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Abstract: With the increase in the share of solar energy in the sustainable development, accurate
parameter identification plays a significant role in designing optimal solar photovoltaic systems.
For this purpose, this paper extensively implements and evaluates the grey wolf optimizer with a
dimension learning-based hunting search strategy, an improved version of GWO named I-GWO, in
the parameter extraction of photovoltaic cells and modules. According to the experimental results,
the double-diode model leads to better fitness than the other diode models in representing the
physical behaviors of both photovoltaic cells and photovoltaic modules. For further performance
validation, firstly, the internal parameters extracted by the I-GWO algorithm and the corresponding
output current data are compared with a number of widely-used parameter extraction methods in
the literature. Then, the best goodness-of-fit results achieved by the I-GWO algorithm are evaluated
considering many state-of-the-art metaheuristic algorithms in the literature. The accuracy measures
including root mean squared error and sum of individual absolute errors show that I-GWO is fairly
promising to be the efficient and valuable parameter extraction method for both photovoltaic cells
and photovoltaic modules.

Keywords: photovoltaic system; diode circuit models; parameter extraction; grey wolf optimizer;
multi neighbors learning

1. Introduction
1.1. Overview

By the end of 2019, the overall electricity generation from bioenergy, geothermal
energy, hydropower, ocean power, solar energy and wind energy systems reached about
2588 GW worldwide. Among these renewable energy sources, solar photovoltaic sys-
tems have once again emerged as the frontrunner with the additional capacity of around
115 GW in 2019 [1]. In solar photovoltaic systems, the accurate characterization of diode
model parameters enables us to closely represent the nonlinear current–voltage (I–V) and
power–voltage (P–V) curves of photovoltaic cells and modules. Therefore, the solution of
parameter extraction issue is a fundamental requirement for proper design, performance
evaluation, quality controls and optimal operation of photovoltaic systems [2,3]. However,
this task is still complex and challenging under various operating conditions.

1.2. Literature Review

In order to tackle the parameter extraction problem of photovoltaic cells and modules,
a number of techniques have been recommended in the literature. These techniques are
mostly categorized into three groups: analytical methods, deterministic techniques and
metaheuristic optimization algorithms [4,5].

The analytical methods are mainly based on the correctness of maximum power
voltage, maximum power current, short circuit current, open circuit voltage, etc. points
on the I–V curve [4,6]. If these key data points are erroneously identified, the modeling
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accuracy drastically worsens. Instead of selecting several key data points on the I–V curve,
deterministic techniques and metaheuristic optimization algorithms consider all measured
I–V data [4,7]. Deterministic techniques, such as Levenberg–Marquardt method [8], Nelder-
Mead simplex method [9], Gauss–Seidel method [10], Runge–Kutta–Merson method [11],
Lambert W functions [12], least squares [13], etc., impose the limitations on the differ-
entiability, convexity and continuity characteristics of fitness functions. This condition
causes convergence to the local optima in the solution of the multimodal, multivariable and
nonlinear parameter extraction issue. An analytical method based on the ideality factor
variation was used to identify the electrical parameters and the absolute error of output
current was found below 0.25 A for a solar module [14]. A simple iterative method was
adopted to obtain the initial values of shunt resistance and its relative error did not exceed
4.38% [15]. The Newton–Raphson method was utilized to estimate the reverse saturation
current and diode ideality factor, and the deviation in open circuit voltage was found
0.08 V for a solar cell [16].

Unlike the deterministic techniques, metaheuristic algorithms do not impose any
limitations on the optimization problem and they have the capability of solving various
complex issues. A genetic algorithm was used to improve the parameter estimation
accuracy and it surpassed the quasi-Newton method [17]. However, it provided the
electrical parameters with large errors. A differential evolution algorithm was utilized
to enhance the parameter identification performance and it showed lower errors than
the series resistance-based model [18]. Nevertheless, its improper differential scheme
caused the premature convergence. Particle swarm optimization was employed to identify
the uncertain parameters and it outperformed the genetic algorithm [19]. However, it
required more data as an input. Artificial bee colony optimization (ABC) was applied to
estimate the unknown parameters and it obtained higher precision than the particle swarm
optimization [20]. Nevertheless, it suffered from the local exploitation ability. Some of other
metaheuristic algorithms utilized in the literature are artificial bee swarm optimization
(ABSO) [21], biogeography-based optimization with mutation strategies (BBO-M) [22],
bacterial foraging algorithm (BFA) [23], bird mating optimizer (BMO) [24], grouping-based
global harmony search (GGHS) [25], generalized oppositional teaching–learning-based
optimization (GOTLBO) [26], improved whale optimization algorithm (IWOA) [27], pattern
search (PS) [28], simulated annealing (SA) [29], self-adaptive teaching–learning-based
optimization (SATLBO) [30], hybrid methods [31–35], etc. These metaheuristic approaches
also suffer from different inherent characteristics, such as premature convergence, weak
exploitation, high sensitivity to the initial population and adherence to the limited number
of parameters for performance improvement [36–38].

1.3. Research Contributions

Grey Wolf Optimizer (GWO), which was proposed in 2014 [39], is an efficient evolu-
tionary algorithm imitating the group hunting behavior of wolves in nature. Its success
in solving the optimization problems has already been proven for several fields, such
as unit commitment [40], load frequency control [41], optimal power flow [42], etc. A
number of variants of the basic GWO algorithm, such as mGWO [43], EGWO [44], Ag-
GWO [45], etc. have also been proposed in order to overcome its various weaknesses in the
optimization process. Grey wolf optimizer with dimension learning-based hunting search
strategy (I-GWO) [46] is one of the latest GWO variants benefit from the more population
diversity, the high local optima avoidance and the good balance between exploration and
exploitation. On the basis of the current knowledge in the literature, the I-GWO algorithm
has not yet been extensively implemented and evaluated for the parameter extraction prob-
lem of photovoltaic cells and modules. To this end, the main goals of this paper are given
below. In addition, the research framework of this study is also summarized in Figure 1.
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Figure 1. The research framework of this study.

• I-GWO is applied to all of benchmark test models including single-diode, double-
diode and three-diode models in the literature;

• The effectiveness of I-GWO is validated in terms of multiple performance aspects
including accuracy, robustness and solution quality;

• A deeper comparison is made considering not only commonly used but also recently
proposed parameter extraction models in the literature;

• The results demonstrate that I-GWO is often superior and quite competitive for reliably
estimating the internal parameters of photovoltaic cells and modules.

1.4. Structure of the Article

The rest of this paper is organized as follows: Section 2 describes the diode circuit
models utilized for photovoltaic systems. Section 3 presents the mathematical background
of GWO and I-GWO in detail. Sections 4 and 5 elaborate and compare the experimental
results in the parameter extraction of photovoltaic cells and modules. Section 6 discusses
the overall results. Finally, Section 7 concludes this paper.

2. Diode Circuit Models of Photovoltaic Systems

In the related literature, single-diode model and double-diode model are generally
used for the mathematical modeling of electrical characteristics of PV cells and modules [47].
The single-diode model has easy-to-use characteristics. However, it shows unsatisfactory
performance under low irradiance and neglects the influence of recombination at junction
at low voltages [27,48]. Despite that, the double-diode model is preferred at low solar
radiation and it considers the influence of recombination current loss in the depletion
region [49]. As an alternative to the double-diode model, the three-diode model has
recently been developed for modeling the effect of grain boundaries and large leakage
current [50,51]. Nevertheless, it brings large computational load owing to its high number
of uncertain parameters.

In the single-diode model, the photovoltaic cell is designed as a current source con-
nected in parallel with a rectifying diode and a shunt resistance [52,53]. Figure 2 illustrates
the equivalent circuit of the single-diode model for a photovoltaic cell. The output current
of the single-diode model is computed using Equations (1) and (2). In these equations, Ish,
Id, Iph and IL are the shunt resistor, diode, photo-generated and output current, respectively.
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Rsh and Rs denote the shunt and series resistance, respectively. Isd represents the saturation
current, VL represents the output voltage and n is the diode ideality factor. As observed
from Equation (2), n, Rsh, Rs, Isd and Iph are the five parameters required to be extracted
for the single-diode model.
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Figure 2. Equivalent circuit of the single-diode model.

In the double-diode model, the photovoltaic cell is designed as a current source
connected in parallel with a diffusion diode, a recombination diode and a shunt resis-
tance [52,53]. Figure 3 depicts the equivalent circuit of the double-diode model for a
photovoltaic cell. The output current of the double-diode model is calculated utilizing
Equations (3) and (4). In these equations, Id2 and Id1 are the second diode and first diode
current, respectively. n2 and n1 denote the ideality factors of recombination and diffusion
diodes, respectively. Isd2 and Isd1 represent the saturation and diffusion current, respec-
tively. As seen from Equation (4), n2, n1, Rsh, Rs, Isd2, Isd1 and Iph are the seven parameters
needed to be identified for the double-diode model.
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Figure 3. Equivalent circuit of the double-diode model.

In the three-diode model, a third diode is added in parallel to the two diodes in the
double-diode model [54,55]. Figure 4 shows the equivalent circuit of the three-diode model
for a photovoltaic cell. The output current of the three-diode model is formulated as in
Equations (5) and (6). In these equations, Id3, Id2 and Id1 are the third diode, second diode
and first diode current, respectively. Except from n3, same parameters affect the value
of Isd3. As seen from Equation (6), n3, n2, n1, Rsh, Rs, Isd3, Isd2, Isd1 and Iph are the nine
parameters to be estimated for the three-diode model.
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Figure 4. Equivalent circuit of the three-diode model.

In all of diode circuit models, T is the cell temperature (K), k is the Boltzmann constant
with the value of 1.3806503× 10−23 J/K and q is the electron charge with the value of
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1.60217646× 10−19 C. In addition, the material resistivity at contacts is also modeled by
means of the series resistance in all of diode circuit models.

IL = Iph − Id − Ish (1)

IL = Iph − Isd

[
exp
(

q(VL + Rs.IL)

n.k.T

)
− 1
]
− VL + Rs.IL

Rsh
(2)

IL = Iph − Id1 − Id2 − Ish (3)

IL = Iph − Isd1

[
exp
(

q(VL + Rs.IL)

n1.k.T

)
− 1
]
− Isd2

[
exp
(

q(VL + Rs.IL)

n2.k.T

)
− 1
]
− VL + Rs.IL

Rsh
(4)

IL = Iph − Id1 − Id2 − Id3 − Ish (5)

IL = Iph − Isd1

[
exp
(

q(VL + Rs.IL)

n1.k.T

)
− 1
]
− Isd2

[
exp
(

q(VL + Rs.IL)

n2.k.T

)
− 1
]

−Isd3

[
exp
(

q(VL + Rs.IL)

n3.k.T

)
− 1
]
− VL + Rs.IL

Rsh

(6)

3. Methodology
3.1. Fundamental Concepts of Grey Wolf Optimizer

Grey wolf optimizer, which was developed by Mirjalili et al. [39], is one of the widely
employed bio-inspired and population-based metaheuristic optimization techniques. It
mimics the behavior of the grey wolf pack in searching, encircling and attacking the prey.
There is a strict social hierarchy in the grey wolf pack with different levels of leadership and
dominance. Within this hierarchy, the alpha wolves, which are the leaders, make decisions
on waking up, sleeping, hunting, etc. The beta wolves, which are the subordinate wolves,
help the alpha wolves in the pack activities. The delta wolves obey the alpha and beta
wolves, while dominating the omega wolves. Finally, the omega wolves are the scapegoats
at the bottom of the pack. According to [39], the mathematical background of GWO is
summarized below.

In the process of group hunting, grey wolves encircle their prey by Equation (7),
where k is the current iteration, Y(k + 1) represents the next location of the grey wolf, Y(k)
indicates the current location of the grey wolf and Yp(k) indicates the location of the prey.

Y(k + 1) = Yp(k)− X.
∣∣Z.Yp(k)−Y(k)

∣∣ (7)

X and Z are the coefficient vectors computed with Equations (8) and (9), where r1 and
r2 are the random vectors ranging between 0 and 1. In order to emphasize the exploration
and exploitation tendencies, over the iterations, x is linearly reduced and Z takes the
stochastic weights.

X = 2.x.r1 − x (8)

Z = 2. r2 (9)

The location of the prey is unspecified in the search space. For this reason, alpha, beta
and delta wolves are set as the first, second and third closest search agents to the optimal
solution, respectively. Omega wolves update their locations according to these best candi-
date solutions. This group hunting behavior is expressed with Equations (10)–(13), where
Ydelta, Ybeta and Yαlpha denote the locations of delta, beta and alpha wolves, respectively.
|X| > 1 and |Z| > 1 enforce the grey wolves to go away from the current prey and to
search a better one, whereas |X| < 1 and |Z| < 1 enforce the grey wolves to converge
towards the prey and to attack it.

Yi1(k) = Yαlpha(k)− Xi1.
∣∣∣Z1.Yαlpha −Y(k)

∣∣∣ (10)
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Yi2(k) = Ybeta(k)− Xi2.|Z2.Ybeta −Y(k)| (11)

Yi3(k) = Ydelta(k)− Xi3.|Z3.Ydelta −Y(k)| (12)

Yi−GWO(k + 1) =
Yi1(k) + Yi2(k) + Yi3(k)

3
(13)

3.2. Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy

GWO suffers from the premature convergence, the imbalance between exploration and
exploitation phases and the lack of population diversity. In order to tackle these deficiencies,
Nadimi-Shahraki et al. [46] incorporated the dimension learning-based hunting search
strategy to GWO, which mainly consists of initialization, movement, and selecting and
updating steps. Thus, the I-GWO algorithm benefits from not only the group hunting
behavior of grey wolves but also the individual hunting behavior of each wolf. According
to [46], the mathematical background of I-GWO is summarized below.

In the initialization step, N wolves are stochastically distributed in the search space in
the range of

[
lbj, ubj

]
with Equation (14), where D represents the dimension number.

Yij = lbj + randj[0, 1]×
(
ubj − lbj

)
, i ∈ [1, N], j ∈ [1, D] (14)

In the movement step, in addition to Yi−GWO(k + 1), calculated by Equations (10)–(13),
Yi−DLH(k + 1) is generated as another candidate for the new position of Yi(k). To do
this, initially, a radius Ri(k) is computed utilizing Euclidean distance among Yi(k) and
Yi−GWO(k + 1) with Equation (15). Following from this, Ni(k), which indicates the neigh-
bors of Yi(k), is constituted with Equation (16) and multi neighbors learning is realized with
Equation (17). In Equation (16), disti

(
Yi(k), Yj(k)

)
denotes the Euclidean distance among

Yi(k) and Yj(k). In Equation (17), Yn,d(k) is the d-th dimension of a stochastic neighbor
chosen from Ni(k) and Ys,d(k) is the d-th dimension of a stochastic wolf chosen from the
entire population.

Ri(k) = ‖Yi(k)−Yi−GWO(k + 1)‖ (15)

Ni(k) =
{

Yj(k)
∣∣disti

(
Yi(k), Yj(k)

)
≤ Ri(k)

}
(16)

Yi−DLH,d(k + 1) = Yi,d(k) + rand× (Yn,d(k)−Ys,d(k)) (17)

In the selecting and updating step, initially, the best candidate for Yi(k + 1) is chosen
by evaluating the fitness values of Yi−GWO(k + 1) and Yi−DLH(k + 1) with Equation (18).
Following, Yi(k) is updated by the chosen candidate in case the fitness value of the chosen
candidate is smaller than Yi(k). Otherwise, Yi(k) remains unchanged in the population.
The optimization process is completed when reaching the maximum number of iterations.

Yi(k + 1) =
{

Yi−GWO(k + 1),
Yi−DLH(k + 1),

f (Yi−GWO) < f (Yi−DLH)
otherwise

(18)

4. Experimental Results on the PV Cells

In this section, the I-GWO algorithm is implemented to the three benchmark test
models including single-diode, double-diode and three-diode models in order to validate its
performance on the parameter extraction problem of PV cell models. The experimental I–V
data are obtained from [56]. The corresponding commercial silicon solar cell (R.T.C. France)
has a diameter of 57 mm and operates under standard test conditions of 1000 W/m2 at
33 ◦C. The search ranges for the unknown internal parameters of the mentioned benchmark
test models are listed in Table 1.
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Table 1. The search ranges for the parameters of photovoltaic cell models.

Parameter Lower Bound Upper Bound

Iph (A) 0 1
Isd, Isd1, Isd2, Isd3 (µA) 0 1

Rs (Ω) 0 0.5
Rsh (Ω) 0 100

n, n1, n2, n3 1 2

In the experiments, the number of search agents and maximum iterations are set to
15 and 25,000, respectively. A number of 50 independent runs are conducted to eliminate
the contingency. All experiments are executed on a 2.71 GHz Intel(R) Core(TM) personal
computer with 12 GB RAM under MATLAB 2016a. In order to make a fair comparison,
I-GWO is compared with some commonly used parameter extraction methods in the
literature. These are ABC [20], ABSO [21], BBO-M [22], BFA [23], BMO [24], GGHS [25],
GOTLBO [26], IWOA [27], PS [28], SA [29] and SATLBO [30]. It should be noted that the
involved methods use the same experimental I–V data along with the same PV cell models.

The main objective for the parameter extraction of PV cells is to find a set of parameter
values to minimize the errors between the current IL−calculated (fitted from the mathematical
PV cell model) and the current IL−measured (observed from the physical PV cell) [57]. Gener-
ally, the root mean squared error RMSE in Equation (19) is used as the objective function
in the literature [50,58]. The lower RMSE, the more accurate parameter values. In this equa-
tion, N is the number of experimental data and x denotes the set of the extracted parameters.
x =

{
Iph, Isd, Rs, Rsh, n

}
for the single-diode model, x =

{
Iph, Isd1, Isd2, Rs, Rsh, n1, n2

}
for

the double-diode model and x =
{

Iph, Isd1, Isd2, Isd3, Rs, Rsh, n1, n2, n3

}
for the three-diode

model. The sum of individual absolute errors (IAE), expressed in Equation (20), is also
utilized for evaluating the goodness-of-fit results [57].

minF(x) = RMSE(x) =

√
1
N ∑N

k=1

(
Ik
L−calculated(x)− Ik

L−measured

)2
(19)

Sum o f IAE = ∑N
k=1

∣∣∣Ik
L−calculated(x)− Ik

L−measured

∣∣∣ (20)

4.1. Experimental Results on the Single-Diode Model of the PV Cell

The values of current and power calculated by the I-GWO algorithm for the single-
diode model of the PV cell are presented in Table 2. The individual absolute errors are
also included in this table. According to these results, it is clear that the current and power
data generated by I-GWO are highly coinciding with the measured data. The sums of IAEs
are found as 0.02152728 A and 0.00873095 W for IL-calculated and PL-calculated, respectively. In
case of examining the goodness-of-fit results and the extracted parameters presented in
Tables 3 and 4, respectively, it can be easily inferred that I-GWO achieves the least value of
RMSE with 9.8602 × 10−4 A. Its design coefficients are obtained as 0.76077561 A for Iph,
0.32302197 µA for Isd, 0.03637706 Ω for Rs, 53.71770917 Ω for Rsh and 1.48118398 for n. In
addition, I-GWO is, respectively, followed by BMO, BBO-M, GOTLBO, SATLBO, GGHS,
ABSO, IWOA, ABC, SA and PS on the basis of achieving lower RMSE. On the other hand,
BFA provides the greatest value of RMSE with 2.1887 × 10−1 A.

The I–V and P–V characteristic curves based on the extracted parameters of I-GWO
are illustrated in Figure 5. It can be concluded from this figure that the I-GWO algorithm
has the high capability for representing the actual photovoltaic cell characteristics for the
single-diode model of the PV cell.
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Table 2. IAEs of I-GWO for the single-diode model of the PV cell.

VL-measured (V) IL-measured (A) IL-calculated (A) IAE (IL) PL-measured (W) PL-calculated (W) IAE (PL)

−0.2057 0.7640 0.76408783 0.00008783 −0.15715480 −0.15717287 0.00001807
−0.1291 0.7620 0.76266319 0.00066319 −0.09837420 −0.09845982 0.00008562
−0.0588 0.7605 0.76135539 0.00085539 −0.04471740 −0.04476770 0.00005030
0.0057 0.7605 0.76015406 0.00034594 0.00433485 0.00433288 0.00000197
0.0646 0.7600 0.75905526 0.00094474 0.04909600 0.04903497 0.00006103
0.1185 0.7590 0.75804238 0.00095762 0.08994150 0.08982802 0.00011348
0.1678 0.7570 0.75709168 0.00009168 0.12702460 0.12703998 0.00001538
0.2132 0.7570 0.75614137 0.00085863 0.16139240 0.16120934 0.00018306
0.2545 0.7555 0.75508687 0.00041313 0.19227475 0.19216961 0.00010514
0.2924 0.7540 0.75366386 0.00033614 0.22046960 0.22037131 0.00009829
0.3269 0.7505 0.75139094 0.00089094 0.24533845 0.24562970 0.00029125
0.3585 0.7465 0.74735382 0.00085382 0.26762025 0.26792634 0.00030609
0.3873 0.7385 0.74011718 0.00161718 0.28602105 0.28664738 0.00062633
0.4137 0.7280 0.72738218 0.00061782 0.30117360 0.30091801 0.00025559
0.4373 0.7065 0.70697260 0.00047260 0.30895245 0.30915912 0.00020667
0.4590 0.6755 0.67528011 0.00021989 0.31005450 0.30995357 0.00010093
0.4784 0.6320 0.63075825 0.00124175 0.30234880 0.30175474 0.00059406
0.4960 0.5730 0.57192835 0.00107165 0.28420800 0.28367646 0.00053154
0.5119 0.4990 0.49960704 0.00060704 0.25543810 0.25574885 0.00031075
0.5265 0.4130 0.41364885 0.00064885 0.21744450 0.21778612 0.00034162
0.5398 0.3165 0.31751020 0.00101020 0.17084670 0.17139200 0.00054530
0.5521 0.2120 0.21215505 0.00015505 0.11704520 0.11713080 0.00008560
0.5633 0.1035 0.10225143 0.00124857 0.05830155 0.05759823 0.00070332
0.5736 −0.0100 −0.00871743 0.00128257 −0.00573600 −0.00500032 0.00073568
0.5833 −0.1230 −0.12550732 0.00250732 −0.07174590 −0.07320842 0.00146252
0.5900 −0.2100 −0.20847226 0.00152774 −0.12390000 −0.12299863 0.00090137

4.2. Experimental Results on the Double-Diode Model of the PV Cell

The values of current and power calculated by the I-GWO algorithm for the double-
diode model of the PV cell are listed in Table 5. The individual absolute errors are also
given in this table. With respect to these results, it is obvious that the current and power
data generated by I-GWO are in very good agreement with the measured data. The sums of
IAEs are found as 0.02127500 A and 0.00877613 W for IL-calculated and PL-calculated, respectively.
In the case of investigating the goodness-of-fit results and the extracted parameters listed
in Tables 6 and 7, respectively, it can be simply revealed that I-GWO accomplishes the
smallest RMSE value with 9.824852 × 10−4 A. Its design coefficients are acquired as
0.76078188 A for Iph, 0.22628489 µA for Isd1, 0.74609152 µA for Isd2, 0.03673977 Ω for Rs,
55.46161769 Ω for Rsh, 1.45112760 for n1 and 1.99999856 for n2. In any case, I-GWO is
sequentially followed by BMO, BBO-M, SATLBO, GOTLBO, ABSO, IWOA, GGHS, ABC,
PS and SA in terms of accomplishing lower RMSE. However, BFA produces the biggest
RMSE value with 2.9827 × 10−1 A.

The I–V and P–V characteristic curves based on the extracted parameters of I-GWO
are depicted in Figure 6. It can be deduced from this figure that the I-GWO algorithm has
the strong ability to represent the real photovoltaic cell characteristics for the double-diode
model of the PV cell.
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Table 3. Comparison of the goodness-of-fit results achieved by I-GWO for the single-diode model of the PV cell.

IL-measured
(A)

IL-calculated (A)

I-GWO ABC ABSO BBO-M BFA BMO GGHS GOTLBO IWOA PS SA SATLBO

0.7640 0.76408783 0.76411649 0.76419950 0.764006 0.76375638 0.76407301 0.76427395 0.76406947 0.76411104 0.76453686 0.76302 0.76411170
0.7620 0.76266319 0.76268988 0.76273599 0.762604 0.76225177 0.76265244 0.76283178 0.76265530 0.76268677 0.76334281 0.76029 0.76268727
0.7605 0.76135539 0.76138027 0.76139250 0.761317 0.76087046 0.76134837 0.76150788 0.76135711 0.76137931 0.76224651 0.75846 0.76137966
0.7605 0.76015406 0.76017726 0.76015842 0.760135 0.75960129 0.76015046 0.76029177 0.76016458 0.76017829 0.76123873 0.75953 0.76017850
0.7600 0.75905526 0.75907693 0.75902980 0.759053 0.75843942 0.75905479 0.75917946 0.75907379 0.75907977 0.76031405 0.75951 0.75907986
0.7590 0.75804238 0.75806260 0.75798989 0.758056 0.75736672 0.75804473 0.75815418 0.75806811 0.75806715 0.75945277 0.75842 0.75806713
0.7570 0.75709168 0.75711046 0.75701517 0.757120 0.75635939 0.75709654 0.75719203 0.75712365 0.75711665 0.75862051 0.75528 0.75711655
0.7570 0.75614137 0.75615851 0.75604439 0.756182 0.75536290 0.75614837 0.75623090 0.75617828 0.75616647 0.75773228 0.75616 0.75616634
0.7555 0.75508687 0.75510175 0.75497490 0.755138 0.75430479 0.75509541 0.75516600 0.75512652 0.75511190 0.75663600 0.75418 0.75511189
0.7540 0.75366386 0.75367503 0.75354509 0.753723 0.75301450 0.75367306 0.75373240 0.75370269 0.75368844 0.75499175 0.75262 0.75368886
0.7505 0.75139094 0.75139553 0.75127766 0.751453 0.75123146 0.75139941 0.75144823 0.75142346 0.75141424 0.75221549 0.74800 0.75141578
0.7465 0.74735382 0.74734659 0.74726287 0.747414 0.74850543 0.74735961 0.74739866 0.74737248 0.74737425 0.74727172 0.74425 0.74737831
0.7385 0.74011718 0.74008965 0.74006839 0.740168 0.74421951 0.74011789 0.74014854 0.74011329 0.74013200 0.73863638 0.73584 0.74014108
0.7280 0.72738218 0.72732129 0.72739411 0.727416 0.73746259 0.72737526 0.72740023 0.72734810 0.72738680 0.72399106 0.72795 0.72740519
0.7065 0.70697260 0.70686255 0.70705319 0.706985 0.72755533 0.70695641 0.70698035 0.70690638 0.70696108 0.70134090 0.70595 0.70699455
0.6755 0.67528011 0.67510032 0.67542197 0.675269 0.71326437 0.67525426 0.67528403 0.67518771 0.67524429 0.66728745 0.67494 0.67530100
0.6320 0.63075825 0.63048974 0.63093243 0.630728 0.69435344 0.63072465 0.63076799 0.63065613 0.63069024 0.62066105 0.63023 0.63077852
0.5730 0.57192835 0.57155476 0.57209370 0.571887 0.67050682 0.57189047 0.57195351 0.57183841 0.57182156 0.56012769 0.57152 0.57194903
0.4990 0.49960704 0.49911913 0.49972317 0.499563 0.64221085 0.49956892 0.49965307 0.49954963 0.49945852 0.48643873 0.49845 0.49962975
0.4130 0.41364885 0.41304219 0.41368320 0.413612 0.60947083 0.41361435 0.41371590 0.41363948 0.41345872 0.39922035 0.41189 0.41367578
0.3165 0.31751020 0.31679010 0.31745673 0.317485 0.57351699 0.31748147 0.31758854 0.31754982 0.31728410 0.30142983 0.31459 0.31754398
0.2120 0.21215505 0.21133129 0.21203015 0.212142 0.53459720 0.21213257 0.21222726 0.21223264 0.21190186 0.19355774 0.21077 0.21219865
0.1035 0.10225143 0.10134078 0.10209924 0.102245 0.49427111 0.10223341 0.10229267 0.10234141 0.10198377 0.07983175 0.10300 0.10230769
−0.0100 −0.00871743 −0.00969324 −0.00881685 −0.008731 0.45354725 −0.00873587 −0.00874118 −0.00865916 −0.00898356 −0.03693312 −0.01094 −0.00864575
−0.1230 −0.12550732 −0.12653296 −0.12549663 −0.125537 0.41080836 −0.12552919 −0.12562452 −0.12551303 −0.12575903 −0.16117142 −0.12753 −0.12541726
−0.2100 −0.20847226 −0.20951676 −0.20829509 −0.208530 0.38015838 −0.20850287 −0.20868792 −0.20857077 −0.20870043 −0.25151582 −0.21250 −0.20836716
RMSE 9.8602 ×

10−4
10.967 ×

10−4
9.9124 ×

10−4
9.8634 ×

10−4
2.1887 ×

10−1
9.8622 ×

10−4
9.9089 ×

10−4
9.8744 ×

10−4
9.9487 ×

10−4
1.4936 ×

10−2 1.71 × 10−3 9.8780 ×
10−4

Table 4. Comparison of the parameters extracted by I-GWO for the single-diode model of the PV cell.

Design Co-
efficients I-GWO ABC ABSO BBO-M BFA BMO GGHS GOTLBO IWOA PS SA SATLBO

Iph (A) 0.76077561 0.7608 0.76080 0.76078 0.7602 0.76077 0.76092 0.760780 0.7608 0.7617 0.7620 0.7608
Isd (µA) 0.32302197 0.3251 0.30623 0.31874 0.8000 0.32479 0.32620 0.331552 0.3232 0.9980 0.4798 0.32315
Rs (Ω) 0.03637706 0.0364 0.03659 0.03642 0.0325 0.03636 0.03631 0.036265 0.0364 0.0313 0.0345 0.03638
Rsh (Ω) 53.71770917 53.6433 52.2903 53.36227 50.8691 53.8716 53.0647 54.115426 53.7317 64.1026 43.1035 53.7256

n 1.48118398 1.4817 1.47583 1.47984 1.6951 1.48173 1.48217 1.483820 1.4812 1.6 1.5172 1.48123
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Table 5. IAEs of I-GWO for the double-diode model of the PV cell.

VL-measured (V) IL-measured (A) IL-calculated (A) IAE (IL) PL-measured (W) PL-calculated (W) IAE (PL)

−0.2057 0.7640 0.76398559 0.00001441 −0.15715480 −0.15715184 0.00000296
−0.1291 0.7620 0.76260568 0.00060568 −0.09837420 −0.09845239 0.00007819
−0.0588 0.7605 0.76133874 0.00083874 −0.04471740 −0.04476672 0.00004932
0.0057 0.7605 0.76017434 0.00032566 0.00433485 0.00433299 0.00000186
0.0646 0.7600 0.75910778 0.00089222 0.04909600 0.04903836 0.00005764
0.1185 0.7590 0.75812113 0.00087887 0.08994150 0.08983735 0.00010415
0.1678 0.7570 0.75718800 0.00018800 0.12702460 0.12705615 0.00003155
0.2132 0.7570 0.75624275 0.00075725 0.16139240 0.16123095 0.00016145
0.2545 0.7555 0.75517632 0.00032368 0.19227475 0.19219237 0.00008238
0.2924 0.7540 0.75372138 0.00027862 0.22046960 0.22038813 0.00008147
0.3269 0.7505 0.75139834 0.00089834 0.24533845 0.24563212 0.00029367
0.3585 0.7465 0.74730096 0.00080096 0.26762025 0.26790739 0.00028714
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Table 5. Cont.

VL-measured (V) IL-measured (A) IL-calculated (A) IAE (IL) PL-measured (W) PL-calculated (W) IAE (PL)

0.3873 0.7385 0.74001058 0.00151058 0.28602105 0.28660610 0.00058505
0.4137 0.7280 0.72724727 0.00075273 0.30117360 0.30086219 0.00031141
0.4373 0.7065 0.70685089 0.00035089 0.30895245 0.30910589 0.00015344
0.4590 0.6755 0.67521122 0.00028878 0.31005450 0.30992195 0.00013255
0.4784 0.6320 0.63076133 0.00123867 0.30234880 0.30175622 0.00059258
0.4960 0.5730 0.57199506 0.00100494 0.28420800 0.28370955 0.00049845
0.5119 0.4990 0.49970619 0.00070619 0.25543810 0.25579960 0.00036150
0.5265 0.4130 0.41373353 0.00073353 0.21744450 0.21783070 0.00038620
0.5398 0.3165 0.31754600 0.00104600 0.17084670 0.17141133 0.00056463
0.5521 0.2120 0.21212289 0.00012289 0.11704520 0.11711305 0.00006785
0.5633 0.1035 0.10216343 0.00133657 0.05830155 0.05754866 0.00075289
0.5736 −0.0100 −0.00879128 0.00120872 −0.00573600 −0.00504268 0.00069332
0.5833 −0.1230 −0.12554249 0.00254249 −0.07174590 −0.07322893 0.00148303
0.5900 −0.2100 −0.20837039 0.00162961 −0.12390000 −0.12293853 0.00096147
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Table 6. Comparison of the goodness-of-fit results achieved by I-GWO for the double-diode model of the PV cell.

IL-measured
(A)

IL-calculated (A)

I-GWO ABC ABSO BBO-M BFA BMO GGHS GOTLBO IWOA PS SA SATLBO

0.7640 0.76398559 0.76410804 0.76403502 0.764012 0.76388145 0.76396284 0.76340309 0.76392012 0.76400729 0.76243038 0.76646121 0.76400509
0.7620 0.76260568 0.76268506 0.76263393 0.762622 0.76260595 0.76259149 0.76218425 0.76255531 0.76262606 0.76148891 0.76468566 0.76261657
0.7605 0.76133874 0.76137879 0.76134765 0.761345 0.76143514 0.76133237 0.76106530 0.76130221 0.76135792 0.76062446 0.76305572 0.76134178
0.7605 0.76017434 0.76017885 0.76016577 0.760172 0.76036004 0.76017503 0.76003720 0.76015047 0.76019247 0.75982953 0.76155847 0.76017033
0.7600 0.75910778 0.75908129 0.75908399 0.759098 0.75937824 0.75911467 0.75909595 0.75909536 0.75912510 0.75909914 0.76018880 0.75909775
0.7590 0.75812113 0.75806948 0.75808501 0.758106 0.75847887 0.75813308 0.75822556 0.75811893 0.75813799 0.75841556 0.75892593 0.75810646
0.7570 0.75718800 0.75711955 0.75714374 0.757168 0.75765292 0.75720341 0.75740107 0.75719461 0.75720500 0.75774555 0.75774066 0.75717084
0.7570 0.75624275 0.75616948 0.75619643 0.756221 0.75687958 0.75625930 0.75655818 0.75625656 0.75626080 0.75700638 0.75655912 0.75622630
0.7555 0.75517632 0.75511412 0.75513618 0.755157 0.75614656 0.75519085 0.75558326 0.75519520 0.75519659 0.75604422 0.75526164 0.75516493
0.7540 0.75372138 0.75368820 0.75369715 0.753708 0.75540113 0.75373018 0.75420083 0.75374287 0.75374504 0.75451974 0.75355064 0.75372013
0.7505 0.75139834 0.75140874 0.75139883 0.751395 0.75456613 0.75139802 0.75191286 0.75141973 0.75142581 0.75184505 0.75090086 0.75141152
0.7465 0.74730096 0.74735900 0.74733104 0.747310 0.75348409 0.74728965 0.74778817 0.74731969 0.74733114 0.74697902 0.74633335 0.74733029
0.7385 0.74001058 0.74010050 0.74006690 0.740029 0.75191648 0.73998948 0.74038196 0.74002463 0.74003977 0.73838554 0.73834643 0.74005270
0.7280 0.72724727 0.72733002 0.72731699 0.727270 0.74946983 0.72722099 0.72740292 0.72725524 0.72726887 0.72372666 0.72457201 0.72729318
0.7065 0.70685089 0.70686894 0.70691299 0.706869 0.74577408 0.70682682 0.70671884 0.70685222 0.70685660 0.70099012 0.70283447 0.70688721
0.6755 0.67521122 0.67510421 0.67524504 0.675217 0.74018574 0.67519590 0.67478041 0.67520485 0.67519269 0.66675449 0.66949075 0.67522544
0.6320 0.63076133 0.63049080 0.63075592 0.630753 0.73240839 0.63075703 0.63012287 0.63074579 0.63071392 0.61985418 0.62306482 0.63074786
0.5730 0.57199506 0.57155199 0.57195291 0.571976 0.72213315 0.57199880 0.57131229 0.57196869 0.57191851 0.55898457 0.56205974 0.57195709
0.4990 0.49970619 0.49911062 0.49964147 0.499685 0.70944075 0.49971121 0.49916209 0.49966858 0.49960459 0.48496174 0.48725401 0.49965419
0.4130 0.41373353 0.41302496 0.41366862 0.413723 0.69424594 0.41373079 0.41349724 0.41368567 0.41361375 0.39747244 0.39837975 0.41368276
0.3165 0.31754600 0.31676056 0.31749834 0.317553 0.67709896 0.31753040 0.31767836 0.31749316 0.31741489 0.29957236 0.29877496 0.31750791
0.2120 0.21212289 0.21128524 0.21210320 0.212151 0.65812734 0.21209349 0.21258827 0.21207364 0.21198595 0.19182079 0.18923344 0.21210409
0.1035 0.10216343 0.10127431 0.10216807 0.102208 0.63813758 0.10212650 0.10279516 0.10213007 0.10202311 0.07850771 0.07438873 0.10216083
−0.0100 −0.00879128 −0.00978343 −0.00879319 −0.008750 0.61773270 −0.00881673 −0.00834550 −0.00879077 −0.00893910 −0.03747352 −0.04242094 −0.00879859
−0.1230 −0.12554249 −0.12665126 −0.12556054 −0.125513 0.59606795 −0.12554722 −0.12551080 −0.12549444 −0.12569749 −0.16060685 −0.16597348 −0.12556179
−0.2100 −0.20837039 −0.20965688 −0.20845031 −0.208379 0.58050794 −0.20833403 −0.20905426 −0.20827036 −0.20854079 −0.24982997 −0.25460551 −0.20843149
RMSE 9.824852 ×

10−4
11.146 ×

10−4
9.8344 ×

10−4
9.8272 ×

10−4
2.9827 ×

10−1
9.8266 ×

10−4
10.684 ×

10−4
9.8317 ×

10−4
9.8580 ×

10−4
1.5176 ×

10−2
16.644 ×

10−3
9.8294 ×

10−4

Table 7. Comparison of the parameters extracted by I-GWO for the double-diode model of the PV cell.

Design Co-
efficients I-GWO ABC ABSO BBO-M BFA BMO GGHS GOTLBO IWOA PS SA SATLBO

Iph (A) 0.76078188 0.7608 0.76078 0.76083 0.7609 0.76078 0.76056 0.760752 0.7608 0.7602 0.7623 0.76078
Isd1 (µA) 0.22628489 0.0407 0.26713 0.59115 0.0094 0.21110 0.37014 0.800195 0.6771 0.9889 0.4767 0.25093
Isd2 (µA) 0.74609152 0.2874 0.38191 0.24523 0.0453 0.87688 0.13504 0.220462 0.2355 0.0001 0.0100 0.545418

Rs (Ω) 0.03673977 0.0364 0.03657 0.03664 0.0351 0.03682 0.03562 0.036783 0.0367 0.0320 0.0345 0.03663
Rsh (Ω) 55.46161769 53.7804 54.6219 55.0494 60 55.8081 62.7899 56.075304 55.4082 81.3008 43.1035 55.1170

n1 1.45112760 1.4495 1.46512 2 1.3809 1.44533 1.49638 1.999973 2 1.6 1.5172 1.45982
n2 1.99999856 1.4885 1.98152 1.45798 1.5255 1.99997 1.92998 1.448974 1.4545 1.1920 2 1.99941
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4.3. Experimental Results on the Three-Diode Model of the PV Cell

The values of current and power calculated by the I-GWO algorithm for the three-
diode model of the PV cell are tabulated in Table 8. The individual absolute errors are also
provided in this table. In light of these results, it is prominent that the current and power
data generated by I-GWO shows the accurate representation of the measured data. The
sums of IAEs are found as 0.02128348 A and 0.00877126 W for IL-calculated and PL-calculated,
respectively. In addition, the RMSE value of I-GWO is observed as 9.8251 × 10−4 A. Its de-
sign coefficients are computed as 0.76077859 A for Iph, 0.23252760 µA for Isd1, 0.15049885 µA
for Isd2, 0.54357543 µA for Isd3, 0.03670937 Ω for Rs, 55.38534211 Ω for Rsh, 1.45341362 for
n1, 1.99896779 for n2 and 1.99998944 for n3. It should be noted that the three-diode model of
the PV cell has recently been proposed as an alternative to single-diode and double-diode
models, particularly for the modeling of solar cells in industrial applications [54]. For
this reason, there have not been enough studies in the literature in order to make the
benchmark test for the three-diode-based modeling of the commercial silicon solar cell of
R.T.C. France, yet.

Table 8. IAEs of I-GWO for the three-diode model of the PV cell.

VL-measured (V) IL-measured (A) IL-calculated (A) IAE (IL) PL-measured (W) PL-calculated (W) IAE (PL)

−0.2057 0.7640 0.76398709 0.00001291 −0.15715480 −0.15715214 0.00000266
−0.1291 0.7620 0.76260528 0.00060528 −0.09837420 −0.09845234 0.00007814
−0.0588 0.7605 0.76133662 0.00083662 −0.04471740 −0.04476659 0.00004919
0.0057 0.7605 0.76017067 0.00032933 0.00433485 0.00433297 0.00000188
0.0646 0.7600 0.75910281 0.00089719 0.04909600 0.04903804 0.00005796
0.1185 0.7590 0.75811520 0.00088480 0.08994150 0.08983665 0.00010485
0.1678 0.7570 0.75718164 0.00018164 0.12702460 0.12705508 0.00003048
0.2132 0.7570 0.75623678 0.00076322 0.16139240 0.16122968 0.00016272
0.2545 0.7555 0.75517186 0.00032814 0.19227475 0.19219124 0.00008351
0.2924 0.7540 0.75371974 0.00028026 0.22046960 0.22038765 0.00008195
0.3269 0.7505 0.75140063 0.00090063 0.24533845 0.24563287 0.00029442
0.3585 0.7465 0.74730763 0.00080763 0.26762025 0.26790979 0.00028954
0.3873 0.7385 0.74002079 0.00152079 0.28602105 0.28661005 0.00058900
0.4137 0.7280 0.72725875 0.00074125 0.30117360 0.30086695 0.00030665
0.4373 0.7065 0.70686030 0.00036030 0.30895245 0.30911001 0.00015756
0.4590 0.6755 0.67521557 0.00028443 0.31005450 0.30992394 0.00013056
0.4784 0.6320 0.63075947 0.00124053 0.30234880 0.30175533 0.00059347
0.4960 0.5730 0.57198816 0.00101184 0.28420800 0.28370613 0.00050187
0.5119 0.4990 0.49969717 0.00069717 0.25543810 0.25579498 0.00035688
0.5265 0.4130 0.41372646 0.00072646 0.21744450 0.21782698 0.00038248
0.5398 0.3165 0.31754365 0.00104365 0.17084670 0.17141006 0.00056336
0.5521 0.2120 0.21212657 0.00012657 0.11704520 0.11711508 0.00006988
0.5633 0.1035 0.10217168 0.00132832 0.05830155 0.05755330 0.00074825
0.5736 −0.0100 −0.00878486 0.00121514 −0.00573600 −0.00503900 0.00069700
0.5833 −0.1230 −0.12554052 0.00254052 −0.07174590 −0.07322778 0.00148188
0.5900 −0.2100 −0.20838115 0.00161885 −0.12390000 −0.12294488 0.00095512

The I–V and P–V characteristic curves based on the extracted parameters of I-GWO
are visualized in Figure 7. It can be mined from this figure that the I-GWO algorithm has
the great potential in reflecting the physical photovoltaic cell behavior for the three-diode
model of the PV cell.
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4.4. Discussion on the Single-Diode-, Double-Diode- and Three-Diode-Based Modeling Results of
PV Cells

In the case of comparing the entire goodness-of-fit results achieved by the I-GWO
algorithm on the R.T.C. France solar cell, the double-diode model outperforms the single-
diode and three-diode models with an RMSE value of 9.824852 × 10−4 A. Following from
this, the three-diode model is found to be better than the single-diode model with the RMSE
value of 9.8251 × 10−4 A. Lastly, the RMSE value of the single-diode model is obtained
as 9.8602 × 10−4 A. Moreover, Figure 8 shows the convergence accuracy of I-GWO for
single-diode, double-diode and three-diode models of PV cells. According to this figure, it
is observed during the iteration process that the relative stability of the objective function
occurs around 7500 iterations in all of the diode models. It is also obvious that I-GWO
is capable of running away from the local optima and accelerating the global searching
direction. Especially, I-GWO surpasses ABC, ABSO, BBO-M, BFA, BMO, GGHS, GOTLBO,
IWOA, PS, SA and SATLBO by achieving the least RMSE value in both single-diode and
double-diode models. Despite the parametric values identified by the mentioned models
seems to be very close each other, a small difference can lead a considerable effect on the
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PV model. As a result, the above comparisons indicate that the I-GWO algorithm is highly
competitive in the estimation of the internal parameters of photovoltaic cells.
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5. Experimental Results on the PV Modules

In this section, the I-GWO algorithm is applied to the two benchmark test mod-
els involving single-diode- and double-diode-based models in order to check its perfor-
mance on the parameter extraction problem of PV module models. The experimental
I–V data were taken from [56]. The relevant solar module (Photowatt-PWP201) consists of
36 polycrystalline silicon cells in series operating under 1000 W/m2 at 45 ◦C. The search
ranges for the unknown internal parameters of the mentioned benchmark test models are
tabulated in Table 9.

Table 9. The search ranges for the parameters of photovoltaic module models.

Parameter Lower Bound Upper Bound

Iph (A) 0 2
Isd, Isd1, Isd2 (µA) 0 50

Rs (Ω) 0 2
Rsh (Ω) 0 2000
n, n1, n2 1 50

The parameter settings of I-GWO and the technical specifications of PC are the same
as those used in the PV cell models. For a reasonable comparison, I-GWO is checked
against some widely-reported algorithms in the literature. These are artificial bee colony-
differential evolution (ABC-DE) [59], chaos particle swarm optimization (CPSO) [60],
flower pollination algorithm (FPA) [61], hybrid firefly and pattern search (HFAPS) [32],
improved teaching–learning-based optimization (ITLBO) [3], IWOA [27], multiple learning
backtracking search algorithm (LBSA) [62], PS [28], SA [29] and teaching–learning-based
optimization (TLBO) [63]. The objective function in Equation (19) and the goodness-of-fit
metric in Equation (20) are employed again. Only the output current equations expressed in
Equations (21) and (22) [24,64] are considered for the single-diode- and double-diode-based
models of PV modules, respectively. According to these equations, the I–V characteristics
of single-diode- and double-diode-based models of PV modules make use of the number
of parallel PV cell strings (Np), each having the same number of series PV cells string (Ns).

IL = Iph.Np − Isd.Np

exp

 q
(

VL
Ns

+ Rs .IL
Np

)
n.k.T

− 1

− VL .Np
Ns

+ Rs.IL

Rsh
(21)
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IL = Iph.Np − Isd1.Np

exp

 q
(

VL
Ns

+ Rs .IL
Np

)
n1.k.T

− 1

− Isd2.Np

exp

 q
(

VL
Ns

+ Rs .IL
Np

)
n2.k.T

− 1

− VL .Np
Ns

+ Rs.IL

Rsh
(22)

5.1. Experimental Results on the Single-Diode-Based Model of the PV Module

The values of current and power calculated by the I-GWO algorithm for the single-
diode-based model of the PV module are presented in Table 10. The individual absolute
errors are also included in this table. According to these results, it is clear that the current
and power data generated by I-GWO coincide to a great extent with the measured data. The
sums of IAEs are found as 0.04892353 A and 0.51689196 W for IL-calculated and PL-calculated, re-
spectively. In the case of examining the goodness-of-fit results and the extracted parameters
presented in Tables 11 and 12, respectively, it can be easily inferred that I-GWO achieves
the least value of RMSE with 2.425075 × 10−3 A. Its design coefficients are obtained as
1.03051453 A for Iph, 3.48217802 µA for Isd, 1.20127379 Ω for Rs, 981.95296539 Ω for Rsh and
48.64274143 for n. In addition, I-GWO is, respectively, followed by HFAPS, ITLBO, IWOA,
LBSA, FPA, ABC-DE, SA, CPSO, PS and TLBO on the basis of achieving lower RMSE. On
the other hand, TLBO provides the most value of RMSE with 6.567087 × 10−3 A.

Table 10. IAEs of I-GWO for the single-diode-based model of the PV module.

VL-measured (V) IL-measured (A) IL-calculated (A) IAE (IL) PL-measured (W) PL-calculated (W) IAE (PL)

0.1248 1.0315 1.02911935 0.00238065 0.12873120 0.12843409 0.00029711
1.8093 1.0300 1.02738121 0.00261879 1.86357900 1.85884083 0.00473817
3.3511 1.0260 1.02574189 0.00025811 3.43822860 3.43736365 0.00086495
4.7622 1.0220 1.02410721 0.00210721 4.86696840 4.87700334 0.01003494
6.0538 1.0180 1.02229182 0.00429182 6.16276840 6.18875024 0.02598184
7.2364 1.0155 1.01993067 0.00443067 7.34856420 7.38062633 0.03206213
8.3189 1.0140 1.01636308 0.00236308 8.43536460 8.45502286 0.01965826
9.3097 1.0100 1.01049613 0.00049613 9.40279700 9.40741581 0.00461881
10.2163 1.0035 1.00062896 0.00287104 10.25205705 10.22272564 0.02933141
11.0449 0.9880 0.98454839 0.00345161 10.91236120 10.87423857 0.03812263
11.8018 0.9630 0.95952173 0.00347827 11.36513340 11.32408352 0.04104988
12.4929 0.9255 0.92283890 0.00266110 11.56217895 11.52893413 0.03324482
13.1231 0.8725 0.87259977 0.00009977 11.44990475 11.45121405 0.00130930
13.6983 0.8075 0.80727438 0.00022562 11.06137725 11.05828657 0.00309068
14.2221 0.7265 0.72833657 0.00183657 10.33235565 10.35847556 0.02611991
14.6995 0.6345 0.63713806 0.00263806 9.32683275 9.36561089 0.03877814
15.1346 0.5345 0.53621307 0.00171307 8.08944370 8.11537039 0.02592669
15.5311 0.4275 0.42951129 0.00201129 6.63954525 6.67078280 0.03123755
15.8929 0.3185 0.31877441 0.00027441 5.06188865 5.06624983 0.00436118
16.2229 0.2085 0.20738941 0.00111059 3.38247465 3.36445773 0.01801692
16.5241 0.1010 0.09616708 0.00483292 1.66893410 1.58907440 0.07985970
16.7987 −0.0080 −0.00832544 0.00032544 −0.13438960 −0.13985663 0.00546703
17.0499 −0.1110 −0.11093649 0.00006351 −1.89253890 −1.89145600 0.00108290
17.2793 −0.2090 −0.20924720 0.00024720 −3.61137370 −3.61564506 0.00427136
17.4885 −0.3030 −0.30086342 0.00213658 −5.29901550 −5.26164986 0.03736564

The I–V and P–V characteristic curves based on the extracted parameters of I-GWO
are illustrated in Figure 9. It can be concluded from this figure that the I-GWO algorithm
has the high capability of representing the actual photovoltaic module characteristics for
the single-diode-based model of the PV module.
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Table 11. Comparison of the goodness-of-fit results achieved by I-GWO for the single-diode-based model of the PV module.

IL-measured
(A)

IL-calculated (A)

I-GWO ABC-DE CPSO FPA HFAPS ITLBO IWOA LBSA PS SA TLBO

1.0315 1.02911935 1.03017445 1.02792156 1.03038364 1.02910807 1.02910483 1.02909984 1.02905696 1.02937896 1.03145977 1.02930433
1.0300 1.02738121 1.02816019 1.02696797 1.02828740 1.02737398 1.02736674 1.02735602 1.02738316 1.02700030 1.02941504 1.02621400
1.0260 1.02574189 1.02627040 1.02601443 1.02632468 1.02573833 1.02572746 1.02571159 1.02580220 1.02477876 1.02749395 1.02334149
1.0220 1.02410721 1.02441028 1.02494314 1.02440212 1.02410695 1.02409281 1.02407244 1.02422000 1.02261770 1.02559753 1.02058283
1.0180 1.02229182 1.02239587 1.02352338 1.02233907 1.02229450 1.02227745 1.02225334 1.02245075 1.02033338 1.02353459 1.01774797
1.0155 1.01993067 1.01986476 1.02132383 1.01977851 1.01993586 1.01991628 1.01988948 1.02012840 1.01756542 1.02093136 1.01446920
1.0140 1.01636308 1.01616052 1.01760376 1.01607148 1.01637024 1.01634861 1.01632050 1.01659038 1.01366300 1.01711601 1.01009017
1.0100 1.01049613 1.01019398 1.01120384 1.01013681 1.01050459 1.01048147 1.01045384 1.01074119 1.00754628 1.01098230 1.00352898
1.0035 1.00062896 1.00026301 1.00041693 1.00027739 1.00063790 1.00061394 1.00058889 1.00087724 0.99752449 1.00081360 0.99309562
0.9880 0.98454839 0.98414502 0.98313210 0.98426893 0.98455684 0.98453275 0.98451240 0.98478323 0.98138761 0.98438529 0.97659274
0.9630 0.95952173 0.95908448 0.95685722 0.95934435 0.95952866 0.95950512 0.95949111 0.95972619 0.95638895 0.95895664 0.95129317
0.9255 0.92283890 0.92233718 0.91922846 0.92273981 0.92284342 0.92282092 0.92281398 0.92299851 0.91978636 0.92181968 0.91448600
0.8725 0.87259977 0.87196513 0.86867891 0.87249801 0.87260126 0.87258000 0.87257968 0.87270572 0.86963283 0.87108747 0.86426077
0.8075 0.80727438 0.80640080 0.80396690 0.80703559 0.80727260 0.80725242 0.80725711 0.80732478 0.80434601 0.80524422 0.79906808
0.7265 0.72833657 0.72710844 0.72646017 0.72782987 0.72833185 0.72831225 0.72831990 0.72833839 0.72536107 0.72578882 0.72036366
0.6345 0.63713806 0.63543924 0.63733075 0.63625072 0.63713112 0.63711131 0.63711992 0.63710443 0.63400607 0.63408576 0.62948043
0.5345 0.53621307 0.53394565 0.53875110 0.53488116 0.53620495 0.53618404 0.53619217 0.53616146 0.53281166 0.53267911 0.52893879
0.4275 0.42951129 0.42661823 0.43408767 0.42775622 0.42950323 0.42948031 0.42948777 0.42946112 0.42574868 0.42552413 0.42267978
0.3185 0.31877441 0.31521801 0.32486580 0.31665110 0.31876765 0.31874188 0.31874903 0.31874459 0.31457256 0.31436038 0.31243610
0.2085 0.20738941 0.20317121 0.21405555 0.20501754 0.20738516 0.20735582 0.20736411 0.20739711 0.20270269 0.20257359 0.20158869
0.1010 0.09616708 0.09129595 0.10250023 0.09366422 0.09616639 0.09613288 0.09614376 0.09622719 0.09096064 0.09097124 0.09093929
−0.0080 −0.00832544 −0.01375892 −0.00409525 −0.01070827 −0.00832170 −0.00835961 −0.00834240 −0.00820286 −0.01401275 −0.01388329 −0.01294519
−0.1110 −0.11093649 −0.11690797 −0.10961273 −0.11309173 −0.11092761 −0.11097026 −0.11094529 −0.11074205 −0.11711378 −0.11684060 −0.11492873
−0.2090 −0.20924720 −0.21570702 −0.21178492 −0.21104130 −0.20923267 −0.20928021 −0.20924559 −0.20897460 −0.21589688 −0.21548275 −0.21259889
−0.3030 −0.30086342 −0.30773606 −0.30836317 −0.30213765 −0.30084292 −0.30089531 −0.30084866 −0.30050991 −0.30793928 −0.30741745 −0.30356751
RMSE 2.425075

× 10−3
3.885510
× 10−3

4.212772
× 10−3

2.742457
× 10−3

2.425088
× 10−3

2.425194
× 10−3

2.425233
× 10−3

2.430500
× 10−3

4.507511
× 10−3

4.169322
× 10−3

6.567087
× 10−3

Table 12. Comparison of the parameters extracted by I-GWO for the single-diode-based model of the PV module.

Design
Coefficients I-GWO ABC-DE CPSO FPA HFAPS ITLBO IWOA LBSA PS SA TLBO

Iph (A) 1.03051453 1.0318 1.0286 1.032091 1.03050 1.03050 1.03050 1.0304 1.0313 1.0331 1.031805
Isd (µA) 3.48217802 3.2774 8.3010 3.047538 3.48420 3.48230 3.47170 3.5233 3.1756 3.6642 3.280945
Rs (Ω) 1.20127379 1.2062 1.0755 1.217583 1.20130 1.20130 1.20160 1.2014 1.2053 1.1989 1.206000
Rsh (Ω) 981.95296539 845.2495 1850.10 811.3721 984.2813 981.9823 978.6771 1020.40 714.2857 833.3333 548.6660

n 48.64274143 48.3948 52.2430 48.13128 48.64490 48.64280 48.63130 48.6866 48.2889 48.8211 48.44228
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5.2. Experimental Results on the Double-Diode-Based Model of the PV Module

The values of current and power calculated by the I-GWO algorithm for the double-
diode-based model of the PV module are listed in Table 13. The individual absolute errors
are also given in this table. With respect to these results, it is obvious that the current and
power data generated by I-GWO are in very good agreement with the measured data. The
sums of IAEs are found as 0.04768683 A and 0.49347099 W for IL-calculated and PL-calculated,
respectively. In addition, the RMSE value of I-GWO is observed as 2.356117 × 10−3 A. Its
design coefficients are acquired as 1.03046641 A for Iph, 3.59574773 × 10−10 µA for Isd1,
3.09030003 µA for Isd2, 1.27844165 Ω for Rs, 1002.52197130 Ω for Rsh, 18.96309472 for n1
and 48.32865669 for n2. It should be noted that the double-diode-based modeling of the PV
module has been conducted as an alternative to the single-diode-based modeling in recent
years, and it has limited applications in the corresponding literature [65]. For this reason,
there have not yet been enough studies in order to make the benchmark test for the double-
diode-based modeling of the polycrystalline silicon solar module of Photowatt-PWP201.
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Table 13. IAEs of I-GWO for the double-diode-based model of the PV module.

VL-measured (V) IL-measured (A) IL-calculated (A) IAE (IL) PL-measured (W) PL-calculated (W) IAE (PL)

0.1248 1.0315 1.02902043 0.00247957 0.12873120 0.12842175 0.00030945
1.8093 1.0300 1.02731856 0.00268144 1.86357900 1.85872747 0.00485153
3.3511 1.0260 1.02571413 0.00028587 3.43822860 3.43727063 0.00095797
4.7622 1.0220 1.02411457 0.00211457 4.86696840 4.87703839 0.01006999
6.0538 1.0180 1.02233684 0.00433684 6.16276840 6.18902277 0.02625437
7.2364 1.0155 1.02001793 0.00451793 7.34856420 7.38125773 0.03269353
8.3189 1.0140 1.01649688 0.00249688 8.43536460 8.45613594 0.02077134
9.3097 1.0100 1.01067549 0.00067549 9.40279700 9.40908557 0.00628857
10.2163 1.0035 1.00083662 0.00266338 10.25205705 10.22484712 0.02720993
11.0449 0.9880 0.98474750 0.00325250 10.91236120 10.87643761 0.03592359
11.8018 0.9630 0.95965098 0.00334902 11.36513340 11.32560896 0.03952444
12.4929 0.9255 0.92283175 0.00266825 11.56217895 11.52884479 0.03333416
13.1231 0.8725 0.87242874 0.00007126 11.44990475 11.44896958 0.00093517
13.6983 0.8075 0.80692677 0.00057323 11.06137725 11.05352501 0.00785224
14.2221 0.7265 0.72792472 0.00142472 10.33235565 10.35261820 0.02026255
14.6995 0.6345 0.63677482 0.00227482 9.32683275 9.36027143 0.03343868
15.1346 0.5345 0.53598343 0.00148343 8.08944370 8.11189475 0.02245105
15.5311 0.4275 0.42953019 0.00203019 6.63954525 6.67107628 0.03153103
15.8929 0.3185 0.31898240 0.00048240 5.06188865 5.06955540 0.00766675
16.2229 0.2085 0.20772966 0.00077034 3.38247465 3.36997744 0.01249721
16.5241 0.1010 0.09638138 0.00461862 1.66893410 1.59261548 0.07631862
16.7987 −0.0080 −0.00791325 0.00008675 −0.13438960 −0.13293226 0.00145734
17.0499 −0.1110 −0.11071284 0.00028716 −1.89253890 −1.88764282 0.00489608
17.2793 −0.2090 −0.20942375 0.00042375 −3.61137370 −3.61869576 0.00732206
17.4885 −0.3030 −0.30136159 0.00163841 −5.29901550 −5.27036217 0.02865333

The I–V and P–V characteristic curves based on the extracted parameters of I-GWO
are depicted in Figure 10. It can be deduced from this figure that the I-GWO algorithm
has the strong ability to represent the real photovoltaic module characteristics for the
double-diode-based model of the PV module.

5.3. Discussion on the Single-Diode- and Double-Diode-Based Modeling Results of PV Modules

In the case of comparing the entire goodness-of-fit results accomplished by the I-GWO
algorithm on the Photowatt-PWP201 solar module, the double-diode-based model surpasses
the single-diode-based model with the RMSE value of 2.356117 × 10−3 A. The RMSE value
of the single-diode-based model is computed as 2.425075× 10−3 A. Furthermore, Figure 11
demonstrates the convergence accuracy of I-GWO for single-diode- and double-diode-
based models of PV modules. With regard to this figure, it is clear that I-GWO has the
capability of breaking away from the local minima and providing an encouraging searching
direction towards the global optima. In consequence, the comparison results show that the
I-GWO algorithm seems to be very efficient for solving the parameter estimation problem
of photovoltaic modules.
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6. Discussion of the Overall Results

As a deeper accuracy analysis, in Table 14, the grey wolf optimizer with dimension
learning-based hunting search strategy is compared with other algorithms, which were
published in the last five years.

Table 14. Comparison of I-GWO with other recently published algorithms (the lowest errors are highlighted in boldface).

Model Algorithm Iph (A) Isd, Isd1
(µA) Isd2 (µA) Rs (Ω) Rsh (Ω) n, n1 n2 RMSE

Si
ng

le
-d

io
de

m
od

el
fo

r
R

.T
.C

.F
ra

nc
e

PV
ce

ll

CARO [66] 0.76079 0.31724 - 0.03644 53.0893 1.48168 - 9.8665 × 10−4

CSO [67] 0.76078 0.323 - 0.03638 53.7185 1.48118 - 9.8602 × 10−4

CWOA [68] 0.76077 0.3239 - 0.03636 53.7987 1.4812 - 9.8602 × 10−4

DE-WOA [58] 0.760776 0.323021 - 0.036377 53.718524 1.481184 - 9.8602 × 10−4

EHHO [69] 0.760775 0.323 - 0.036375 53.74282 1.481238 - 9.8602 × 10−4

GWO [36] 0.769969 0.91215 - 0.02928 18.103 1.596658 - 7.5011 × 10−3

GWOCS [36] 0.760773 0.32192 - 0.03639 53.632 1.4808 - 9.8607 × 10−4

IJAYA [34] 0.7608 0.3228 - 0.0364 53.7595 1.4811 - 9.8603 × 10−4

ISCE [57] 0.76077553 0.32302083 - 0.03637709 53.71852771 1.4811836 - 9.8602 × 10−4

MABC [70] 0.760779 0.321323 - 0.036389 53.39999 1.481385 - 9.8610 × 10−4

MSSO [71] 0.760777 0.323564 - 0.03637 53.742465 1.481244 - 9.8607 × 10−4

NM-PSO [72] 0.76077 0.32451 - 0.03636 53.8258 1.48157 - 9.8605 × 10−4

ORcr-IJADE [47] 0.760776 0.323021 - 0.036377 53.718523 1.481184 - 9.8602 × 10−4

PGJAYA [73] 0.7608 0.323 - 0.0364 53.7185 1.4812 - 9.8602 × 10−4

SGDE [74] 0.76078 0.32302 - 0.036377 53.71853 1.481184 - 9.8602 × 10−4

TLABC [75] 0.76078 0.32302 - 0.03638 53.71636 1.48118 - 9.8602 × 10−4

I-GWO 0.76077561 0.32302197 - 0.03637706 53.71770917 1.48118398 - 9.8602 × 10−4

D
ou

bl
e-

di
od

e
m

od
el

fo
r

R
.T

.C
.F

ra
nc

e
PV

ce
ll

CARO [66] 0.76075 0.29315 0.09098 0.03641 54.3967 1.47338 1.77321 9.8260 × 10−4

CSO [67] 0.76078 0.22732 0.72785 0.036737 55.3813 1.45151 1.99769 9.8252 × 10−4

CWOA [68] 0.76077 0.2415 0.6 0.03666 55.2016 1.45651 1.9899 9. 8272 × 10−4

DE-WOA [58] 0.760781 0.225974 0.749346 0.03674 55.485437 1.451017 2 9.824849 × 10−4

EHHO [69] 0.760769017 0.586184 0.240965 0.036598831 55.63943956 1.968451449 1.456910409 9.8360 × 10−4

GWO [36] 0.761668 0.40302 0.45338 0.03265 72.52775 1.646 1.5527 2.2124 × 10−3

GWOCS [36] 0.76076 0.53772 0.24855 0.03666 54.7331 2 1.4588 9.8334 × 10−4

IJAYA [34] 0.7601 0.0050445 0.75094 0.0376 77.8519 1.2186 1.6247 9.8293 × 10−4

ISCE [57] 0.76078108 0.22597409 0.74934898 0.03674043 55.48544409 1.4510167 2 9.824849 × 10−4

MABC [70] 0.7607821 0.6306922 0.24102992 0.03671215 54.7550094 2.00000538 1.4568573 9.8276 × 10−4

MSSO [71] 0.760748 0.234925 0.671593 0.036688 55.714662 1.454255 1.995305 9.8281 × 10−4

NM-PSO [72] 0.76078 0.23820 0.64810 0.03668 55.2154 1.45544 2 9.8259 × 10−4

ORcr-IJADE [47] 0.760781 0.225974 0.749348 0.03674 55.485438 1.451017 2 9.824858 × 10−4

PGJAYA [73] 0.7608 0.21031 0.88534 0.0368 55.8135 1.445 2 9.8263 × 10−4

SGDE [74] 0.76079 0.2807 0.24996 0.03648 54.3667 1.469655 1.93228 9.8441 × 10−4

TLABC [75] 0.76081 0.42394 0.24011 0.03667 54.66797 1.9075 1.45671 9.8414 × 10−4

I-GWO 0.76078188 0.22628489 0.74609152 0.03673977 55.46161769 1.4511276 1.99999856 9.824852 × 10−4
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PV
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e CARO [66] 1.03185 3.28401 - 1.20556 841.3213 48.40363 - 2.4270 × 10−3

DE-WOA [58] 1.030514 3.482263 - 1.201271 981.982143 48.642835 - 2.425075 × 10−3

EHHO [69] 1.030498656 3.488188406 - 1.201110352 984.4964824 48.64931708 - 2.425080 × 10−3

GWO [36] 1.03038 4.9068 - 1.15926 1173.7966 50 - 2.6749 × 10−3

GWOCS [36] 1.03049 3.465 - 1.2019 982.7566 48.62367 - 2.4251 × 10−3

IJAYA [34] 1.0305 3.4703 - 1.2016 977.3752 48.6298 - 2.4251 × 10−3

ISCE [57] 1.0305143 3.48226304 - 1.201271 981.9822803 48.642835 - 2.425075 × 10−3

NM-PSO [72] 1.0304 3.4888 - 1.2012 992.9415 48.6498 - 2.4387 × 10−3

ORcr-IJADE [47] 1.030514 3.482263 - 1.201271 981.982241 48.642835 - 2.425075 × 10−3

PGJAYA [73] 1.0305 3.4818 - 1.2013 981.8545 48.6424 - 2.425075 × 10−3

SGDE [74] 1.0305 3.4823 - 1.20127 981.9822 48.6428 - 2.425075 × 10−3

TLABC [75] 1.03056 3.4715 - 1.20165 972.93567 48.63131 - 2.425075 × 10−3

I-GWO 1.03051453 3.48217802 - 1.20127379 981.95296539 48.64274143 - 2.425075 × 10−3

For the single-diode model of R.T.C. France PV cell, I-GWO achieves the best RMSE
(9.8602 × 10−4) similar to CSO, CWOA, DE-WOA, EHHO, ISCE, ORcr-IJADE, PGJAYA,
SGDE and TLABC. It also shows better RMSE than CARO, GWO, GWOCS, IJAYA, MABC,
MSSO and NM-PSO.

For the double-diode model of R.T.C. France PV cell, DE-WOA and ISCE obtain the
best RMSE (9.824849 × 10−4). I-GWO provides the second best RMSE (9.824852 × 10−4),
which is better than CARO, CSO, CWOA, EHHO, GWO, GWOCS, IJAYA, MABC, MSSO,
NM-PSO, ORcr-IJADE, PGJAYA, SGDE and TLABC.

For the single-diode-based model of Photowatt-PWP201 PV module, I-GWO accom-
plishes the best RMSE (2.425075 × 10−3) similar to DE-WOA, ISCE, ORcr-IJADE, PGJAYA,
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SGDE and TLABC. It also demonstrates better RMSE than CARO, EHHO, GWO, GWOCS,
IJAYA and NM-PSO.

According to the aforementioned comparisons, it can be observed that I-GWO can
achieve the best solution performance or slightly different results from the best solution
performance. In addition, it can be also revealed that I-GWO can provide better solution
performance than most of the implemented algorithms.

7. Conclusions

In this paper, the grey wolf optimizer with a dimension learning-based hunting search
strategy is exhaustively applied to extract the internal parameters of the diode circuit
models of photovoltaic cells and modules. As a result of the entire analyses, the following
reasonable and useful patterns are uncovered.

According to the experimental results on the PV cells:

• The single-diode model- and the double-diode model-based I-GWO algorithms
achieve better goodness-of-fit statistics than ABC, ABSO, BBO-M, BFA, BMO, GGHS,
GOTLBO, IWOA, PS, SA and SATLBO methods. The double-diode model-based
I-GWO algorithm outperforms the single-diode model-based one.

• Although the single-diode and the double-diode circuit models are widely preferred
for PV cells in the literature, the three-diode model-based I-GWO algorithm shows
closer solution accuracy to the double-diode model-based one.

• In the case of only considering the recent publications on this issue, the I-GWO
algorithm ensures the best RMSE, similar to most of the implemented methods for
the single-diode circuit model. However, it provides the second best RMSE for the
double-diode circuit model.
According to the experimental results on the PV modules:

• The single-diode model-based I-GWO algorithm accomplishes better goodness-of-fit
statistics than ABC-DE, CPSO, FPA, HFAPS, ITLBO, IWOA, PS, SA and TLBO methods.

• Despite the single-diode circuit model is widely employed for PV modules in the liter-
ature, the double-diode model-based I-GWO algorithm demonstrates better solution
accuracy than the single-diode model-based one.

• When only taking into account the recent publications on this problem, the I-GWO
algorithm provides the best RMSE, similar to most of the applied methods for the
single-diode circuit model.

As a result, the I-GWO algorithm shows the considerable effectiveness in terms of
accuracy, robustness and solution quality aspects in solving the parameter extraction
problem of PV cells and modules. Hence, it can be regarded as a competitive method in
order to obtain the I–V and P–V curves strongly fitted to the experimental measurements.
In future works, the three-diode circuit model in PV cell modeling and the double-diode
circuit model in PV module modeling should get more attention in order to improve
parameter extraction performance. I-GWO can be modified to accomplish the online
parameter estimation for more efficient photovoltaic systems. In addition, the applications
of I-GWO to other engineering problems, such as fault diagnosis, photovoltaic power
prediction, the power curve modeling of wind turbines, the energy consumption modeling
of large-scale power systems, etc. are also interesting for future research.
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Abbreviations

ABC Artificial bee colony optimization
ABC-DE Artificial bee colony-differential evolution
ABSO Artificial bee swarm optimization
BBO-M Biogeography-based optimization with mutation strategies
BFA Bacterial foraging algorithm
BMO Bird mating optimizer
CPS Chaos particle swarm optimization
FPA Flower pollination algorithm
GGHS Grouping-based global harmony search
GOTLBO Generalized oppositional teaching–learning-based optimization
GWO Grey wolf optimizer
HFAPS Hybrid firefly and pattern search
IAE Individual absolute error
I-GWO Grey wolf optimizer with dimension learning-based hunting search strategy
ITLBO Improved teaching–learning-based optimization
IWOA Improved whale optimization algorithm
LBSA Learning backtracking search algorithm
PS Pattern search
RMSE Root mean squared error
SA Simulated annealing
SATLBO Self-adaptive teaching–learning-based optimization
TLBO Teaching–learning-based optimization
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