission factor and remodifiedable
energy certificate: The free rider and outsider effect. Sustain. Environ. Res. 2018, 28, 422–429. [CrossRef]

6. Shearer, C.; Fofrich, R.; Davis, S.J. Future CO2 emissions and electricity generation from proposed coal-fired power plants in
India. Earth’s Future 2017, 5, 408–416. [CrossRef]

7. USEIA. How Much Carbon Dioxide Is Produced Per Kilowatthour of U.S. Electricity Generation? Available online: https:
//www.eia.gov/tools/faqs/faq.php?id=74&t=11#:~{}:text=In2019%2CtotalU.S.electricity,ofCO2emissionsperkWh (accessed on
10 March 2021).

8. Milovanoff, A.; Dandres, T.; Gaudreault, C.; Cheriet, M.; Samson, R. Real-time environmental assessment of electricity use: A tool
for sustainable demand-side management programs. Int. J. Life Cycle Assess. 2017, 23, 1981–1994. [CrossRef]

9. Collinge, W.O.; Rickenbacker, H.J.; Landis, A.E.; Thiel, C.; Bilec, M.M. Dynamic Life Cycle Assessments of a Conventional Green
Building and a Net Zero Energy Building: Exploration of Static, Dynamic, Attributional, and Consequential Electricity Grid
Models. Environ. Sci. Technol. 2018, 52, 11429–11438. [CrossRef] [PubMed]

10. Hawkes, A. Long-run marginal CO2 emissions factors in national electricity systems. Appl. Energy 2014, 125, 197–205. [CrossRef]
11. Dandres, T.; Moghaddam, R.F.; Nguyen, K.K.; Lemieux, Y.; Samson, R.; Cheriet, M. Consideration of marginal electricity in

real-time minimization of distributed data centre emissions. J. Clean. Prod. 2017, 143, 116–124. [CrossRef]
12. Dandres, T.; Langevin, A.; Walzberg, J.; Abdulnour, L.; Riekstin, A.C.; Margni, M.; Samson, R.; Cheriet, M. Toward a Smarter Elec-

tricity Consumption. 2020. Available online: https://emi-ime.ca/wp-content/uploads/2020/02/ETS_POLY_Dandres_Samson_
Margni_Near_real-time_modelling_and_smart_management_of_electricity_consumption.pdf (accessed on 14 March 2021).

13. Ekvall, T. Attributional and Consequential Life Cycle Assessment. In Sustainability Assessment at the 21st Century; Bastante-Ceca,
M.J., Fuentes-Bargues, J.L., Hufnagel, L., Mihai, F.-C., Iatu, C., Eds.; IntechOpen: London, UK, 2019; Available online: https:
//www.intechopen.com/chapters/69212 (accessed on 20 February 2021). [CrossRef]

14. Kono, J.; Ostermeyer, Y.; Wallbaum, H. The trends of hourly carbon emission factors in Germany and investigation on relevant
consumption patterns for its application. Int. J. Life Cycle Assess. 2017, 22, 1493–1501. [CrossRef]

15. IEEE Std 1922.2-2019—IEEE Standard for a Method to Calculate Near Real-Time Emissions of Information and Communication Technology
Infrastructure; IEEE Communications Society: New York, NY, USA, 2019.

16. Donat, L.; Schindler, H.; Burck, J. Climate Transparency Report 2019; Elsevier: Berlin, Germany, 2019.
17. Spalding-Fecher, R. What is the carbon emission factor for the South African electricity grid? J. Energy S. Afr. 2011, 22, 8–14.

[CrossRef]

http://doi.org/10.1016/j.energy.2017.01.017
http://doi.org/10.1016/j.serj.2018.05.004
http://doi.org/10.1002/2017EF000542
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11#:~{}:text=In2019%2CtotalU.S.electricity,ofCO2emissionsperkWh
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11#:~{}:text=In2019%2CtotalU.S.electricity,ofCO2emissionsperkWh
http://doi.org/10.1007/s11367-017-1428-2
http://doi.org/10.1021/acs.est.7b06535
http://www.ncbi.nlm.nih.gov/pubmed/30193455
http://doi.org/10.1016/j.apenergy.2014.03.060
http://doi.org/10.1016/j.jclepro.2016.12.143
https://emi-ime.ca/wp-content/uploads/2020/02/ETS_POLY_Dandres_Samson_Margni_Near_real-time_modelling_and_smart_management_of_electricity_consumption.pdf
https://emi-ime.ca/wp-content/uploads/2020/02/ETS_POLY_Dandres_Samson_Margni_Near_real-time_modelling_and_smart_management_of_electricity_consumption.pdf
https://www.intechopen.com/chapters/69212
https://www.intechopen.com/chapters/69212
http://doi.org/10.5772/intechopen.89202
http://doi.org/10.1007/s11367-017-1277-z
http://doi.org/10.17159/2413-3051/2011/v22i4a3225


Energies 2021, 14, 5697 13 of 13

18. Song, R.; Zhu, J.; Hou, P.; Wang, H. Getting Every Ton of Emissions Right: An Analysis of Emission Factors for Purchased Electricity in
China; World Resource Institute: Washington, DC, USA, 2013; p. 16.

19. Park, Y.-S.; Yeon, S.-M.; Lee, G.-Y.; Park, K.-H. Proposed Consecutive Uncertainty Analysis Procedure of the Greenhouse Gas
Emission Model Output for Products. Sustainability 2019, 11, 2712. [CrossRef]

20. Yang, L.; Yu, B.; Yang, B.; Chen, H.; Malima, G.; Wei, Y.-M. Life cycle environmental assessment of electric and internal combustion
engine vehicles in China. J. Clean. Prod. 2021, 285, 124899. [CrossRef]

21. Lee, M.H.; Lee, J.S.; Lee, J.Y.; Kim, Y.H.; Park, Y.S.; Lee, K.M. Uncertainty analysis of a GHG emission model output using the
block bootstrap and Monte Carlo simulation. Sustainability 2017, 9, 1522. [CrossRef]

22. Lee, J.Y.; Lee, M.H.; Lee, J.S.; Chun, Y.-Y.; Kim, K.H.; Kim, M.S.; Lee, K.M. Developing emission factors for dairy cow enteric
fermentation in Korea. J. Clean. Prod. 2018, 198, 754–762. [CrossRef]

23. Lee, J.S.; Lee, M.H.; Chun, Y.-Y.; Lee, K.M. Uncertainty Analysis of the Water Scarcity Footprint Based on the AWARE Model
Considering Temporal Variations. Water 2018, 10, 341. [CrossRef]

24. Kim, M.; Yang, S.-H.; Oh, Y.K.; Park, K.-H. Estimation of greenhouse gas emissions from Korean livestock during the period
1990–2013. J. Clim. Chang. Res. 2016, 7, 383–390. [CrossRef]

25. Lee, H.J.; Lee, S.C. National methane inventory relevant to livestock enteric fermentation. J. Anim. Sci. Technol. 2003, 45, 997–1006.
26. Mavromatidis, G.; Orehounig, K.; Carmeliet, J. Uncertainty and global sensitivity analysis for the optimal design of distributed

energy systems. Appl. Energy 2018, 214, 219–238. [CrossRef]
27. Cho, Y. Yearbook of Energy Statistics; Enerdata: Ulsan, Korea, 2020; pp. 175–214.
28. Statistics of Electic Power in Korea; Enerdata: Ulsan, Korea, 2020; pp. 3–181.
29. Soimakallio, S.; Kiviluoma, J.; Saikku, L. The complexity and challenges of determining GHG (greenhouse gas) emissions from

grid electricity consumption and conservation in LCA (life cycle assessment)–a methodological review. Energy 2011, 36, 6705–6713.
[CrossRef]

30. Jin, S.W.; Li, Y.P.; Nie, S.; Sun, J. The potential role of carbon capture and storage technology in sustainable electric-power systems
under multiple uncertainties. Remodified. Sustain. Energy Rev. 2017, 80, 467–480. [CrossRef]

31. Ilyas, H.M.A.; Safa, M.; Bailey, A.; Rauf, S.; Pangborn, M. The carbon footprint of energy consumption in pastoral and barn dairy
farming systems: A case study from Canterbury, Modified Zealand. Sustainability 2019, 11, 4809. [CrossRef]

32. Lemay, L.; Reddy, K.; Randolph, D.; Shah, A. Mitigating and Adapting to Climate Change. In Engineering for Sustainable
Communities: Principles and Practices; ASCE (American Society of Civil Engineers): Reston, VA, USA, 2017; pp. 283–305.

33. Martins, F.; Felgueiras, C.; Smitková, M. Fossil fuel energy consumption in European countries. Energy Procedia 2018, 153, 107–111.
[CrossRef]

34. Shin, H.; Kim, T.H.; Kim, H.; Lee, S.; Kim, W. Environmental shutdown of coal-fired generators for greenhouse gas reduction: A
case study of South Korea. Appl. Energy 2019, 252, 113453. [CrossRef]

35. Gómez, D.R.; Watterson, J.D.; Americano, B.B.; Ha, C.; Marland, G.; Matsika, E.; Namayanga, L.N.; Osman-Elasha, B.; Kalenga
Saka, J.D.; Treanton, K. Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories; Volume 2:
Energy, Stationary Combustion; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006.

36. Frey, C.; Penman, J.; Hanle, L.; Monni, S.; Ogle, S. Guidelines for National Greenhouse Gas Inventories Chapter 3: Uncertainties;
Intergovernmental Panel on Climate Change (IPCC): Hayama, Japan, 2006.

37. Orloff, J.; Bloom, J. Bootstrap Confidence Intervals Class 24. Available online: https://ocw.mit.edu/courses/mathematics/18-05-
introduction-to-probability-and-statistics-spring-2014/ (accessed on 1 March 2021).

38. Kabacoff, R.I. R in Action: Data Analysis and Graphics with R. Manning: Shelter Island, NY, USA, 2011.
39. UCLA Institute for Digital Research and Education. How Can I Generate Bootstrap Statistics in R. Available online: https:

//stats.idre.ucla.edu/r/faq/how-can-i-generate-bootstrap-statistics-in-r/ (accessed on 10 March 2021).
40. DiCiccio, T.J.; Efron, B. Bootstrap confidence intervals. Stat. Sci. 1996, 189–212.
41. Tong, L.-I.; Saminathan, R.; Chang, C.W. Uncertainty assessment of non-normal emission estimates using non-parametric

bootstrap confidence intervals. J. Environ. Inform. 2016, 28, 61–70. [CrossRef]
42. Lee, K.M.; Lee, M.H.; Lee, J.S.; Lee, J.Y. Uncertainty Analysis of Greenhouse Gas (GHG) Emissions Simulated by the Parametric

Monte Carlo Simulation and Nonparametric Bootstrap Method. Energies 2020, 13, 4965. [CrossRef]
43. De Jong, S.; Antonissen, K.; Hoefnagels, R.; Lonza, L.; Wang, M.; Faaij, A.; Junginger, M. Life-cycle analysis of greenhouse gas

emissions from remodifiedable jet fuel production. Biotechnol. Biofuels 2017, 10, 1–18. [CrossRef]
44. Abdi, H.; Williams, L.J. Tukey’s honestly significant difference (HSD) test. Encycl. Res. Des. 2010, 3, 1–5.
45. Kim, T.K. Understanding one-way ANOVA using conceptual figures. Korean J. Anesthesiol. 2017, 70, 22. [CrossRef]
46. Bertsekas, D.P.; Tsitsiklis, J.N. Introduction to Probability, 2nd ed.; Athena Scientific: Nashua, NH, USA, 2008.

http://doi.org/10.3390/su11092712
http://doi.org/10.1016/j.jclepro.2020.124899
http://doi.org/10.3390/su9091522
http://doi.org/10.1016/j.jclepro.2018.06.304
http://doi.org/10.3390/w10030341
http://doi.org/10.15531/ksccr.2016.7.4.383
http://doi.org/10.1016/j.apenergy.2018.01.062
http://doi.org/10.1016/j.energy.2011.10.028
http://doi.org/10.1016/j.rser.2017.05.230
http://doi.org/10.3390/su11174809
http://doi.org/10.1016/j.egypro.2018.10.050
http://doi.org/10.1016/j.apenergy.2019.113453
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/
https://stats.idre.ucla.edu/r/faq/how-can-i-generate-bootstrap-statistics-in-r/
https://stats.idre.ucla.edu/r/faq/how-can-i-generate-bootstrap-statistics-in-r/
http://doi.org/10.3808/jei.201500322
http://doi.org/10.3390/en13184965
http://doi.org/10.1186/s13068-017-0739-7
http://doi.org/10.4097/kjae.2017.70.1.22

	Introduction 
	Materials and Methods 
	Results and Discussions 
	Conclusions 
	References

