Numerical Analysis of GDI Flash Boiling Sprays Using Different Fuels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Methodology
2.2. Spray Models
2.3. Post–Processing Techniques
2.4. Experimental Methodology
2.5. Fuels and Test Conditions
3. Results and Discussion
3.1. Baseline G1 Condition
3.2. G2 Cold Condition for iso–octane
3.3. G2 Cold Condition for n–heptane
3.4. G2 Cold Condition for n–hexane
3.5. G2 Cold Condition for n–pentane
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Millo, F.; Gullino, F.; Rolando, L. Methodological approach for 1D simulation of port water injection for knock mitigation in a turbocharged DISI engine. Energies 2020, 13, 4297. [Google Scholar] [CrossRef]
- Tornatore, C.; Sjöberg, M. Optical investigation of a partial fuel stratification strategy to stabilize overall lean operation of a DISI engine fueled with gasoline and E30. Energies 2021, 14, 396. [Google Scholar] [CrossRef]
- Gong, C.; Si, X.; Liu, F. Combined effects of excess air ratio and EGR rate on combustion and emissions behaviors of a GDI engine with CO2 as simulated EGR (CO2) at low load. Fuel 2021, 293, 120442. [Google Scholar] [CrossRef]
- Huang, W.; Gong, H.; Moon, S.; Wang, J.; Murayama, K.; Taniguchi, H.; Arima, T.; Arioka, A.; Sasaki, Y. Nozzle Tip Wetting in GDI Injector at Flash-boiling Conditions. Int. J. Heat Mass Transf. 2021, 169, 120935. [Google Scholar] [CrossRef]
- Fach, C.; Rödel, N.; Schorr, J.; Krüger, C.; Dreizler, A.; Böhm, B. Multi-parameter imaging of in-cylinder processes during transient engine operation for the investigation of soot formation. Int. J. Engine Res. 2021. [Google Scholar] [CrossRef]
- Kale, R.; Banerjee, R. Optical investigation of flash boiling and its effect on in-cylinder combustion for butanol isomers and iso-octane. Int. J. Engine Res. 2021, 22, 1565–1578. [Google Scholar] [CrossRef]
- Du, J.; Mohan, B.; Sim, J.; Fang, T.; Roberts, W.L. Study of spray structure under flash boiling conditions using 2phase-SLIPI. Exp. Fluids 2021, 62, 24. [Google Scholar] [CrossRef]
- Chang, M.; Lee, Z.; Park, S.; Park, S. Characteristics of flash boiling and its effects on spray behavior in gasoline direct injection injectors: A review. Fuel 2020, 271, 117600. [Google Scholar] [CrossRef]
- Engine Combustion Network. Available online: https://ecn.sandia.gov/gasoline-spray-combustion/ (accessed on 30 September 2020).
- Mohapatra, C.K.; Schmidt, D.P.; Sforozo, B.A.; Matusik, K.E.; Yue, Z.; Powell, C.F.; Som, S.; Mohan, B.; Im, H.G.; Badra, J.; et al. Collaborative investigation of the internal flow and near-nozzle flow of an eight-hole gasoline injector (Engine Combustion Network Spray G). Int. J. Engine Res. 2020. [Google Scholar] [CrossRef]
- Shahangian, N.; Sharifian, L.; Miyagawa, J.; Bergamini, S.; Uehara, K.; Noguchi, Y.; Marti-aldaravi, P.; Martinez, M.; Payri, R. Nozzle Flow and Spray Development One-Way Coupling Methodology for a Multi-Hole GDi Injector. SAE Tech. Pap. Ser. 2019. [Google Scholar] [CrossRef]
- Kong, S.C.; Senecal, P.K.; Reitz, R.D. Developments in spray modeling in diesel and direct-injection gasoline engines. Oil Gas Sci. Technol. 1999, 54, 197–204. [Google Scholar] [CrossRef]
- Duronio, F.; Ranieri, S.; Montanaro, A.; Allocca, L.; De Vita, A. ECN Spray G injector: Numerical modelling of flash-boiling breakup and spray collapse. Int. J. Multiph. Flow 2021, 2021, 103817. [Google Scholar] [CrossRef]
- Wadekar, S.; Yamaguchi, A.; Oevermann, M. Large-Eddy Simulation Study of Ultra-High Fuel Injection Pressure on Gasoline Sprays. Flow Turbul. Combust. 2021, 107, 149–174. [Google Scholar] [CrossRef]
- Paredi, D.; Lucchini, T.; D’Errico, G.; Onorati, A.; Pickett, L.; Lacey, J. Validation of a comprehensive computational fluid dynamics methodology to predict the direct injection process of gasoline sprays using Spray G experimental data. Int. J. Engine Res. 2020, 21, 199–216. [Google Scholar] [CrossRef]
- Jiang, C.; Parker, M.C.; Helie, J.; Spencer, A.; Garner, C.P.; Wigley, G. Impact of gasoline direct injection fuel injector hole geometry on spray characteristics under flash boiling and ambient conditions. Fuel 2019, 241, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Cui, M.; Ye, C.; Yang, S.; Li, X.; Hung, D.; Xu, M. Split injection flash boiling spray for high efficiency and low emissions in a GDI engine under lean combustion condition. Proc. Combust. Inst. 2021, 38, 5769–5779. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, S.; Nour, M.; Li, X.; Hung, D.; Xu, M. Significant Impact of Flash Boiling Spray on In-Cylinder Soot Formation and Oxidation Process. Energy Fuels 2020, 34, 10030–10038. [Google Scholar] [CrossRef]
- Dong, X.; Yang, J.; Hung, D.L.; Li, X.; Xu, M. Effects of flash boiling injection on in-cylinder spray, mixing and combustion of a spark-ignition direct-injection engine. Proc. Combust. Inst. 2019, 37, 4921–4928. [Google Scholar] [CrossRef]
- Lacey, J.; Poursadegh, F.; Brear, M.J.; Gordon, R.; Petersen, P.; Lakey, C.; Butcher, B.; Ryan, S. Generalizing the behavior of flash-boiling, plume interaction and spray collapse for multi-hole, direct injection. Fuel 2017, 200, 345–356. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H.; Zhou, Z.; Zhang, Z.; Ma, X.; Chen, L. Spray morphology transformation of propane, n-hexane and iso-octane under flash-boiling conditions. Fuel 2019, 236, 677–685. [Google Scholar] [CrossRef]
- Nocivelli, L.; Sforzo, B.A.; Tekawade, A.; Yan, J.; Powell, C.F.; Chang, W.; Lee, C.F.; Som, S. Analysis of the Spray Numerical Injection Modeling for Gasoline Applications; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Lucchini, T.; D ’errico, G.; Ettorre, D. Numerical investigation of the spray-mesh-turbulence interactions for high-pressure, evaporating sprays at engine conditions. Int. J. Heat Fluid Flow 2011. [Google Scholar] [CrossRef]
- Lucchini, T.; D’Errico, G.; Paredi, D.; Sforza, L.; Onorati, A. CFD Modeling of Gas Exchange, Fuel-Air Mixing and Combustion in Gasoline Direct-Injection Engines; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Paredi, D. CFD Modeling and Validation of Spray Evolution in Gasoline Direct Injection Engines. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2020. [Google Scholar]
- Pope, S.B. An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J. 1978, 16, 279–281. [Google Scholar] [CrossRef]
- Huh, K.Y.; Gosman, A.D. A Phenomenological Model of Diesel Spray Atomization. In Proceedings of the International Conference on Multiphase Flows, Tsukuba, Japan, 24–27 September 1991. [Google Scholar]
- Paredi, D.; Lucchini, T.; D’Errico, G.; Onorati, A.; Montanaro, A.; Allocca, L.; Ianniello, R. Combined Experimental and Numerical Investigation of the ECN Spray G under Different Engine-Like Conditions; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Baumgarten, C. Mixture Formation in IC Engines; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Adachi, M.; McDonell, V.G.; Tanaka, D.; Senda, J.; Fujimoto, H. Characterization of Fuel Vapor Concentration inside a Flash Boiling Spray; SAE Technical Papers; SAE International: Warrendale, PA, USA, 1997. [Google Scholar] [CrossRef]
- Zuo, B.; Gomes, A.M.; Rutland, C.J. Modelling superheated fuel sprays and vaproization. Int. J. Engine Res. 2000, 1, 321–336. [Google Scholar] [CrossRef]
- Engine Combustion Network. Available online: https://ecn.sandia.gov/ecn-workshop/ecn6-workshop/ (accessed on 17 November 2020).
- A Computer Program for Scattering of Light from a Sphere Using Mie Theory & the Debye Series. Available online: http://www.philiplaven.com/mieplot.htm (accessed on 3 March 2021).
- Sphicas, P.; Pickett, L.M.; Skeen, S.; Frank, J.; Lucchini, T.; Sinoir, D.; D’Errico, G.; Saha, K.; Som, S. A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse. SAE Int. J. Fuels Lubr. 2017, 10, 184–201. [Google Scholar] [CrossRef]
- ECN, Engine Combustion Network—Primary Spray G Datasets. Available online: https://ecn.sandia.gov/gasoline-spray-combustion/target-condition/primary-spray-g-datasets/ (accessed on 25 January 2021).
- Duke, D.J.; Kastengren, A.L.; Matusik, K.E.; Swantek, A.B.; Powell, C.F.; Payri, R.; Vaquerizo, D.; Itani, L.; Bruneaux, G.; Grover, R.O.; et al. Internal and near nozzle measurements of Engine Combustion Network “Spray G” gasoline direct injectors. Exp. Therm. Fluid Sci. 2017, 88, 608–621. [Google Scholar] [CrossRef] [Green Version]
- Payri, R.; Salvador, F.J.; Abboud, R.; Viera, A. Study of evaporative diesel spray interaction in multiple injections using optical diagnostics. Appl. Therm. Eng. 2020, 176, 115402. [Google Scholar] [CrossRef]
- Payri, R.; Bracho, G.; Gimeno, J.; Bautista, A. Rate of injection modelling for gasoline direct injectors. Energy Convers. Manag. 2018, 166, 424–432. [Google Scholar] [CrossRef]
- Rodriguez, A.B. Study of the Gasoline Direct Injection Process under Novel Operating Conditions. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2021. [Google Scholar]
- Lemmon, E.W.; McLinden, M.O.; Friend, D.G. Thermophysical Properties of Fluid Systems. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011; p. 20899. [Google Scholar] [CrossRef]
- Payri, R.; Gimeno, J.; Marti-Aldaravi, P.; Martínez, M. Nozzle Flow Simulation of Gdi for Measuring Near-Field Spray Angle and Plume Direction; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2019; pp. 1–11. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Lu, X.; Zhou, Z.; Xu, H.; Wang, Z. Radial expansion of flash boiling jet and its relationship with spray collapse in gasoline direct injection engine. Appl. Therm. Eng. 2019, 146, 515–525. [Google Scholar] [CrossRef]
- Araneo, L.; Donde’, R. Flash boiling in a multihole G-DI injector—Effects of the fuel distillation curve. Fuel 2017, 191, 500–510. [Google Scholar] [CrossRef]
- Duronio, F.; De Vita, A.; Allocca, L.; Montanaro, A.; Ranieri, S.; Villante, C. CFD Numerical Reconstruction of the Flash Boiling Gasoline Spray Morphology; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
Constant | Model | Value |
---|---|---|
HG | 1.0 | |
HG | 40 | |
KHRT | 0.61 | |
KHRT | 34 | |
KHRT | 1.0 | |
KHRT | 0.16 | |
KHRT | 2.5 |
Parameter | Value |
---|---|
No. of holes | 8 |
Orifice | circular |
Hole | straight |
Nozzle | step hole |
l/d ratio | 1.4 |
Orifice diameter | 165 |
Orifice length | 160–180 * |
Orifice drill angle | 37 |
Full outer angle | 80 |
Properties | iso–octane | n–heptane | n–hexane | n–pentane | Units |
---|---|---|---|---|---|
Liquid density | / | ||||
Vapor pressure | |||||
Surface tension | / | ||||
Viscosity | / | ||||
Specific heat | / |
Parameters | G1 | G2–cold | Units |
---|---|---|---|
Energizing time | 0.68 | 0.68 | ms |
Injection Pressure | 200 | 200 | MPa |
Ambient pressure | 6 | 0.5 | bar |
Fuel temperature | 363 | 363 | K |
Ambient temperature | 573 | 293 | K |
Injected mass | 10 | 10 | mg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Payri, R.; Marti-Aldaravi, P.; Abboud, R.; Bautista, A. Numerical Analysis of GDI Flash Boiling Sprays Using Different Fuels. Energies 2021, 14, 5925. https://doi.org/10.3390/en14185925
Payri R, Marti-Aldaravi P, Abboud R, Bautista A. Numerical Analysis of GDI Flash Boiling Sprays Using Different Fuels. Energies. 2021; 14(18):5925. https://doi.org/10.3390/en14185925
Chicago/Turabian StylePayri, Raul, Pedro Marti-Aldaravi, Rami Abboud, and Abian Bautista. 2021. "Numerical Analysis of GDI Flash Boiling Sprays Using Different Fuels" Energies 14, no. 18: 5925. https://doi.org/10.3390/en14185925
APA StylePayri, R., Marti-Aldaravi, P., Abboud, R., & Bautista, A. (2021). Numerical Analysis of GDI Flash Boiling Sprays Using Different Fuels. Energies, 14(18), 5925. https://doi.org/10.3390/en14185925