Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Wet Explosion Pretreatment and Enzymatic Hydrolysis
2.3. Semi-Continuous Anaerobic Digestion
2.4. TS/VS and Compositional Analysis
2.5. Gas Analysis
2.6. pH and VFA Analysis
3. Results and Discussion
3.1. Compositional Analysis
3.2. Methane Potential of the Feed Tocks
3.3. Stability of the AD Process
3.4. Biodegradability of Substrate
3.5. Biogas Composition
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theuretzbacher, F.; Lizasoain, J.; Lefever, C.; Saylor, M.K.; Enguidanos, R.; Weran, N.; Bauer, A. Steam explosion pretreatment of wheat straw to improve methane yields: Investigation of the degradation kinetics of structural compounds during anaerobic digestion. Bioresour. Technol. 2015, 179, 299–305. [Google Scholar] [CrossRef]
- Zhang, K.; Pei, Z.; Wang, D. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresour. Technol. 2016, 199, 21–33. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrere, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- García Martín, J.F.; Cuevas, M.; Feng, C.H.; Álvarez Mateos, P.; Torres Garcia, M.; Sánchez, S. Energetic valorisation of olive biomass: Olive-tree pruning, olive stones and pomaces. Processes 2020, 8, 511. [Google Scholar] [CrossRef]
- Martín, J.F.G.; Cuevas, M.; Bravo, V.; Sánchez, S. Ethanol production from olive prunings by autohydrolysis and fermentation with Candida tropicalis. Renew. Energy 2010, 35, 1602–1608. [Google Scholar] [CrossRef]
- Langholtz, M.; Downing, M.; Graham, R.; Baker, F.; Compere, A.; Griffith, W.; Keller, M. Lignin-derived carbon fiber as a co-product of refining cellulosic biomass. SAE Int. J. Mater. Manuf. 2014, 7, 115–121. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahring, B.K. Lignin degradation under anaerobic digestion: Influence of lignin modifications-A review. Biomass. Bioenergy 2019, 128, 105325. [Google Scholar] [CrossRef]
- Dimos, K.; Paschos, T.; Louloudi, A.; Kalogiannis, K.; Lappas, A.; Papayannakos, N.; Mamma, D. Effect of Various Pretreatment Methods on Bioethanol Production from Cotton Stalks. Fermentation 2019, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Del Río, J.C.; Rencoret, J.; Prinsen, P.; Martínez, A.T.; Ralph, J.; Gutiérrez, A. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 2012, 60, 5922–5935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, R.; Takeuchi, H.; Hasegawa, T.; Kumar, R. Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 2012, 43, 273–282. [Google Scholar] [CrossRef]
- Tian, S.Q.; Zhao, R.Y.; Chen, Z.C. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew. Sustain. Energy Rev. 2018, 91, 483–489. [Google Scholar] [CrossRef]
- Da Silva, E.B.; Zabkova, M.; Araújo, J.D.; Cateto, C.A.; Barreiro, M.F.; Belgacem, M.N.; Rodrigues, A.E. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem. Eng. Res. Des. 2009, 87, 1276–1292. [Google Scholar] [CrossRef]
- De Gonzalo, G.; Colpa, D.I.; Habib, M.H.; Fraaije, M.W. Bacterial enzymes involved in lignin degradation. J. Biotechnol. 2016, 236, 110–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janusz, G.; Pawlik, A.; Sulej, J.; Swiderska-Burek, U.; Jarosz-Wilkolazka, A.; Paszczynski, A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, T.; Daniel, G. Developments in the study of soft rot and bacterial decay. In Forest Products Biotechnology; CRC Press: Boca Raton, FL, USA, 2014; pp. 47–72. [Google Scholar]
- Chandra, R.; Raj, A.; Purohit, H.J.; Kapley, A. Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 2007, 67, 839–846. [Google Scholar] [CrossRef]
- Ko, J.J.; Shimizu, Y.; Ikeda, K.; Kim, S.K.; Park, C.H.; Matsui, S. Biodegradation of high molecular weight lignin under sulfate reducing conditions: Lignin degradability and degradation by-products. Bioresour. Technol. 2009, 100, 1622–1627. [Google Scholar] [CrossRef] [Green Version]
- DeAngelis, K.M.; Allgaier, M.; Chavarria, Y.; Fortney, J.L.; Hugenholtz, P.; Simmons, B.; Hazen, T.C. Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS ONE 2011, 6, e19306. [Google Scholar] [CrossRef] [Green Version]
- Dittmar, T.; Lara, R.J. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazonia, Brazil). Geochim. Cosmochim. Acta 2001, 65, 1417–1428. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahring, B.K. Anaerobic digestion of biorefinery lignin: Effect of different wet explosion pretreatment conditions. Bioresour. Technol. 2020, 298, 122537. [Google Scholar] [CrossRef] [PubMed]
- Ahring, B.K.; Biswas, R.; Ahamed, A.; Teller, P.J.; Uellendahl, H. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour. Technol. 2015, 175, 182–188. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Karimi, K.; Karimi, A.M. Ethanolic ammonia pretreatment for efficient biogas production from sugarcane bagasse. Fuel 2019, 248, 196–204. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Karimi, K.; Mirmohamad Sadeghi, S. Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy 2019, 172, 545–554. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahring, B.K. Improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure. Bioresour. Technol. 2021, 321, 124427. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahring, B.K. Anaerobic Digestion of Digested Manure Fibers: Influence of Thermal and Alkaline Thermal Pretreatment on the Biogas Yield. Bioenergy Res. 2020, 14, 1–10. [Google Scholar] [CrossRef]
- Syaichurrozi, I.; Villta, P.K.; Nabilah, N.; Rusdi, R. Effect of sulfuric acid pretreatment on biogas production from Salvinia molesta. J. Environ. Chem. Eng. 2019, 7, 102857. [Google Scholar] [CrossRef]
- Garcia, N.H.; Benedetti, M.; Bolzonella, D. Effects of Enzymes Addition on Biogas Production From Anaerobic Digestion of Agricultural Biomasses. Waste Biomass Valorization 2019, 10, 1–12. [Google Scholar] [CrossRef]
- He, C.; Zhao, J.; Wang, S.; Guan, S.; Zhang, Z.; Zhang, Q.; Jiao, Y. Ammonium bicarbonate pretreatment of corn stalk for improved methane production via anaerobic digestion: Kinetic modeling. Bioresour. Technol. 2019, 292, 122052. [Google Scholar] [CrossRef]
- You, Z.; Pan, S.Y.; Sun, N.; Kim, H.; Chiang, P.C. Enhanced corn-stover fermentation for biogas production by NaOH pretreatment with CaO additive and ultrasound. J. Clean. Prod. 2019, 238, 117813. [Google Scholar] [CrossRef]
- Biswas, R.; Uellendahl, H.; Ahring, B.K. Wet explosion: A universal and efficient pretreatment process for lignocellulosic biorefineries. Bioenergy Res. 2015, 8, 1101–1116. [Google Scholar] [CrossRef]
- Ahring, B.K.; Munck, J. Method for Treating Biomass and Organic Waste with the Purpose of Generating Desired Biologically Based Products. U.S. Patent 8,506,716, 13 August 2013. [Google Scholar]
- Rana, D.; Rana, V.; Ahring, B.K. Producing high sugar concentrations from loblolly pine using wet explosion pretreatment. Bioresour. Technol. 2012, 121, 61–67. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, A.; Sluiter, J.; Templeton, D. Preparation of Samples for Compositional Analysis. Lab. Anal. Proced. 2008, 58, 1617. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Murali, N.; Fernandez, S.; Ahring, B.K. Fermentation of wet-exploded corn stover for the production of volatile fatty acids. Bioresour. Technol. 2017, 227, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Salvachúa, D.; Katahira, R.; Black, B.A.; Cleveland, N.S.; Reed, M.; Beckham, G.T. Base-catalyzed depolymerization of solid lignin-rich streams enables microbial conversion. ACS Sustain. Chem. Eng. 2017, 5, 8171–8180. [Google Scholar] [CrossRef]
- Biswas, R.; Uellendahl, H.; Ahring, B.K. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Biomass Bioenergy 2014, 61, 104–113. [Google Scholar] [CrossRef]
- Rana, D.; Laskar, D.D.; Srinivas, K.; Ahring, B.K. Wet explosion pretreatment of loblolly pine leads to an increase in methoxylation of the lignin. Bioresour. Bioprocess. 2015, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
Lignin Type | Temperature (°C) | Time (min) | Oxygen (%) | NaOH (%) | D.M (%) |
---|---|---|---|---|---|
Lignin W1 | 190 | 25 | 7.5 | 0 | 25 |
Lignin W2 | 220 | 10 | 4 | 0 | 15 |
Lignin W3 | 220 | 10 | 4 | 1 | 15 |
Lignin W4 | 220 | 10 | 4 | 2 | 15 |
Feed Stock | Sample Type | Carbohydrates (% of VS) | Acid Soluble Lignin (% of VS) | Acid Insoluble Lignin (% of VS) | Lignin: Carbohydrates Ratio |
---|---|---|---|---|---|
Raw Lignin | Feed | 2.9 ± 0.7 | 3.6 ± 0.15 | 93.5 ± 1.1 | 33.4 ± 2.1 |
Effluent | 1 ± 0.4 | 3.1 ± 0.11 | 95.9 ± 1.2 | 99 ± 1.7 | |
Lignin W1 | Feed | 33.6 ± 0.8 | 4.1 ± 0.13 | 62.3 ± 0.8 | 1.9 ± 0.2 |
Effluent | 31.2 ± 0.2 | 3.4 ± 0.2 | 65.4 ± 0.6 | 2.2 ± 0.1 | |
Lignin W2 | Feed | 32.1 ± 0.6 | 4.4 ± 0.1 | 63.5 ± 1 | 2.1 ± 0.09 |
Effluent | 34.4 ± 0.3 | 3.4 ± 0.1 | 62.2 ± 0.7 | 1.9 ± 0.1 | |
Lignin W3 | Feed | 31.2 ± 0.5 | 4.6 ± 0.12 | 64.2 ± 0.8 | 2.2 ± 0.4 |
Effluent | 34.7 ± 0.1 | 3.3 ± 0.2 | 62 ± 1.2 | 1.9 ± 0.3 | |
Lignin W4 | Feed | 29.2 ± 0.6 | 4.8 ± 0.3 | 66 ± 0.6 | 2.4 ± 0.5 |
Effluent | 38.7 ± 0.4 | 3.2 ± 0.1 | 58.1 ± 0.4 | 1.6 ± 0.2 |
Feed Stock | Sample Type | Acetic Acid (g/L) | Propionic Acid (g/L) | Isobutyric Acid (g/L) | Butyric Acid (g/L) | Isovaleric Acid (g/L) | Valeric Acid (g/L) | Isocaproic Acid (g/L) | Hexanoic Acid(g/L) | Heptanoic Acid(g/L) | Formic Acid(g/L) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw Lignin | Feed | 0.3 | 0.4 | 0 | 0.2 | 0 | 0.1 | 0 | 0 | 0 | 0 | 7.59 |
(Effluent)max CH4 | 0.1 | 0.2 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 7.67 | |
(Effluent)min CH4 | 0.2 | 0.3 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 6.95 | |
Lignin W1 | Feed | 2.5 | 2 | 0.1 | 1.7 | 0 | 0 | 0 | 0.2 | 0 | 0 | 7.55 |
(Effluent)max CH4 | 0.7 | 0.4 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 7.63 | |
(Effluent)min CH4 | 0.9 | 0.7 | 0.1 | 0.8 | 0 | 0.1 | 0 | 0.1 | 0 | 0 | 7.41 | |
Lignin W2 | Feed | 3.6 | 2.2 | 0.2 | 2 | 0 | 0 | 0 | 0.3 | 0 | 0 | 7.44 |
(Effluent)max CH4 | 0.9 | 0.3 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 7.68 | |
(Effluent)min CH4 | 1.2 | 0.9 | 0.1 | 1 | 0 | 0.1 | 0 | 0.2 | 0.1 | 0 | 7.46 | |
Lignin W3 | Feed | 3.8 | 2.7 | 0.5 | 2.3 | 0 | 0 | 0 | 0.4 | 0 | 0 | 7.41 |
(Effluent)max CH4 | 0.7 | 0.6 | 0 | 0.8 | 0 | 0 | 0 | 0.1 | 0 | 0 | 7.7 | |
(Effluent)min CH4 | 1 | 1.2 | 0.3 | 1 | 0 | 0 | 0.1 | 0 | 0 | 0 | 7.5 | |
Lignin W4 | Feed | 4.3 | 2.8 | 0.3 | 2.5 | 0 | 0 | 0 | 0.3 | 0 | 0 | 7.35 |
(Effluent)max CH4 | 0.8 | 0.5 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 7.7 | |
(Effluent)min CH4 | 1.2 | 1 | 0.2 | 1.2 | 0 | 0.1 | 0 | 0.1 | 0 | 0 | 7.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.U.; Ahring, B.K. Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment. Energies 2021, 14, 5940. https://doi.org/10.3390/en14185940
Khan MU, Ahring BK. Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment. Energies. 2021; 14(18):5940. https://doi.org/10.3390/en14185940
Chicago/Turabian StyleKhan, Muhammad Usman, and Birgitte Kiaer Ahring. 2021. "Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment" Energies 14, no. 18: 5940. https://doi.org/10.3390/en14185940
APA StyleKhan, M. U., & Ahring, B. K. (2021). Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment. Energies, 14(18), 5940. https://doi.org/10.3390/en14185940