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Abstract: Ion transport is a significant concept that underlies a variety of technologies including
membrane technology, energy storages, optical, chemical, and biological sensors and ion-mobility
exploration techniques. These applications are based on the concepts of capacitance and ion transport,
so a prior understanding of capacitance and ion transport phenomena is crucial. In this review, the
principles of capacitance and ion transport are described from a theoretical and practical point of view.
The review covers the concepts of Helmholtz capacitance, diffuse layer capacitance and space charge
capacitance, which is also referred to as quantum capacitance in low-dimensional materials. These
concepts are attributed to applications in the electrochemical technologies such as energy storage
and excitable ion sieving in membranes. This review also focuses on the characteristic role of channel
heights (from micrometer to angstrom scales) in ion transport. Ion transport technologies can also be
used in newer applications including biological sensors and multifunctional microsupercapacitors.
This review improves our understanding of ion transport phenomena and demonstrates various
applications that is applicable of the continued development in the technologies described.

Keywords: ion transport; capacitance; 2D materials; multifunctional energy storages; stimulus-responsive
microsupercapacitor; fluorescence imaging; molecular transport

1. Introduction

Ion transport is one of the basic principles of the development of various different
technologies that can improve the quality of our lives, such as the ever-growing importance
of clean and sustainable energy, the reduction of water scarcity and even the improvement
of fundamental medical application knowledge. Ion transport can be defined as the
movement of charged ions from one position to another in ion electrolyte solutions within
both organic (living cells) and inorganic (polymer materials) systems. Ion transport can
be encouraged through various mechanisms such as electrochemical diffusion, ion active
transport requiring external energy or bulk transport for the conversion of adenosine
triphosphate (ATP) and energy consumption in biological functions [1]. This can be clearly
seen in the sodium/potassium (Na+/K+) ions exchange pump, which is an important ion
transportation mechanism that generally occurs in living cell membranes such as plant
and animal cells [1,2]. For example, the electric eel possesses a system which demonstrates
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the evolution of biological membranes under ionic concentration gradients that provide
ion transport for power generation. By combining a number of membranes with highly
packed selectively ionic channels, electric eels can produce a strong current density which
can discharge up to 600 Volts [3]. Ion transportation can be used as a potential way of
understanding the mechanism involved in order to explore the mimicking effect of artificial
membranes for various ion transport-based applications such as film-based catalysts for gas
production (hydrogen and oxygen evolution reactions) [4,5], energy storages (capacitors
and batteries) [6–8], and membranes for ionic and molecular separation [9–11]. Instead of
artificial membranes in living cells, ions transport can also relate to cell stabilities, helping
us to understand the fundamental mechanisms of ion transport in vitro and in vivo [12].

Two-dimensional (2D) materials are emerging categories of nanostructure materials
which include graphene [13,14], transition metal dichalcogenides (TMDs) [11], hexagonal
boron nitrile (h-BN) [15], and MXene [16]. The structure of these 2D materials can be
controlled in many forms, including being stabilized in single or multiple layers or forming
heterostructures, offering unique properties (electrical, thermal, optical and electrochemical,
to name just a few) when compared to higher dimensional materials in bulk form [17]. For
example, graphene displays higher levels of conductivity (including electrical and thermal
conductivity) and a higher surface area than graphite [18]. Meanwhile, TMDs provide
better optical properties than graphene materials due to their tuneable band gaps, which
can be modified by reducing material thickness and used for optical applications in the
visible spectrum. In addition, h-BN is categorized as an insulator that has a smooth surface
and only a minimal lattice mismatch with graphite [19,20]. This leads to ultrahigh carrier
mobility in graphene when it is integrated with h-BN [21–23].

The review describes the fundamental properties of capacitance and ion transport in
various 2D materials, and offers novel applications based on various potential technologies
from the macro to the nanoscopic perspective. The review describes a well-known capaci-
tance models, including the Helmholtz, Gouy-Chapmann and Stern-Otto models, as well
as the capacitive model in two dimensional materials, which explain their ion transport
properties. We also show that, in addition to energy storages (i.e., supercapacitors and
osmotic energy), the ion-transport devices (i.e., the stimulus-responsive microsupercapac-
itors) can generate new functionalities through their response to the external stimulus.
Such functionalities include direct visualization of energy storages, light-induced energy
storage and photodetections, and ion transport controls, as shown in Figure 1. These
prominent, man-made technologies imitate the ion transport in living cells. To understand
the extended capabilities of ion transport in artificial devices, it is important to connect
with natural phenomena in living bacterial cells. This review aims to provide a better un-
derstanding of fundamental knowledge of ion transport technologies in order to examine
further potential applications.
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knowledge of capacitive behaviors are described, leading to the understanding of ionic 
adsorption and transportation. Examples include the capacitive behavior of metallic elec-
trodes and of two-dimensional (2D) materials such as graphite, graphene and transition 
metal dichalcogenides (TMDs) family. These concepts should assist the development of 
the electrochemical devices (also refer to the electrochemical system) i.e., energy storages 
[6,25,26], capacitive deionization [27], 2D-based membrane (electrochemical ions sieving) 
[9,28–30], and ion transport controls [31–33]. 
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a well-recognized model that can be used to explain charge storage properties [34]. The 
as-mentioned model refers to the adsorption of monolayer ions at the electrode and elec-
trolyte interface under polarized conditions. Ideally, opposite charges migrate to the elec-
trode’s surface to maintain neutrality on a so-called Helmholtz plane (which also refers to 
ionic transport described below) [35]. As Figure 2 shows, the capacitance of the electrode 
is clearly based on the amount of the stored opposite charge on the plane, and under these 
circumstances, the capacitance of the electrode should depend directly on the specific sur-
face area of the electrode interface and the charge separation distance. The Helmholtz ca-
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Figure 1. Diagram showing the potential applications of ion transport through two-dimensional (2D) materials, including
the energy storages, 2D-based membranes for water purifications and energy harvesting (blue energy), light-induced ion
transport, and biological sensors.

2. The Principle of Capacitive Ions

In general, capacitance represents the amount of electrical charge accumulated on the
surface of the electrode over the applied electrical potential. Any system that can be electrically
charged will exhibit a capacitive behavior [24]. In this context, the background knowledge
of capacitive behaviors are described, leading to the understanding of ionic adsorption
and transportation. Examples include the capacitive behavior of metallic electrodes and of
two-dimensional (2D) materials such as graphite, graphene and transition metal dichalco-
genides (TMDs) family. These concepts should assist the development of the electro-
chemical devices (also refer to the electrochemical system) i.e., energy storages [6,25,26],
capacitive deionization [27], 2D-based membrane (electrochemical ions sieving) [9,28–30],
and ion transport controls [31–33].

3. Metallic Electrode Capacitance

To understand capacitive behavior in general, it is crucial to know the principle of
capacitive behavior models on metallic electrodes, which provides a basic understanding
of the capacitance of more advanced materials. Typically, the capacitance of a metallic
surface can be described using electrical double layer (EDL) models, which explain the
accumulation of charge on electrodes and electrolyte interfaces. The Helmholtz model
is a well-recognized model that can be used to explain charge storage properties [34].
The as-mentioned model refers to the adsorption of monolayer ions at the electrode and
electrolyte interface under polarized conditions. Ideally, opposite charges migrate to the
electrode’s surface to maintain neutrality on a so-called Helmholtz plane (which also refers
to ionic transport described below) [35]. As Figure 2 shows, the capacitance of the electrode
is clearly based on the amount of the stored opposite charge on the plane, and under
these circumstances, the capacitance of the electrode should depend directly on the specific
surface area of the electrode interface and the charge separation distance. The Helmholtz
capacitance (CH) is shown in Equation (1) [34]:

CH =
ε0εrS

d
(1)
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where ε0 is the dielectric constant in a vacuum (~8.854 × 10−12 F m−1), S is the area of
the electrode (m2 per unit), and d is the charge separation distance (m), which can be
measured from the center of the absorbed ions to the electrode plane. This number can be
approximated by the Debye length, while εr is the relative dielectric constant of the solvent.
This number depends on the solvent properties—e.g., the εr for water at room temperature
is approximately 78.6, but changing the electrolyte concentration or the dimensions of
the materials can affect to the value of εr [35,36]. Garlyyev et al. also showed that the CH
depends on the hydrated ionic size where the neat ions typically form a hydration shell
among their ions due to its thermodynamic stability. Once the hydration shell becomes
smaller, the CH tends to be larger due to the depletion of charge separation distance [37].
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Figure 2. The principle of capacitance model based on the metallic electrode (a) Helmholtz model, (b) the Gouy-Chapman
model or so-called diffuse layer capacitance, and (c) the Stern-Otto model.

However, it is clear that the Helmholtz model shown in Figure 2a neglects many
parameters that may contribute to actual capacitance, such as electrical potential, dipolar
movement interaction and the concentration profiles of ions in the electrolyte [24]. A more
refined model, which included these parameters, was proposed by Gouy and Chapman
(Figure 2b), the mathematical properties of which are shown in Equation (2) [24]:

Cdi f f =

√
2ε(ze)2 I0

kT
cosh(

zeϕ

kT
) (2)

where z is the valence of charged ions, I0 is the ionic density, k is the Boltzmann constant
(1.381 × 10−23 J K−1), T is the absolute temperature, and e is the elementary charge
(1.602 × 10−19 C) [24]. This model is valid for a diluted electrolyte condition of below
0.1 M. Again, this is not suitable for the highly charged double layers; thus, a more precise
model that include the Helmholtz layer and the diffuse layer was proposed by Stern and
Otto, as shown in Figure 2c. The capacitance of the metallic electrode, or the measured
total interface capacitance (Ctotal) is described in Equation (3) [38]:

1
Ctotal

=
1

CH
+

1
Cdi f f

(3)

4. The Capacitance of Two-Dimensional Materials

The capacitive behavior of 2D materials can be classified into various categories based
on different criteria. One such method of classification is to distinguish the capacitive
properties according to the electrical properties of the 2D materials used, namely semi-
metallic, semi-conductor and insulator. It is recognized that graphene (also referred to
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highly ordered pyrolytic graphite) is a suitable material for explaining capacitance of
semi-metallic materials [39]. This allows us to further describe the capacitance dependence
of those materials including carbonaceous, and layered materials from a nanoscopic to
a macroscopic perspective. This section discusses the intercalation capacitance of layer
materials, including TMDs and h-BN, which represent the capacitive behavior of semi-
conductor and insulator materials.

4.1. The Principle of Graphene and Carbonaceous Materials’ Capacitance

In general, the capacitance of carbonaceous materials based on the electrical double
layer (EDL) relates to the Stern’s model discussed above, with further modifications due
to the limit of charge carrier density on carbon-based materials. We can therefore add an
extra term (a “space charge capacitance”) to Stern’s model, as shown in Equation (4) [24]:

1
Ctotal

=
1

CSC
+

1
CH

+
1

Cdi f f
(4)

This model can be applied to semi-metallic electrodes such as graphite (also referred
to as graphene-based materials) because the low charge carrier density of the material
means that the internal space-charge capacitance becomes significant [24]. The theory
of minimum space charge capacitance (Csc(0)) can be calculated using the semiconductor
model if we assume that the potential drop in capacitance inside the solid behaves like a
semiconductor, as shown in Equation (5). Considering the effect of potential dependence,
the space charge capacitance can be also calculated using Equation (6), where εr refers to
the solid phase (e.g., in the graphite a–b plane εr = 2.61, along the crystallographic c-axis
εr = 3.28), c is the electronic charge carrier density (~4 × 1018 carriers cm−3), and ϕi is the
potential at the surface of the electrode [38]:

CSC(0) =

√
2ε0εre2c

kT
(5)

CSC = CSC(0) cosh(
ϕie
2kT

) (6)

Unfortunately, this space charge model cannot cover all 2D material contexts, espe-
cially low dimensional or nanomaterials like graphene. This is because there is a limited
density of state (DOS) at or near the Fermi level, while the electrons of graphene samples
occupy higher energy states. In such cases, the capacitive behaviour of low dimensional
materials are described by the quantum effect [40], which arises when low dimensional
graphene samples (below 4–5 layers) are applied [24]. The total capacitance of low dimen-
sional graphene can be defined using Equation (7), while the quantum capacitance can be
defined according to Equation (8) [40]:

1
Ctotal

=
1

Cq
+

1
CH

+
1

Cdi f f
(7)

Cq = ∂Q/∂ϕ = edN (8)

Electronic charges can be obtained from the integration of the density of states (DOS,
D(E)), and the Fermi-Dirac distribution [f (E)] when changing the applied potential, as
shown in Equation (9). The general solution of quantum capacitance can be seen in
Equation (10), in which q is the electron charge, h̄ is Planck’s constant divided by 2π, vF is
the Fermi velocity of the Dirac electron (approximately vF ≈ c/300), EF is the Fermi energy
(as calculated from EF = eϕch), and ϕch is the local potential of graphene [24,40]:

Q = e
∫ +∞

−∞
D(E)[ f (E)− f (E − ϕ)dE] (9)
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Cq =
dQ
dϕ

=
e2

4kT

∫
D(E) sec h2

(
E − ϕ

2kT

)
dE (10)

4.2. Capacitance of Graphene

Graphene, a monolayer of carbon atoms arranged in a hexagonal formation, is an
appropriate material for modelling the capacitance properties of carbon materials. This
is because the carbonaceous materials (in any form) comprise numerous benzene ring
units [41], and in this way graphene capacitance creates a connection with the carbon-based
material. Generally, graphene stores the electrical charge via a process of physisorption (also
known as electrical double layer capacitance, EDLC), thus the total graphene capacitance
can be described using Equation (7). It is clear from this state that several parameters
contribute to the measured graphene capacitance, including the active surface area of
the materials, the electrolyte concentration, the potential applied, and the dimensions
of the materials. The capacitance and ionic transport properties of exfoliated graphene
was revealed by Iamprasertkun’s group, who demonstrated that the capacitance of multi-
layered graphene is directly related to flake size, which reflects the overall surface area.
It was found that capacitance decreases as flake size increases. The small flakes exhibit
higher capacitance than larger flakes because smaller graphene flakes provide a higher
concentration of edge planes [18]. This conforms with previous observations by Yuan et al.,
which reported that the capacitance of the edge plane (~1 × 105 µF cm−2) is about four
times higher than that of the basal plane (~4 µF cm−2) [42]. It is also worth noting that the
measured capacitance not only depended on the surface area of the electrode but also the
ionic size of the electrolyte. This was clearly demonstrated by Garlyyev et al., who reported
the influence of cationic identities to the Helmholtz capacitance in aqueous systems [37],
proving that smaller hydrated ions provide less hydration size (here Cs+ is considered)
and the highest capacitance (Li+ < Na+ < K+ < Rb+ < Cs+). Note that this work measured
the capacitance of the cation using gold, and platinum electrodes (model system) in the
three-electrode configuration (the anion was fixed as ClO4−). They plotted the relationship
of capacitance with respect to the potential applied (a so-called “capacitance-potential (C–E)
curve”) using the impedance technique. It is also found that the following trend concurs
with our observation of the basal plane graphite, where basal plane capacitance can vary
from 4.7–9.4 µF cm−2 (Li+ < Na+ < K+ < Rb+ < Cs+) depending on the size of the hydrated
cations [43]. Obviously, these numbers are much lower than the proposed theoretical value
(~21 µF cm−2) [40], due to the influence of space charge capacitance (also referred to as
quantum capacitance in the low dimension materials). In fact, the quoted theoretical value
of graphene was measured using the polycrystalline electrode in the ionic liquid electrolyte
(BMIM-PF6) to obtain the Helmholtz capacitance (ignoring the quantum capacitance of
graphene, and assuming that similar interfacial properties exist between graphene and
platinum) [40]. This is why it is impossible to obtain a reading of 550 F g−1 even in the case
of a perfect monolayer graphene [44].

As well as surface area, the effect of electrolyte concentration is also crucial when
measuring total capacitance. Changing the electrolyte concentration can greatly increase
the Cdiff at the PZC (Figure 3), which explains why total capacitance increases when
higher electrolyte concentrations are applied. However, if the electrolyte concentration
exceeds 0.1 M, the Cdiff becomes negligible due to the reduction of the diffusion boundary
(the decrease in Debye length) [24,39]. Although Cdiff makes no contribution to the high
electrolyte concentration (ionic liquid, or “water-in-salt”), the total capacitance can be
increased because the space charge and quantum capacitance depend on the applied
potential. Iamprasertkun et al. demonstrated that the capacitance of the basal pyrolytic
graphite plane can be increased by up to 10 µF cm−2 to reflect the “water-in-salt” condition
(high KF concentrations of up to 17 M). However, the diffusivity of the redox molecule
shrinks in high concentrations, leading to inefficient ionic transport. It can therefore be
clearly seen that a significant relationship exists between capacitance and ionic transport.
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4.3. Capacitance of Layered Materials

The intercalation of external species into the spacing between layered materials was
first demonstrated using graphite in 1841. By immersing graphite in either a mixture
of sulfuric and nitric acids or alkaline metal solutions, the material swelled, resulting in
the cleavage of individual planes [45,46]. Among the layered materials, other conductive
materials such as TMDs (e.g., MoS2 and WS2) can be intercalated by n-butyllithium (n-BuLi)
under mild conditions. This causes an expansion in the interlayer spacing of ~0.5 Å due to
the mechanism of electron transfer from lithium to materials and diffusion into a layered
structure.

Joensen et al. [47] first synthesized single-layer MoS2 using lithium intercalation by
soaking bulk MoS2 in a solution of n-BuLi in hexane for a period of time, resulting in
the intercalation of lithium between the MoS2 layers. The intercalated MoS2 was then
immersed in water, which produced a vigorous hydrogen evolution between the layers,
causing an expansion of the MoS2 layers and a reduction between the interlayer forces.
The material was agitated to produce the lower number of layers, eventually resulting in
mono-layer MoS2 nanosheets stabilized in suitable solvents (Figure 4) [48]. However, this
technique takes a long period of time due to the diffusion of alkali metals into the interlayer
space, especially the limitation to control the amount of Li insertion.

In terms of two-dimension materials, graphene not only plays a crucial role in a variety
of applications but also creates transition metal oxides or chalcogenides. The difference
between graphene and transition metal-based layer materials lies in the charge storage
mechanism. The layer materials store the electrical charge by changing the oxidation
state of the metal atoms, while graphene stores the charge via EDLC (Figure 5). The
capacitive properties of layer materials can be classified into three main types: Surface
capacitive charge store on the (non-insertion capacitance), pseudocapacitive charges, which
represents an intermediate process between capacitive and battery, and Faradaic-battery
like behavior [49]. The capacitive behavior describes the ionic charge stored on the surface
of the electrode either by physisorption or surface redox processes as shown in Figure 5
(Type A).
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This pseudocapacitive surface process can be defined according to the center of metal
atom that contribute to the Faradaic process, which are located near the surface atom of the
metal oxide/chalcogenides at a distance of L � (2Dt)0.5, where D is the diffusion coefficient
for charge-compensating ions (cm2/s), and t is time (s). This means that the Faradaic
reaction is electrochemically indistinguishable from the non-Faradaic reaction [49]. The
EDLC and surface redox can be distinguish by the current displayed when the surface
redox process shows a higher current response. To describe the pseudocapacitive (Type B)
and faradaic (Type C) processes further, we can classify into two major mechanisms: ion
intercalation and Faradaic reaction, respectively. The Faradaic electron transfer to center
of metal atoms are typically enabled by the intercalation of charge-compensating ions
such as Li+ or Na+ [17]. This intercalation process can occur with partial redox, which
can be distinguished by the electrochemical response using the CV technique (Figure 5).
In addition to the intercalation process, it is noticeable that the battery type can also be
completely dominated by the faradaic process, where the CV clearly exhibits oxidation and
reduction peaks. The intercalation can also be carried out electrochemically by applying
an electric potential to force ions into the interlayers. The Li-ion intercalation into the
layered bulk structures was performed with the active material (TMDs; MoS2 and NbSe2)
as a cathode inside an electrochemical cell using the Li metal and LiPF6 as the anode and
electrolyte, respectively [50,51]. This has been demonstrated to reduce the reaction time
from a couple of days to a few hours, while also enabling the reaction to be monitored
(staging) throughout the intercalation process.

5. Principle of Ion Transport
5.1. Ion Selectivity

The cations and anions can be separated out due to the charged channel surface. This
is because the opposite charged ions (the counter-ions) would preferentially transport
through the surface-charged channel faster than the same charged ions (co-ions). This
is so-called ion selectivity which is based on the electrical double layer (EDL) structure
of the charge distribution at the interface between a charged electrode surface and the
surrounding electrolyte solution. The phenomena occurs via electrostatic interaction
at which the charged channel surface attracts the counter-ions and repels the co-ions
(Figure 6a) [1,52], This results in a decrease in co-ions concentration and an increase in
counter-ion concentration. This causes the local potential to decrease as a function of the
charged electrode surface-electrolyte distance, as shown in Figure 6b. The two layers are
the stern layer and the diffusion layer. The stern layer, known as the compact (rigid) layer,
possesses two planes. The first plane, which is located at the surface, contains solvent
molecules and charged ions adsorbed tightly onto the charged surface. The adsorbed ions
are defined as specifically adsorbed ions (counter-ions) at which point they are not solvated.
Moving further away into the second plane, solvated ions are then encountered due to their
increase in solvated ions size which is unable to reach near the surface. The interaction
between the solvated ions and the charged surface is governed by coulombic forces as
the solvated ions are non-specifically adsorbed [52–54]. The diffuse layer lies beyond the
stern layer, in which the solvated ions start to be more scattered and increasingly less
ordered when stepping away from the charged surface. The ion distribution of this layer is
influenced by coulombic interactions between charged ions and charged electrode surface,
and thermal motions. This indicates that the potential-distance profile has two regions
that are linear (stern layer) and non-linear (diffuse layer), where the potential decay as a
function of distance from the charged electrode surface (Figure 6b). The density of solvated
ions in the diffuse layer is much tighter at high electrode potential and less tight when
they are away from the charged surface [52–54]. This causes the exponential decrease
in potential as a function of diffuse layer distance. Moreover, the thickness of the EDL
also relates to the Debye screening length (λ), which depends on the ionic strength (I)
of the electrolyte, corresponding to λ α I−1/2 [55]. For the nanocapillary channel, the
thickness of the EDL plays a crucial role in ion transport, at which the EDL of the opposite
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charged surfaces are overlapped together. This can be attributed to the formation of almost
a unipolar ions in the channel (abundant counter-ions), which can be observed in ion
selectivity during transport through the channel, as shown in Figure 6c.
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To determine the magnitude of ion selectivity, the electrical measurement was used
to measure the zero-current potential (so-called the reversal potential, Erev: the potential
at which the sign of current reverses) or the electromotive force (i.e., the current at which
the potential is zero) for the charged channels. If the concentration of cations and anions
between both sides of charged channel (the feed and permeate sides) are known, the ion
selectivity can be determined in terms of the permeability ratio between cations and anions
(P+/P−). This can be deduced from the Erev as Equation (11):

P+

P− = −
z2
−

z2
+

 [C−] f − [C−]pexp(z−
FEm
RT

)
[C+] f − [C+]pexp(z+

FEm
RT

)
(1 − exp(z+

FEm
RT

1 − exp(z−
FEm
RT

)
(11)

where [C+]f and [C−]p are the concentration of cations and anions in the feed and permeate
sides, respectively, and z+ and z− are the valences of the cations and anions, respectively.
To obtain the zero-current potential, the drift-diffusion experiment was performed, driven
by the concentration gradient and the applied electrical field [1,56]. In addition, the ion
permeability is related to ion mobility (µ) according to solubility-diffusion theory and the
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Nernst-Einstein relationship as P =RTµ
F

β
l , where β and l are the partition coefficient and the

membrane thickness, respectively [1,57]. This suggests that the permeability ratio between
cations and anions (P+/P−) can be referred to mobility ratio (µ+/µ−) when the membrane
and its thickness used are equivalent.

5.2. From Nanometer-Sized to Angstrom-Sized Channels

The process of ion transport in nanochannels has received a great deal of attention
This plays a crucial role in the development of nanofluidics, ion sieving [9,11,58], and other
nanoscale technologies such as energy storage [4,43], active ion gated control [59], and
ion rectifications [60]. This has inspired various research directions into the fabrication of
synthetic nanochannels from inorganic materials with well-defined properties (various
types of geometries) and studying the mechanisms of ion transport [61]. As a development
in nanochannel fabrication, this can allow researchers to study electrokinetic models of the
transport of electrolyte ions through nanometer-sized slits [62–64]. Nanochannels can ini-
tially be fabricated from silica (lab-on-a-chip) with a height of 100 nm (Figure 7a) [64], and
it was found that a steady conductance at low salt concentrations inside the nanochannels
results from the dominance of surface charge density in the nanochannels. This leads to the
effectiveness of the surface charge density in the nanochannels, leading to the abundance of
counter-ions which results in electroneutrality inside the channels [63,64]. Schoch et al. [63]
increased the surface-area-to-volume-ratio by reducing the height of channel to 50 nm
(Figure 7b), showing that the surface charge plays a crucial role as a greater fraction of the
total charge is attached to the channel’s wall. This is attributed to the regulation of ionic
flow inside the charged nanochannels.

To control ionic current during the transport of ions through a channel, the height
of the channel should be less than the Debye screen length (1–100 nm in height) and the
channel’s wall should be charged [65]. A unipolar solution of counter-ions can be created
inside the nanochannel at the electrolyte concentration neutralizing the surface charge,
while the co-ions are electrostatically repelled from the channel’s wall. This creates the ionic
current inside the channel which depends on the surface charge density in the concentration
– although the ionic current becomes less involved in surface charge density where the bulk
concentration increases [60,65]. The height of the channel should be similar to the nanoscale
channels inside transmembrane proteins, which control the transport of ions and molecules.
As the magnitude of the EDL is evaluated from the Debye screening length, which relates
to the ionic concentration, this causes the overlapping EDL inside the channel depending
on the relation between size of channels and the ion concentration. Due to traditional
synthetic channels with heights in the range of 1–100 nm, the EDL overlap can occur at
very low concentrations (<10 mM), which is far lower than the concentrations observed
in physiological solutions [59]. Duan et al. [59] demonstrated ion transport by reducing
the size of nanochannel to 2 nm in height, providing the connecting EDLs from each side
of channel’s wall at 100 mM concentration, which is close to physiological concentrations.
The fluid nanochannels thus obtained can be used to mimic protein channels in order to
study the ion/molecular transport in liquid nanoconfinement [59–61].

Although an SiO2/Si-based nanochannel with a 2 nm height with hydrophilic surfaces
showed almost four-fold increase in ion transport when compared to a 25 nm height
channel in terms of bulk ion transport, but the mechanism behind the process is not fully
understood [59]. The process may result from the overlapping of the hydrogen bonding
network of the two hydration shells next to the hydrophilic surfaces [59]. To understand and
prove this, the hydrophobic nanochannels should be fabricated under the same experiment
conditions. Jung et al. [66] first fabricated rectangular-shaped nanochannels using graphene
nanosheets across the surface to provide the hydrophobic noanoconfinement [66,67]. They
found that the 3.6 nm graphene-based nanochannels performed an excellent level of ion
transport, providing great ionic conductance by over two orders of magnitude compared
to the nanochannels in the absence of graphene coating in an aqueous solution. This can
be explained by the fact that the surface of the graphene nanochannels is much cleaner



Energies 2021, 14, 5819 12 of 38

and smoother than that the SiO2/Si nanochannels (10–50 nm height channels showing
significantly low ion transport).
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channels (bottom image). (a) Nanochannel assembly with cross-sectional side view (100 nm high). (b) Cross section of
nanochannels (50 nm high) as defined by the thickness of the silicon layer and the nanochannel length (d = 3 µm). (c)
Schematic of graphene capillary devices showing the composition of each device. The arrow indicates the flow direction
of electrolyte. (d) Schematic of ion transport under nanocapillary channels (channel height = ~6.6–6.7 Å) driven by the
drift-diffusion techniques. (d) The individual ion mobility in Å-confined channels (using bilayers of graphene as spacers
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The effect of surface roughness on the Si-based nanochannels results in capillary
channels that are imprecisely controlled. Radha et al. [68] first fabricated very narrow and
smooth channels with atomic-scale precision (Figure 7c). This fabrication was based on
van der Waals interaction, with atomically nanosheets at the top and bottom (i.e., graphite)
separated by spacers made from laser-etched 2D crystals with a number of 2D layers using
single and bilayers of MoS2 and graphene, respectively, as spacers. This allowed the rapid
transport of water through the channels (around 1 m s−1) due to high internal capillary
pressure (up to 1000 bar). Meanwhile, Esfandiar et al. [69] recently fabricated controlled
nanochannels the dimensions of which approached the size of charged ions. This was
used to study size effects in ion transport using drift-diffusion experiments as shown
in Figure 7d. It was proved that the flat angstrom-scale channels exhibited small surface
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charges which enabled the investigation of solely steric effects such as ionic diameter and
channel height. They discovered that ions with a hydrated diameter larger than the channel
height (DH > 6.7 Å) can still transport, although the process leads to a reduction in ion
mobility. This is due to the distortion of their hydration shells during ion transport process
(Figure 7e). It was clearly seen that K+ travels through nanochannels faster than Cl−,
whereas Al3+ travels slower. Based on the different polarization of water molecules around
cations and anions, hydrogen atoms and oxygen atoms attach preferentially to K+ and Cl−,
which consequently creates OH− groups that cover the exterior of Cl−. This results in extra
friction between the Cl− and the channel walls, reducing mobility [69–71]. Therefore, the
Å-confined channel leads to notable asymmetries in speed between cations and anions of
the same diameter.

6. Ionic Sieving through 2D Material-Based Membranes

A membrane can be defined as a thin physical interfacial material which possesses
specific chemical and/or physical properties to control a selective species (i.e., charged
ions/molecules, live cells, and various size of particles) passing through. In general, it
can be classified by cross-sectional properties into isotropic membranes (homogeneous
composition; microporous, nonporous dense, and electrically charged membranes) and
anisotropic membrane (heterogeneous composition; Loeb-Sourirajan and thin-film compos-
ite membranes) [72,73]. As the various structures and function inside membranes, this can
be used to control the transport of permeants which is based on pore size of membranes,
diffusion (driven by concentration or pressure), and electrostatic repulsion. The different
types of membranes are widely implemented for various filtration technologies such as par-
ticle separations (large molecules, gas, and ions), pervaporation, and reverse osmosis (RO)
membranes. Electrically charged membranes can be classified as positively or negatively
charge functional groups in the structural materials, which is so-called an anion-exchange
membrane (AEM) and a cation-exchange membrane (CEM), respectively [72]. The mech-
anism of separation is mainly based on the electrostatic repulsion of the similar charge
between the charge inside the membrane and charge of particles under the influence of
an applied electric potential. The ion-exchange membranes (IEM) can be produced from
various materials such as organic (e.g., liquid and polymer) [74,75], inorganic (e.g., carbon
nanotube, graphene, transition metal dichalcogenides) [9,11,76], and organic-inorganic
hybrid (e.g., metal organic framework) materials [77–79].

2D material-based membranes can be generally classified into two main types: a
porous 2D material monolayer and assembled 2D laminar membranes (i.e., stacked laminar
multilayer 2D materials) as shown in Figure 8.

6.1. Ion Transport through Porous 2D Materials Layers

Typically, the nanoporous 2D membranes can be intrinsic [80] or fabricated using dif-
ferent methods such as electron/ion bombardments and oxygen plasma treatment [81–83].
O’Hern et al. demonstrated selective molecular and ion transport through nanoporous
graphene (NPG) membranes based on intrinsic defects [80] and tunable sub-nanometer
pores [81], respectively. By controlling the ion bombardment and oxidative etching
time, they introduced the desired nanopores in single-layer graphene with 1 nm in
diameters which proved highly selective for nanofiltration applications such as the re-
moval of small organic contaminants and more efficient desalination technologies [81–83].
Surwade et al. [83] successfully constructed an NPG membrane with nanometer-sized
pores (0.5–1 nm in diameter) by employing an oxygen plasma etching technique for water
desalination (see Figure 8a). The as-prepared membrane can decrease ion mobility nearly
100% with a large amounts of water permeation around 250 L m−2 h−1 bar−1 under os-
motic pressure as a driving force. However, the resulting water flow rate was over an
order of magnitude lower than the calculation value (2750 L m−2 h−1 bar−1) [84] at a
comparable pore size (ca. 20 Å2). This is because the as-prepared nanopores were blocked
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from electrostatic interaction between hydrated ions and functional group-terminated
nanopores.
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However, in terms of water permeability and leak-free fabrication, the scaling up to
large-area membranes with precisely controlled pore densities and sizes still remains a
significant technical challenge. One of the solutions to this challenge is the fabrication of
alternative membranes based on the assembly of 2D materials (the laminar stacking of
nanosheets) as shown in Figure 8b. This provides a well-ordered macroscopic structure,
especially as the membranes formed from graphene oxide (GO) nanosheets are highly
stackable due to their structure, which consists of a single-atom-thick layer with lateral
dimensions (stacking up to tens of µm). This stacking is enabled by the hydrogen bonds
between each GO nanosheet from the oxygen-containing functional groups, which forms a
durable and stable freestanding membrane [85,86]. In terms of low-cost production, GO
nanosheets can be easily synthesized with a high-yield via the chemical oxidation and
ultrasonic exfoliation of graphite which could potentially up-scale for use in industrial
membranes.

6.2. Ion Transport through Assembled 2D Materials Laminates

Figure 8b shows highly ordered films formed by the laminar stacking of the 2D nanosheets,
demonstrating nanochannels from both adjacent and parallel graphene sheets [56,87,88]. On the
basis of the stacking of nanosheets, these 2D nanochannels enable the permeation of
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water molecules while sieving ions that are larger in size than the channels. Moreover,
the charge on the 2D nanosheets created by oxygen-containing functional groups on GO
nanosheets provides active sites for the enhancement of ionic sieving due to electrostatic
interaction [58,89]. These properties of laminar stacked membranes mean that 2D-based
membranes represent ideal candidates for studies of ionic and molecular sieving mem-
branes, in particular for seawater desalination (nanofiltration) [11,89] and energy harvesting
(osmotic power or ‘blue energy’) [9,10].

Based on typical ion transport within laminar membranes, size exclusion is the main
factor of the separation mechanism, so the interlayer spacing of stacked 2D materials,
especially GO sheets, plays a crucial role in the rejection. Due to the physical and chemical
exfoliation of pristine graphite, GO sheets contain functional oxygen groups with an
increased interlayer spacing from 3.4 Å to 7–8 Å due to hydrogen-bonding interaction
between oxygen-containing groups within GO and water molecules [56,90,91]. Meanwhile,
the interlayer spacing between GO sheets also increases with higher humidity, enlarging
the spacing. For instance, the number of water layers in wet GO laminate is related to
the interlayer separation. Wei et al. [92] calculated that the formation of mono-, bi-, and
tri-layer water is associated with the interlayer spacing of 0.7, 1.0, and 1.4 nm, respectively,
for both graphene and GO.

Nair et al. [93] demonstrated that GO membranes allow excellent water permeation,
with a rate estimated to be around 1010 times faster than helium permeation, but they
also serve to sieve non-aqueous solvents such as liquids, vapours (acetone, hexane, and
alcohols) and gases (Ar, H2, N2, and He). They proposed that this could be attributed to
the low frictional flow of water molecules during transport through nanocapillary channels
of closely packed graphene sheets, while other molecules become impermeable in low
humidity situations through the narrower channels. GO membranes in a wet state allow the
blocking of small solutes with a hydrated radius cut-off of around 4.5 Å, which allows small
solutes (K+, Na+, Cl−, and Mg2+) to pass through but blocks larger molecules (glycerol,
[Fe(CN)6]3−, and sucrose). The explanation suggested that a network of nanocapillary
channels with a capillary-like high pressure exists inside the membrane, which allows
particles smaller than the channels to penetrate through [94,95]. Due to the wrinkling and
corrugation of the GO sheets by the oxygen-containing groups, this creates a network of
capillary channels leading to the percolating regions of non-oxidized graphene (pristine
regions), which is supported by velocity profiles for water flux between the graphene and
the GO sheets [92,96].

6.3. Ion Transport Dependent Membrane Potential

Membrane potential is defined as the electrical potential arising from the difference
in ionic concentrations on each side of a semipermeable membrane. It is also known as
transmembrane potential, and the phenomenon has been widely studied in biological cell
membranes such as neurons and muscle cells. The application of an electric field across
the membrane allows us to determine the charge and size selective ion sieving through
the nanoporous graphene (NPG) membranes [97], angstrom-scale slits [69] and laminar
stacked 2D membranes [9–11,56]. The principle of membrane potential will be discussed
in this section in the context of the model used.

In general, the difference in ionic concentration on either side of a semipermeable
membrane encourages the flow of ions from the high concentration to the low concentration
area via diffusion process. The negatively charged membrane (cation-exchange membrane;
CEM) allows cationic species to pass through the membrane rather than anionic species
(→ symbol in Figure 9a). This process leads to uncompensated anions and uncompensated
cations in the feed and the permeate sides, respectively. Because of these uncompensated
charges, ions accumulate on the membrane surface, leading to a separation of charges. This
causes an electric field to be generated within the membrane (the← symbol in Figure 9a),
which creates forces that oppose the flow of ions through the membrane. The point at
which the force of the electric field balances the force of diffusion is called the equilibrium
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potential, and the net flow of the specific ion at this point is zero [1,98]. This process can
occur when the membrane is capable of selective permeability by one or more ions.
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showing the difference in ion concentration between two liquid reservoirs separated by the membrane. The red and yellow
arrows represent the diffusion force and migration direction within the membrane, respectively. (b) Electrodiffusion model
in the membrane illustrating the constant field assumption. According to Goldman’s Assumption, the electrical field is the
same at all positions along the membrane thickness (dE/dx = constant). The field is the electric potential difference between
two liquid reservoirs (Epermeate–Efeed) through the membrane thickness (l). The flow of ions (i) across a semipermeable
membrane is related to a molar flux (Ji) and electric current density (Ii). The ionic concentration and the electric potential in
the membrane are Ci and Em respectively. Note the reduced potential (Ψ) is Ψ = FEm/RT.

The Nernst equation is used to determine the equilibrium state of the membrane when
the membrane is permeable to only a single type of ion. However, if several types of ions on
both sides are involved in the flow through the membrane (i.e., the membrane is permeable
to various ions) then membrane potential can be evaluated using the Goldman-Hodgkin-
Katz (GHK) equation, which allows the selective determination of ion. This equation is an
extended version of the Nernst equation.

Based on the assumption of the GHK equation [99,100], the electrodiffusion model is
used to assume the flow of an ion through the membrane, which is associated with various
conditions. The conditions considered are based on a homogeneous slab of material
(one that is uniform, planar and infinite in its lateral extent), a constant electric field (the
potential decreases linearly within the membrane), a material in which ions can move across
the membrane independently (without interacting with one another), and have constant
permeability, P, (where P = βD/l; β, D, and l are the partition coefficient, the diffusion
coefficient, and the membrane thickness, respectively) [1,100–102]. In this assumption, the
x-axis is used to represent the direction of the flow of ions through the membrane. Thus,
the origin of the flow lies at the interface of the membrane on the feed side (denoted x = 0)
and its termination is the interface of the membrane at the permeate side (denoted x = l)
when the membrane thickness is l, as shown in Figure 9b. As the membrane is assumed
to have lateral uniformity, variations in the electric field (Em) and ionic concentration (Ci)
within the membrane are related only to the x-direction. The assumption under the GHK
model is that the field inside the membrane is constant and equal to:

dE
dx

=
Ep − E f

l
=

−Em

l
(12)

where Em is the transmembrane voltage, Ep and Ef are the potential at the permeate and
feed sides of the membrane surface, respectively.
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To determine ion selectivity across the membranes, the GHK equation as derived from
the Nernst-Planck equation was used [99,100,102]:

Ii =
Piz2

i F2Em

RT

[Ci] f − [Ci]pexp(z i
FEm
RT

)
1 − exp(z i

FEm
RT

) (13)

Itotal= I++I− (14)

where Ii is the ionic current density of the cation (i = +), Itotal is the total current density
across the membrane, Pi is the permeability of the ion i, Em is the membrane potential,
and the other symbols have their usual meanings. Em can be obtained from the zero-
current potential. The ionic current density is calculated from the ionic current, where
the effective membrane area of the membrane is calculated from the geometric mean of
the inlet and outlet aperture areas of the membranes. This means that the flow of ions
through the membrane involves three main factors: the membrane permeability (Pi), the
ionic concentration gradient on either side of the membrane ([Ci]f/[Ci]p), and the potential
across the membrane.

According to solubility diffusion theory, ion permeability is typically governed by
the solubility and diffusion coefficient of the species in the membrane, Pi = βDi/l. The
Nernst-Einstein relationship means that ion mobility is related to the diffusion coefficient,
Di = RTµi/F. Hodgkin and Katz proposed the concept that membrane permeability relates
to ion mobility (µi) within the membrane, the partition coefficient (β), and the membrane
thickness (l), as shown in Equation (15):

Pi =
RTµi

F
β

l
(15)

Using Equations (13)–(15), the mobility ratio between cations and anions (µ+/µ−)
can be deduced from the membrane potential (Em) where different potential gives the
zero-current (Em at I++I−= 0, the zero-current potential):

µ+

µ− = −
z2
−

z2
+

 [C−] f − [C−]pexp(z−
FEm
RT

)
[C+] f − [C+]pexp(z+

FEm
RT

)
(1 − exp(z+

FEm
RT

1 − exp(z−
FEm
RT

)
(16)

where [C+]f and [C−]p are the concentration of cations and anions in the feed and permeate
sides, respectively, and z+ and z− are the valences of the cations and anions, respectively.
The drift-diffusion experiment can be performed to obtain the zero-current potential, which
is driven by the concentration gradient and the applied electric field. Thus, Equation (16)
can be widely used to determine the influence of charge and ion size during transport as
well as ionic sieving inside the membranes.

To apply in real-world membrane applications (for example, water electrodialysis,
desalination, and energy conversion technologies), the use of semipermeable membranes
can be further applied for energy production from salinity gradients. This is called osmotic
energy (‘blue energy’), which arises from the difference in chemical potential between
higher and lower concentrations of salts [2,103,104]. The energy produced is a renewable
energy alternative that is clean, sustainable, and abundant energy, which the process can
occur naturally at any estuaries. Due to the challenges for energy-harvesting technology,
the novel membrane materials i.e., 2D nanoporous membranes and laminar 2D-based mem-
branes possessing extraordinary size and charge selectivity can be used to harvest future
energy conversion. For example, large osmotic current energy in a salt concentration gradi-
ent can be produced form the membrane materials such as boron nitride nanotubes [105],
porous 2D monolayer membranes (e.g., MoS2) [57,106,107], and graphene–based mem-
branes [28,108]. These indicate that various 2D materials (both porous 2D material layer
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and assembled 2D materials laminates) could be potential to implement as membranes for
blue energy harvesting under salinity gradient.

7. Stimulus-Responsive Microsupercapacitors and Their Applications

Ion transport technologies have important applications for miniaturized energy-
storage components, including microbatteries and microsupercapacitors. Due to high
power densities and long lifetimes, microsupercapacitors have been investigated at length
as miniaturized energy-storage components in wearable gadgets and self-powered wireless
sensor networks found in applications such as implantation biosensors, patient moni-
toring, environmental monitoring and national security [109,110]. Microsupercapacitors
can be categorized into two configurations, namely stacked and in-plane interdigitated
configurations (Figure 10) [109].
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In the stacked configuration, two electrodes are separated vertically with respect
to the substrate plane. However, in the in-plane configuration, both electrodes, which
typically have an interdigitated shape, are separated horizontally on the substrate plane.
The advantages of the in-plane configuration are ease of fabrication and flexibility to
adjust and control a geometry of electrodes via conventional lithography techniques such
as photolithography [111]. Decreasing the distance between each pair of interdigitated
electrodes can enhance power densities due to the shortened ion transport path [112–114].
The in-plane interdigitated configuration also allows easy integration with other on-chip
microelectronic devices that are facilitated by an in-plane electrical connection [112]. The
configuration is also compatible with all types of electrolytes in both solid and liquid
form [111]. Moreover, as the sides of the interdigitated electrodes are exposed to the
electrolyte, the effective surface area increases, resulting in an increase in capacitance [111].

Although microsupercapacitors with in-plane interdigitated configuration have been
intensively researched for on-chip energy storage [112,115–118], exploration of their use
for novel functionalities is still in an early stage. Over the past five years, researchers have
gained increased attention through their investigation of such functionalities for novel
applications, such as direct visualization of the energy storage state [119], light-induced
energy storage and photodetection [120] and ion transport control [31]. These functions
are enabled by the stimulus-responsive behavior of the microsupercapacitors, in which
properties such as color and capacitance can be tuned via an external stimulus [31,119,120].
In the following sections, we will show how the stimulus-responsive microsupercapacitors
can be used in those applications.

7.1. Direct Visualization of Energy-Storage States

The first stimulus-responsive microsupercapacitor with in-plane interdigitated con-
figuration was reported by Zhang et al. in 2017 [119]. A stimulus-responsive mechanism
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is based on a reversible electrochromic effect, in which the color intensity of the elec-
trochromic material can be tuned by an external voltage, enabling potential applications
in the direct visualization of energy storage states [119]. The microsupercapacitor con-
sists of interdigitated electrodes made from exfoliated graphene (EG)/V2O5-nanoribbon
hybrid film and PVA/LiCl gel electrolyte dissolved in methyl viologen (MV2+) to allow
electrochromic function [119]. Figure 11a shows the fabrication process of the microsu-
percapacitor [119]. The EG/V2O5 hybrid film was prepared using the vacuum filtration
method, and the film was then transferred onto glass or flexible polyethylene terephthalate
(PET) slide, followed by the thermal deposition of a 60nm Au layer through a shadow
mask. Subsequently, the uncovered areas of the EG/V2O5 film were removed by O2 plasma
and HCl solution to create the channels for interdigitated electrodes, followed by drop
casting and the solidification of the viologen dissolved PVA/LiCl gel electrolyte.

The microsupercapacitor delivered an area capacitance of 3.92 mF cm−2 at 10 mV s−1.
Figure 11c shows the change in color of the electrode caused by the electrochromic effect
during charge-discharge cycles between 0 and 1.0 V. The electrons and ions are injected into
and removed from the viologen during the charge/discharge cycles, resulting in a change of
color from colorless (MV2+) to purple (MV+), as shown in Figure 11b. The response time for
the electrochromic effect decreases as the density of the current increases, ranging from sev-
eral minutes to a few seconds at the current densities from 0.01 to 0.4 mA cm−2. Figure 11d
shows the UV-VIS spectra of the microsupercapacitor during one charge/discharge cycle,
showing that the absorbance and thus the transparency of the color varies according to
the voltage applied. In addition, Figure 11e illustrates that the normalized absorbance at
550 nm increases approximately from 0.75 at 0 V to 1 at 1.0 V, translating to approximately
25% absorbance upon the applied voltages between 0 and 1.0 V. This phenomenon can
potentially benefit applications in the direct visualization of energy storage states without
the aid of extra techniques [119].

However, as Figure 11d shows, it is only the spectrum intensity that changes under dif-
ferent applied voltages. It has been demonstrated that the integration of metal nanoparticles
with electrochromic material offers a new functionality to the microsupercapacitor, namely
wavelength tuning via a combination of plasmonic and electrochromic effects [121,122].
The nanoparticles readily absorb light at plasma frequencies which is directly proportional
to the square root of the free carrier concentration in the metal [121,123]. Metals are typ-
ically used as a plasmonic material for applications in the visible spectrum due to high
plasma frequency, which exhibits a high absorption peak at a specific wavelength (referred
to as the resonance wavelength) in the visible region [121,122].

Hopmann et al. demonstrated a wavelength modulation based on the plasmonic effect
in gold nanocavities as well as an electrochromic effect in tungsten oxide (WO3) [122]. The
device shows a broad peak resonance wavelength shift of 64 nm, resulting in a variety of
colors at different applied current densities (Figure 12a,b). These applied current densities
cause a change in the refractive index of the electrochromic material induced by the
insertion and removal of electrolyte ions during charge and discharge cycles, resulting in a
shift of resonance wavelength and thus a change in colors [121,122,124]. This phenomenon
opens up exciting potential applications such as tunable spectral filters and tunable displays.
Unfortunately, the combination of the plasmonic and electrochromic effects has not yet
been employed in microsupercapacitors with in-plane interdigitated configurations. It
would be interesting to perform such an experiment, as it should enable ultrafast tunable
spectral filters and color-switchable displays.
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electrochromic mechanism of viologen. (c) Photographs of the reversible electrochromic effect of the microsupercapacitor
during charge-discharge states. (d) The UV-VIS spectra of the electrochromic microsupercapacitor at different voltages at a
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7.2. Light-Induced Energy Storage and Photodetection

Following the development of the first stimulus-responsive microsupercapacitor with
an in-plane interdigitated configuration that was based on reversible electrochromic ef-
fect [119], Liu et al. developed the first photoswitchable microsupercapacitor with an
in-plane interdigitated configuration by using light as the external stimulus [120]. The
capacitance of microsupercapacitors can be tuned remotely using light illumination, en-
abling potential applications in remote-controlled energy storage and photodetection [120].
The fabrication process of the photoswitchable microsupercapacitor is similar to that of
the electrochromic microsupercapacitor for a direct visualization of energy storage states
developed by Zhang et al. [119], which is described in the previous section. Two layers
of graphene grown using low-pressure chemical vapor deposition (LPCVD) were trans-
ferred onto a sapphire substrate, and a thin layer of diarylethene (DAE) molecules was
spin-coated on top of the sample, forming a DAE-graphene composite film, before a 30nm
Au layer was deposited onto the film through a shadow mask. Uncovered areas of the
DAE-graphene composite film were subsequently removed using oxygen plasma to create
the channels for interdigitated electrodes, followed by the drop casting of a thin layer of
polymer gel electrolyte poly(vinyl alcohol) (PVA)/H2SO4.

Figure 13a shows the dependence of the areal capacitance of the microsupercapacitor
as a function of time under ultraviolet (UV) light at 366 nm. We can see that before
the exposure time of 400 s, the capacitance increases almost linearly and then gradually
becomes saturated after 400 s. Using alternating illumination of UV and visible (VIS)
light at an increment of 5 min (Figure 13b), the capacitance can be modulated by up to
20% [120]. This modulation is a consequence of the reversible photoisomerization of
DAE in which the DAE isomer changes from DAE-O to DAE-C upon irradiation by UV
light, and the reverse happens when the isomer is exposed to VIS light (Figure 13c). The
mechanism behind the increase in capacitance under UV light illumination can be explained
as follows [120]. The photoisomerization from DAE-O to DAE-C induces an interfacial
charge transfer at the DAE-graphene interface, creating an interfacial dipole moment. This
induces a downward shift in the lowest unoccupied molecular orbital (LUMO) level in
DAE, leading to a reduction of the charge injection barrier for electrons into the LUMO
orbitals of DAE molecules from the graphene electrode [120]. As a result, the capacitance
increases. This phenomenon benefits applications for light-induced energy storage, such as
remote-charging energy storage and remote capacitance modulation. In addition, because
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of the microsupercapacitor’s sensitivity to UV light, it can be employed as a photodetector
for visible/blind UV detection, including the detection of fire and missile plume [120].
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Alternatively, under light illumination, the generation of electron-hole pairs in semi-
conducting materials could be used as a mechanism for capacitance modulation [125]. A
semiconductor is widely employed as a light-absorbing material in photodetectors, where
its long cut-off wavelength is determined by the energy gap between conduction and
valence bands [126]. This wavelength limits the detection range of the photodetector, e.g.,
up to 1100 nm for a silicon photodetector [126]. The integration of a 2D material such as
graphene with the silicon photodetector plays a crucial role in extending the detection range
of the photodetector [127]. In addition, the heterostructure of different types of 2D materials
such as graphene and rhenium disulfide (ReS2) exhibits an excellent photo-responsivity
of 7 × 105 A W−1 and a detectivity of 1.9 × 1013 Jones, along with a fast response time
of less than 30 ms, which is promising for photodetection applications [128]. This can
be attributed to the direct bandgap, the high quantum efficiency, strong light absorption
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by the multilayer ReS2 and the high carrier mobility of graphene [128]. A modulation of
capacitance based on that mechanism, namely the generation of electron-hole pairs under
light illumination, has been demonstrated by Arya et al. [125]. Multiple layers of ReS2
were grown on stainless steel using the chemical vapor deposition (CVD) method to serve
as a working electrode. When light shines on this working electrode, electron-hole pairs
are generated in the ReS2 separated by an electric field (Figure 14b). These additional
charges increase the accumulation of electrolyte ions at the working electrode, leading to an
increase in capacitance (Figure 14a). The process is reversible, with a 1.5-fold capacitance
enhancement from 17.9 F cm−3 to 29.8 F cm−3 [125]. However, macroscale is a factor of
this supercapacitor. It would be ideal if we could utilize ReS2 or another direct-bandgap
semiconducting 2D material in the microsupercapacitor with in-plane interdigitated con-
figuration in order to generate miniaturized ultrafast remote-charging energy storage and
ultrafast remote capacitance modulation.
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7.3. Ion Transport Control

In 2020, Lochmann et al. developed the first switchable microsupercapacitor with in-
plane interdigitated configuration based on the architecture of a field effect transistor (FET),
Figure 15a, with capacitance-tuning capability governed by the control of ion transport
(Figure 15c) [31].

The microsupercapacitor consisted of two interdigitated electrodes, a gate electrode
and a proton conducting PVA/H2SO4 hydrogel electrolyte [31]. The interdigitated elec-
trodes were fabricated using the advanced 3D-printing of a liquid carbon precursor solution
onto a boron-aluminium silicate substrate, and they were contacted using silver conducting
paste for capacitance measurements [31]. The gate electrode was produced by spin coating
thin carbon film onto a silicon wafer. A 0.3mm Kapton spacer was subsequently placed on
top of the interdigitated electrodes to create a reservoir for electrolyte. The electrolyte was
then applied into the reservoir and a gate electrode was placed on top.
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Microsupercapacitors deliver a high on/off ratio of capacitance switching, in which
capacitance drops from 100% capacitance retention in the “on” state to 1.8% capacitance
retention in the “off” state (Figure 15d) [31]. In addition, Figure 15e shows that the
capacitance retention is exponentially dependent on the gate voltage, which is comparable
to a plot of the drain current versus the gate-source voltage in a field effect transistor
(FET) [31]. Changes in capacitance come as a result of ion adsorption and desorption at
the gate electrode. When the gate electrode is negatively biased (i.e., −0.5 V), the negative
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charges induce the adsorption of positive electrolyte ions. This adsorption reduces the
number of positive ions inside the electrolyte and leads to a decrease in capacitance (the
off state). The reverse occurs when applying a positive bias to the gate electrode (i.e.,
+1 V). This induces the desorption of positive electrolyte ions, pushing these positive ions
back into the electrolyte and increasing capacitance accordingly (the on state). The ability
to control the transport of ions can be beneficial for various ion-transport applications,
including capacitive energy management, neuromodulation and ion transistor circuits [31].

The 3D interdigitated microsupercapacitor provides a large effective surface area [111,117,118]
which leads to an increase in capacitance within a small area [111]. Ferris et al. fabricated a
microsupercapacitor with 3D interdigitated electrodes (Figure 16) by depositing pseudo-
capacitive hydrated ruthenium dioxide (RuO2) onto highly porous Au current collectors
on a 4 in. silicon wafer using a standard microfabrication technique [111]. The micro-
supercapacitor was encapsulated and tested using a PVA-based electrolyte doped with
orthophosphoric acid (H3PO4) and SiWA (H4SiW12O40), and was found to deliver excellent
electrochemical performances with a capacitance per footprint area of 812 mF cm−2 at an
energy density of 329 mJ cm−2, a result that can compete with Li-ion microbatteries [111].
It would be ideal to employ the interdigitated 3D electrodes in the switchable microsuper-
capacitor with the FET configuration to enhance the control of ion transport, which would
be beneficial for the applications mentioned above.
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8. Optical Induction with Ion Transport and Optical Techniques for Ion Transport

The utilization of optical techniques for ion transport have recently become available
through optical induction [129] and optical investigation [12], but fundamental mechanisms
are more ambiguous. It is important to investigate these methods and the extension of
boundaries further in biological simulation and manmade applications.

Ion transport can be defined using the diffusion relationship as ion diffuses via
the diffusion layer in three dimensions, although the knowledge of diffusion in two
dimensions is required. When ions diffuse on a 2D layer, their propagation is disrupted by
the potential landscape of 2D materials. This potential landscape also relates to surface
charge density, and this density can be induced by external and internal stimuli, including
electric fields and photon energy [130,131]. Photo-induction will cause a surface charged
redistribution which will affect the directional ion transport through optical and thermal
influences [32,33,132]. Optical induction in nature can also be used to investigate living
bacteria for active ion transport, and can also be utilized for nanomachine design for the
harvesting of energy [2]. Light can not only be used for activated ion transport, but also for
the visualization and tracing of ion and the molecular transport of cells.
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8.1. Diffusive Behaviour of Ions on 2D Materials

Ion transport takes place in 3-dimensional space, as discussed above. However, in
specific channels and in confinement, ion transport can be assumed to behave in different
dimensions; for example, in one dimension when translocating via narrow atomic channels
such as nanotubes and nanopores, in two dimensions when travelling on membranes
or between membrane sheets, such as nanoscale ion sieving applications, and in three
dimensions when diffusing via a larger space, such as a microscopic channel or in higher
dimensional diffusion (Figure 17a) [133].
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Figure 17. (a) Diffusion of ions in one, two and three dimensions due to boundary restrictions. (b) 2D diffusion of metal
ions on graphene (purple shows diffusion with local potential restriction and yellow shows Levy walk behavior in a
super-diffusive regime). (c) The relationship between the power law of mean square displacement (δ2 or

〈
r2〉 ) and the time

steps (τ) of individual metal ions based on computational simulation [134]. Reproduced with permission from (a) ref. [134]
Copyright (2020), American Chemical Society.

With potential wells and landscape prevention, diffuse ions can propagate to nearby
regions with different diffusion regimes. Electrostatic activity and dehydration are the cause
of potential landscape variation on 2D materials [135], so the consequences of internal and
external stimuli can reveal the regime of ion diffusion. A diffusion equation (Fick’s Law) can
be used to represent diffusive behavior as normal or anomalous diffusion. Using the power
coefficient, diffusion behavior on 2D materials can be justified by Equation (17) [136]:〈

r2
〉
= 4D τα (17)

where D is the diffusion coefficient, τ is a time constant, and α is the exponent. This
relationship describes how particles propagate due to relative displacement and time step.
If α = 1, the ion diffusion belongs to the normal diffusive regime, while if α < 1 it belongs to
the sub-diffusive regime and if α > 1 it belongs to the super-diffusive regime. On a flat 2D
surface, ions tend to be super diffusive due to potential landscape, crystal orientation and
defects [134,137].
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To enhance the effects of ion transport, the structural designs of 2D materials can
be used to reengineer the ways in which ions propagate, with a significant jump in the
super-diffusive regime [134,138]. When restricted by a 2D planar surface, the diffusion
in normal and anomalous diffusion (the sub-diffusive and super-diffusive processes) is a
quintessential property. Since our understanding of ion diffusion is a foundation of ion
transport, few articles have studied the subject via simulation [134] or experiments [139].

Recently, the diffusion of metal ions was investigated in silico [134] using molecular
dynamic (MD) simulation, including ab initio and classical molecular dynamics. The
potential energy wells and landscapes of graphene (0.004–0.188 eV) at room temperature
(about 300 K) provide the major roles, controlling the behavior of ion diffusion, whether
the diffusions are normal or anomalous. The results showed normal diffusion behavior for
Pt and Ru ions. However, an anomalous super diffusion was revealed on Ag, Au, Cu and
Pd, jumping across the potential landscapes (of 10 meV potential difference with nm span)
in the characteristic Levy walk (Figure 17b,c) [134]. This knowledge can be used for the
future enhancement of ion transport.

Similar to super-diffusive ions on battery electrodes, the idea of 2D diffusion can be
used to show that the influence of 2D diffusion can indicate different predictions of ion
propagation through intercalated 2D materials, revealing a pseudocapacitive behavior
when the diffusion period is less than 0.1s, when D and < r2 > depend on the materials.

Recent comparisons of the performance of 2D materials against other materials as
2D electrodes for testing performance rates has been reported [140]. Different varieties
of materials provide no obvious support for the efficiency of 2D materials. Based on the
report, the electrode thickness (LE) is also a condition for material efficiency. When the elec-
trodes related to charge/discharge time constant (τ) with exponent (n) were investigated,
it reveals the poorer rate performance of 2D materials when compared to non-2D materials.
In addition, the rate of diffusion through stacked 2D materials was lower when compared
with non-2D materials, because of the diffusion rate limitation on 2D material morpholo-
gies and a permeability of electrolyte in diffused channels. Using our knowledge of ion
diffusion in batteries can improve our knowledge of ion transport capabilities and design
in other ion transport related applications. The behavior of the 2D diffusion of ion also
relates to variations in charge density [141] caused by external stimuli by electrochemical,
photoelectrical, photothermal phenomena [142].

8.2. Optical Induction in Ion Transport in 2D Materials

Novel 2D materials are available with a wide range of applications. Because of
their different crystalline structures and defects, these factors relate to specific band gap
structures, of which some are suitable for optical absorption [143]. There have been reviews
on the optical properties of 2D novel materials [143–145]. Bandgap energy properties
and optical absorption for a whole spectrum span (Figure 18a) from insulators (e.g., hBN
with 6 eV bandgap in a range of UV absorption), semiconductors (e.g., TMDs, MoS2 with
bandgap around 1.5–2.5 eV) are suited to visible light absorption in situations where black
phosphorus occupies IR absorption with 0.3–2 eV bandgap) and semimetals (e.g., graphene
with no bandgap) [144].

Potential barriers represent restrictions to active transport. To lower these barriers,
the membrane system needs to acquire additional energy to initiate ion transport. This
additional energy can come in the form of pressure, chemical reagent, electrical bias, tem-
perature or and photons [32,33,132,139]. Light can also be used to lower the potential
barrier for ion transport on 2D materials and through porous membranes. The phenom-
ena of optical induction on 2D materials is referred to as the photo-Dember effect [132]
(Figure 18b). The photo-Dember effects involve charge redistribution due to higher photo-
carrier temperature. Despite the picosecond lifetime, photo-induction is a challenging topic
for optoelectronic 2D materials. Among novel 2D materials, the photo-Dember effect on
graphene is negligible when compared to electrical stimuli, but with the gradient involved
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in lateral photo-Dember effects, it produces a photocurrent signal showing responsive,
nonequilibrium hot carriers [132].
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Figure 18. (a) 2D materials and optical bandgaps [144]. (b) Photo–Dember effect for increasing a local charge density [132].
(c) Photogate effect induces a directional ion transport via nanoscopic channels [32]. (d) Temperature gradient induces
ion transport due to local charge density gradient [33]. Reproduced with permission from (a) ref. [144] Copyright (2014),
Springer Nature; (b) ref. [132] Copyright (2014), American Chemical Society; (c) ref. [32] Copyright (2019), Springer Nature;
(d) ref. [33] Copyright (2020), American Chemical Society.

Optical stimuli inducing the ultrafast active transport of ions also occurred in graphene
oxide membranes. When asymmetric light is irradiated onto stacking graphene oxide mem-
branes, anomalous and super diffusive ions are translocated against the ion concentration
gradient. This can be applied to opto-electric devices, for example photonic ion diodes
(Figure 18c), switches or transistors. The polarity of the diode, the on-off switch, and the
current voltage of the transistor can be controlled by asymmetric light and its irradiated
position on the graphene oxide membrane [32].

Although photoelectric stimuli occur for ion transport induction, responses from
photothermal effects have also been investigated [33]. In stacking MXene nanochannels,
the reduction of temperature of Gibbs free energy on light irradiated regions causes non-
isothermal ion transport, shown in Figure 18d, with a response of up to 1 mV per degree
Kelvin. This also sheds light on photothermal ionic transport applications, which have the
potential for 1.68 mWm−2 output [33].

8.3. Optical Induction in Ion Transport in Living Bacteria

Ion transport is not only a phenomenon that is utilized in electronic devices, superca-
pacitors, and water purification applications [2]. In living cells, ion transport also plays
a critical role for cell stabilization and adaptation to internal and external stimuli. In
Eukaryotic [146] and Prokaryote cells (e.g., bacteria), the variation of membrane potentials
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related to ion transport on bacterial membranes can help identify the state and condition of
bacteria. Membrane potentials can precisely indicate the health of bacterial cells [147,148].

Membrane potentials on bacterial membranes are due to the ion channels exchanging
ions between the inside and outside of the cells, as happens in Na+–K+ pumps. The varia-
tion of potential on membrane introduces ion transport on the membrane and influences
the influx and efflux of other charges and ions that are transported through cell membrane.
Some activity may require additional chemical energy in a form of adenosine triphosphates
(ATPs) [149].

There are several forms of external stimuli on bacterial cells, including nutrient scarcity,
environmental pressure, pH, temperature and light or optical induction [147,150]. For
optical induction in the active transport of living bacteria, ion transport proceeds through
multiple steps with photoreceptor units or protein complexes. Charges can be transferred
through bacterial membranes and onto bacterial membranes, as happens in 2D material
investigation [2,80]. To mimic the behavior of living bacteria, the nanophotovoltaic model
was created using photoinduction on the active membrane layer with ion selectivity,
allowing ions to be transported to the osmotic membrane layer due to the non-active
transport along the concentration gradient (Figure 19). This energy harvesting imitates
from living bacteria [2].

Optical induction in living bacteria is challenging from an experimental perspective
due to the speed of its process [151,152]. Using cutting-edge optogenetic technology, the
femto-second transport of ions through complex pathways were reported. From the Na+

pump of the Krokinobacter eikastus system (KR2), the process of ion transport ranges from
femto- to microseconds using time-resolved adsorption spectroscopy from crystalline
KR2 [152], (Figure 19b).

Although light can be used for induced ion transport, it can damage and restrict
cell proliferation due to phototoxicity [153]. As mentioned above, optical induction can
induce charge distribution and activate the transport of active ions. However, light can also
trigger reactive oxygen species (ROS), damaging cells and preventing cell proliferation. In
Figure 19c, bacterial membrane potentials were investigated using fluorescent ThT reagents
to indicate the state of cell polarization. When ROS were activated, UV irradiated cell
became depolarized (the red color), while bacteria proliferation showed hyperpolarization
(the blue color) [148]. The utilization of light induction for ion transport in living cell
therefore requires optimization.

8.4. Using Optical Fluorescence Techniques for the Investigation of Ion and Molecular Transport

Since ion transport can be manipulated by optical induction, optical techniques can
be used in addition to conventional electrical probing methods to trace ion transport,
particularly fluorescence microscopy and spectroscopy. When ions are transported, they
carry energy, which gives them the ability to activate fluorescent markers. To explore ion
transport further, fluorescent markers such as dyes, quantum dots (QDs) and proteins are
now available, and their use has been reported in various disciplines [154,155].

The utilization of electro-optic interaction indicates a state of electrical, ionic and
charged molecule transport in living cells, moving from a comparatively simple to a more
complex system, i.e., from the neuron surface [155] to a more heterogenous pathogenic
bacterial surface [156]. In neuron cells, ions or carriers are transported, causing cell po-
larization due to the overall directional propagation of carriers. To investigate neuron
cell polarization, Figure 20a shows the use of quantum dots to measuring ion transport
response. The CdSe/CdS quantum dots (QDs) showed red shift behavior when sensing
different potentials from 0 to 0.9 MV/cm [157]. With this QDs tracing, ion transport on
neuron cell can be measured in sub-milliseconds [155].
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Academy of Science.

Fluorescent markers can be utilized for ion transport in neuron cells, and can also be used to
indicate molecular interactions and transport through bacterial membrane [158–160]. With more
complicates pathways because of their molecular specificity, the transport of ions or charged
molecules relates to mechanisms of ion transport through nanopore (1D diffusion) and on
membrane surfaces (2D diffusion) [161]. The transport of charged molecules in respect of
ion transport utilizes fluorescent techniques for fundamental investigation [162]. Charged
molecules of antimicrobial peptide (AMPs) were reported to have been transported through
the bacterial membrane [158].

Evidence of the transport of charged AMP molecules from outside to within the inner
membrane is shown in in Figure 20b. Based on results, we can evaluate the rate of AMP
deposition and localization from the neutron scattering results and from the fluorescence
of localization images, which clearly show the adsorption, aggregation and insertion of
AMPs on bacterial membrane [158]. This relates to the translocation of AMPs in the form
of 1D diffusion through membrane pores to aggregate in the bacterial membrane.
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Figure 20. Fluorescent markers indicate ion and molecular transport. (a) using QDs to trace ion
transport responses on neurons [157]. (b) decorated anti-microbial peptides indicate localization
on bacterial membrane [158]. (c) polyelectrolyte molecules diffused on membrane with a mean
square displacement relationship, and transported through bacterial membrane showing the rate of
molecular export from inside [156]. Reproduced with permission from (a) ref. [157] Copyright (2019),
American Chemical Society; (b) ref. [158] Copyright (2020), American Chemical Society; (c) ref. [156]
Copyright (2019), American Chemical Society.

As well as the investigation of charged molecular uptake, fluorescent markers can
also be used to indicate the export of charged molecules. Bacteria can combine with
charged molecules being exported and imported simultaneously. Tracing the export
mechanism of charged polyelectrolyte molecules as K1 capsular polysialic acid was more
challenging. Using immunology and real-time labelling methods, the diffusion of K1
capsular polysaccharides on membranes with sub-diffusion revealed a rafting model
for lipid diffusion, shown in Figure 20c. With real time tracing and improvements in
contrast [163], the rate of transport and capsular formation were investigated [156]. The
mobility of the K1 charged molecules on bacterial membrane was linked to a 2D diffusion
in a sub-diffusive regime, while charged molecules in other systems with active transport,
such as the mobility of proteins in bacterial cytoplasm in 3D diffusion, can be super-
diffusive [162].

From the perspectives of ion transport on and through 2D materials to the transport of
charged molecules on and through 2D bacterial membranes, transport in the two different
systems share a similar behavior in terms of diffusion. Bacterial mimicking applications can
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utilize the basic knowledge and the complex mechanisms of charged molecule transport in
living bacteria for better sustainability and efficiency.

9. Summary and Outlook

Ion transport is a principle that underlies a variety of current and future technologies.
This review has provided the fundamental knowledge of capacitance and ion sieving and
transportation, which provides the basic methods behind electrochemical ion transport
phenomena that are used in a variety of applications such as energy storage (focused on
microsupercapacitors), molecular transport, ion transport in biological cells and energy
harvesting (osmotic power or blue energy). The review described the capacitive proper-
ties and charge storage mechanisms from different model systems, and the context was
then expanded to include the capacitive properties of two-dimensional materials such as
graphene, metal oxide and transition metal dichalcogenide (TMDs). This provided a better
understanding of ionic sieving, transport through membranes (both organic and inorganic
cells), and the design of nano- to angstrom-scale transport channels. As the concepts of
capacitance represent the core features of the development of ion transport mechanisms,
a discussion of context was necessary regarding aspects relating to the capacitance of
two-dimensional material. Two-dimensional materials display their own unique charge
storage mechanisms, even when working the similar materials. Changing the material
dimensions—the thickness, lateral size and formation of heterostructural materials—can
greatly alter the capacitive properties. In terms of applications, we demonstrate the novel
functionalities of microsupercapacitors as well as their capacity for energy storage. These
functionalities can be found in stimulus-responsive microsupercapacitors, which offers
exciting applications in direct visualization of energy storages, light-induced energy stor-
age and photodetection, and ion transport control. Their performances may be enhanced
through the use of plasmonic nanomaterials, the generation of electron-hole pairs in a
direct-bandgap 2D semiconductor, and high-aspect-ratio (3D) interdigitated electrodes.
Through natural imitation, ion transport in living cells and the effects of photo/thermal
induction may offer fascinating applications which can be further linked to more com-
plicated ion transport systems, as well as potential uses in living bacterial systems. The
design has the potential to be tunable, selective, efficient, energy free and reproducible at a
larger scale.
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