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Abstract: Deterministic forecasting models have been used through the years to provide accurate
predictive outputs in order to efficiently integrate wind power into power systems. However, such
models do not provide information on the uncertainty of the prediction. Probabilistic models have
been developed in order to present a wider image of a predictive outcome. This paper proposes
the lower upper bound estimation (LUBE) method to directly construct the lower and upper bound
of prediction intervals (PIs) via training an artificial neural network (ANN) with two outputs. To
evaluate the PIs, the minimization of a coverage width criterion (CWC) cost function is proposed. A
particle swarm optimization (PSO) algorithm along with a mutation operator is further implemented,
in order to optimize the weights and biases of the neurons of the ANN. Furthermore, wavelet
transform (WT) is adopted to decompose the input wind power data, in order to simplify the pre-
processing of the data and improve the accuracy of the predictive results. The accuracy of the
proposed model is researched from a seasonal perspective of the data. The application of the model
on the publicly available data of the 2014 Global Energy Forecasting Competition shows that the
proposed WT-LUBE-PSO-CWC forecasting technique outperforms the state-of-the-art methodology
in important evaluation metrics.

Keywords: lower upper bound estimation; particle swarm optimization; prediction intervals; sea-
sonality; wind power probabilistic forecasting

1. Introduction

In regard to dealing with global climate change as well as the increasing global energy
needs, turning to renewable energy alternatives has been the focus of researchers in recent
years. Wind power represents one of the most important renewable resources for wind
power generation thanks to its widely distributed nature [1]. On the other hand, the need
to efficiently exploit wind power in order to replace conventional energy power generation
in power systems has created various operation and planning problems, due to the wind’s
stochastic nature and intermittence [1].

Thanks to technological advances, neural networks (NNs) have been introduced and
have been excessively used in order to develop accurate wind power forecasting models
able to estimate and control wind power generation. Forecasting models are not only able
to predict wind power values, but also help in the organization of electricity markets as well
as the stabilization of power systems [2]. Throughout the years, NNs have been used as
deterministic forecasting models in order to generate point forecasts and provide the user
with an estimated wind power output series, which is as accurate as possible. However,
such models fail to provide information on the uncertainty of a prediction. Consequently,
due to the increasing penetration of wind power into power systems, deterministic models
cannot always be efficiently used for real-life problems as well as decision-making tasks.
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In order to overcome the limitations of deterministic forecasting models in uncertainty
estimation, over the last years, wind power probabilistic forecasting (WPPF) models have
been the main focus of researchers. Such models provide a wider view of the predictive
outcome of a forecast in the form of prediction intervals (PIs), quantiles, distributions or
scenarios and thus offer more rich predictive information to the user [3].

The most common probabilistic forecasting models consider a parametric approach,
where the predictive density follows a specific pre-defined distribution shape. However,
such an assumption of a specific distribution shape is not always reasonable for real-life
problems and as a result the parametric approach is not ideal to cope with decision-
making problems.

Various non-parametric methods have been proposed to construct PIs based on NN
technology. The work [4] introduced a direct quantile regression-based methodology
to generate predictive quantiles without statistical inference or pre-assumption of error
distribution. The proposed model efficiently used the extreme learning machine along
with the quantile regression for the probabilistic forecasting process. In [5], feed-forward
neural networks (FFNNs)-based models were used for the wind power forecasting process
and a moving block bootstrap was used for the quantification of the uncertainty of the
forecasts. The work [6] proposed a convolutional neural network (CNN)-based hybrid
model along with the wavelet transform (WT) methodology. WT was used on the wind
power data time-series in order to decompose them to their components for different
frequencies and afterwards, the new data were used in a back-propagation CNN to provide
the forecasts. In [7], a wavelet-based NN was proposed for PI construction. The proposed
methodology was further optimized via an evolving knowledge-based multi-objective
artificial bee colony algorithm that was used to improve the NN’s parameters. In [8], a
linear NN with tapped delay model was proposed for the execution of the wind power
forecasting process at multiple steps. WT was further adapted to the proposed model for
the pre-processing of the raw wind power input data.

In [9], a lower upper bound estimation (LUBE) methodology was introduced to
efficiently construct PIs. The main advantage of the LUBE method is that it uses a FFNN
with two outputs that can directly construct the PI. Each of those outputs represents the
lower and upper bound of a PI. As a result, the whole PI construction process is faster and
simpler. Moreover, the LUBE methodology avoids the use of pre-defined distributions of
the data.

The predictive results of different forecasting methodologies can be further improved
via using optimization algorithms appropriately modified to be used for WPPF. The particle
swarm optimization (PSO) is a powerful optimization algorithm, which is used for the
optimization of the synaptic weights of NNs. In [10], an enhanced PSO algorithm was used
in order to determine the weight coefficients of an adaptive network-based fuzzy inference
system methodology that was used for the forecasting process. The implementation of
a mutation operator could further improve the searching capabilities of the PSO and aid
it to not be trapped in local optima. The work [11] proposed a convolutional NN-based
model for the wind power forecasting process, in order to exploit its deep-feature extraction
potential. The proposed model was further improved by implementing a PSO algorithm
that was used to optimize different wind power segments of the wind power sequence.

This article focuses on: (1) the construction of accurate PIs via developing an efficient
wind power probabilistic forecasting model, and (2) the analysis of the results from a
seasonal perspective. The LUBE methodology is proposed for efficient PI construction. In
order to further optimize the LUBE method’s accuracy, a PSO algorithm is implemented
for the optimization of the NN parameters. Aiming to simplify the data pre-processing
process of the proposed LUBE-PSO model, the WT is adopted to decompose the original
raw data. The evaluation of the proposed model is based on the minimization of the
coverage width criterion (CWC) cost function that allows the concurrent optimization of
both the calibration and the sharpness of the constructed PIs. The results of the proposed
WT-LUBE-PSO-CWC model are studied via a seasonal analysis of the provided datasets.
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The main contributions of this paper are the following:

1. A LUBE-based methodology is adopted for accurate PI construction due to its ability
to directly create PIs from the outputs of a FFNN. The PSO algorithm along with a
mutation operator is implemented in the model in order to optimize the weights and
biases of the NNs used. In order to simplify the pre-processing of the wind power data
as well as to improve the prediction accuracy of the model, WT is implemented in the
provided dataset. By combining the advantages of WT, LUBE and PSO methods, the
proposed WT-LUBE-PSO-CWC model: a) provides PIs of high quality and accuracy,
and b) decreases the number of predictive errors when compared to state-of-the-
art methodology.

2. The Yam-Chow initialization method is proposed in this work in order to efficiently
initialize the weights of the FFNN used for the training process. The use of Yam-Chow
initialization algorithm into the proposed model manages to improve the training
speed of the FFNN by decreasing the initial NN’s error via preventing it to be trapped
in using the initial weights. A contribution of this paper is that the Yam-Chow
initialization method is further modified to fit the proposed LUBE methodology.

3. A k-fold cross validation is implemented in order to further improve the model’s
accuracy. The aim of the k-fold cross validation is twofold. It is initially applied to
the proposed model in order to determine the optimal NN structure and in five-fold
cross validation is further implemented to define the optimal number of the particles
of the swarm for the PSO algorithm.

4. The accuracy of the proposed model is tested using publicly available wind power
forecasting data from the 2014 Global Energy Forecasting Competition [12]. Moreover,
the results of the proposed method are compared with the results of another method
applied on exactly the same data.

5. The analysis of the results using different metrics shows that the proposed method is
able to efficiently construct accurate PIs. The forecasting accuracy of the proposed
method is further verified by seasonality analysis.

2. Methodology
2.1. Lower Upper Bound Estimation Method

One of the most common problems encountered in methodologies for PI construction
from NN predictions is the assumption of the data distribution. While such assumptions of
the forecasting errors may simplify the PI construction process, they create other problems
concerning the possible deviation of the data from the pre-assumed distribution. As a
result, such methodologies are not optimal to cope with real-world applications and they
usually suffer from high computational costs.

The main advantage of the LUBE methodology is the simplification of PI construction.
LUBE method uses a FFNN to estimate the lower and upper bounds of a PI. The FFNN
has two point-forecast outputs that represent the lower and upper bounds of the PI. A
schematic diagram of the LUBE method is shown in Figure 1.
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Figure 1. Representation of an NN used in the LUBE methodology for the lower and upper
bound construction.

The evaluation of the constructed PI is a result of the estimation of its calibration and
its sharpness [13]. The following metrics are commonly used to compute the calibration
and sharpness of the PI.

PI coverage probability (PICP) is the measure related to the quality of the constructed
PIs. It represents the percentage of observations (yt) found between the upper bounds
(Ut) and lower bounds (Lt) of all observations. The larger the PICP, the more targets are
supposed to be found in the corresponding PI. The PICP is computed by:

PICP =
1
N

N

∑
t=1

ct (1)

where N is the total number of samples and ct is defined as:

ct =

{
1, yt ∈ [Lt, Ut]
0, yt /∈ [Lt, Ut]

(2)

To maximize the reliability of the PI, the PICP should be as close as possible to the
nominal confidence level. It should be noted that for the PICP to be valid, it has to be
greater than or equal to the predetermined level of confidence, which is the prediction
interval nominal confidence (PINC). The closer the PICP is to the PINC, the more reliable
is the PI.

Another metric used in order to estimate the width of a PI is the prediction interval
normalized average width (PINAW). Since excessive PIs may cause difficulty in the pre-
dictive estimations and thus in decision-making problems, metrics such as PINAW play a
vital role to improve the reliability of a PI. PINAW is defined by:

PINAW =
1

NR

N

∑
t=1

(Ut − Lt) (3)

where R is the range of the underlying targets that are used for normalizing the PIs.
Since, during the training process, the bounds of the PIs are not yet constructed, a

new indirect training method is proposed in order to concurrently consider the calibration
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and sharpness aspects of the PIs. As a result, the training process is performed by using a
PI-based cost function called coverage width criterion (CWC), which is defined by:

CWC = PINAW
(

1 + γ(PICP, µ)e−η(PICP−µ)
)

(4)

where µ is the confidence level for PIs, and η is a penalty coefficient used when PICP
is smaller than µ in order to increase the difference between PICP and µ. Furthermore,
γ(PICP, µ) is defined as:

γ(PICP, µ) =

{
0, PICP ≥ µ
1, PICP < µ

(5)

A similar metric to the PINAW that is used for the width evaluation of a PI is the
prediction interval normalized root-mean-square width (PINRW):

PINRW =
1
R

√√√√ 1
N

N

∑
t=1

(Ut − Lt)
2 (6)

As its name indicates, PINRW presents the root-mean-square width of a PI, in contrast
to PINAW which presents the normalized average width of the PI. Moreover, while PINAW
gives equal weights to the widths of a PI, PINRW enlarges wider PIs [14]. As a result, the
use of PINRW is preferred in this work over the PINAW. The CWC cost function takes the
following form:

CWC = PINRW
(

1 + γ(PICP, µ)e−η(PICP−µ)
)

(7)

During the training process, it is possible that during an iteration, the width of the
PIs could be equal to zero, where PINAW = PINRW = 0. According to (7), this would
result in CWC = 0. Since the aim is to minimize the cost function, the NN could falsely
consider CWC = 0 as an optimal value, while in reality, PICP would be much smaller than
the nominal confidence level. To deal with this problem, (7) is modified to:

CWC = PINRW + γ(PICP, µ)e−η(PICP−µ) (8)

which is the final cost function used for the training process of the NN in this work.
Another metric used in order to measure the quality of the prediction is the continuous

ranked probability score (CRPS), which was introduced in [15]. CRPS is used to compare the
predictions with the estimated cumulative distribution function [16] and is computed as:

CRPS =
1

ntest

ntest

∑
t=1

∫ (
F̂(y)− l(y > yt)

)2dy (9)

where ntest is the number of input data, y are the real wind values, yt are the predicted
values, F̂(y) is the estimated cumulative distribution function and l(·) is an indicator
function which is equal to 1 when y > yt and 0 when y < yt.

2.2. Wavelet Transform

Wavelet transform is used to simplify a wind power series and analyze it to its
component series. The process aims to decompose the original signal and extract vital
characteristics at different decomposition levels [17]. One of the main advantages of the
wavelet analysis is its ability to reveal aspects of data that are missed by other signal
analysis techniques. As a result, wavelet analysis enables the detection of problems in the
data (that conventional techniques fail to notice), such as missing data, discontinuities or
false data. The filtering abilities of the wavelet transform offer wind power data series with
better overall behavior and thus give the possibility of more accurate predictions [18]. Wind
power time-series contain components of different frequencies, where the contributions
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of the low-frequency and high-frequency components tend to have different dynamic
importance to the model’s behavior. Another major advantage of the wavelet analysis is its
ability to efficiently deal with non-stationary time series problems, such as wind power
data [19].

WTs can be divided in two categories: continuous wavelet transform (CWT) and
discrete wavelet transform (DWT). The CWT is presented by:

W(a, b) =
1√
a

+∞∫
−∞

f (x) φ
(

x− b
a

)
dx (10)

where f (x) is the signal, φ(x) is the mother wavelet, scale parameter a controls the spread of
the wavelet and translation parameter b determines the central position of the wavelet.

The DWT is presented by:

W(m, n) = 2−(
m
2 )

T−1

∑
t=0

f (t)φ
(

t− n·2m

2m

)
(11)

where f (t) is the signal, T is the length of the signal, t is the discrete time index and the scale
parameter a and translation parameter b derive from the integer variables n and m from:

a = 2m (12)

and
b = n·2m (13)

The m and n integer variables control the wavelet’s dilation and translation, respec-
tively, and are contained in the set of all integers, positive and negative [20].

A DWT algorithm based on the four filters [21] is considered in this work. Mul-
tiresolution, based on Mallat’s algorithm, is proposed to obtain “approximations” and
“details” from the signal being analyzed. While the approximation follows the shape of the
original signal, the details describe components of the signal from higher frequencies. The
decomposition process is presented in Figure 2.
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Figure 2. Wavelet transform decomposition process of the original signal.

A wavelet function of type Daubechies of order 4 (abbreviated as Db4), which is used
as the mother wavelet, along with three decomposition levels, is considered in this paper.
The proposed methodology uses the approximation A3 and the details D3, D2 and D1
as inputs.
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2.3. Particle Swarm Optimization

Particle swarm optimization is a meta-heuristic optimization approach, which belongs
to the field of swarm intelligence. It was proposed and introduced as an evolutionary
computational method to deal with the optimization of continuous and discontinuous
function decision-making problems [22]. Being part of the field of swarm intelligence, PSO
considers a search environment where every possible solution is represented as a particle in
a swarm. In every problem, each particle flies into the solution space, proposing a potential
solution, at each iteration, to the problem being optimized.

The movement of every particle in the solution space is defined as follows: a random
position is assigned to each particle that corresponds to a potential solution for the given
iteration of the optimization problem. Each particle is defined by a velocity vector, its
current position and its best position in the solution space. A fitness function is then used to
evaluate the position of each particle in each iteration, representing how close the position
to an optimal solution is.

Each particle memorizes its best location throughout the iterations as pbest, and its best
value obtained considering the whole swarm is memorized as gbest. The equations used to
update the velocity and position of each particle in each iteration are the following:

vn(G + 1) = wvn(G) + c1r1(pbest,n − xn(G)) + c2r2(gbest,n − xn(G)) (14)

and
xn(G + 1) = xn(G) + vn(G + 1) (15)

where vn and xn represent the velocity and location of the n-th particle at iteration G; r1, r2
∈ [0, 1] are random variables; c1, c2 ∈ [1, 2] are acceleration constants; and w is the inertia
weight that is represented by:

w = wmax −
wmax − wmin

Gmax
× G (16)

where wmax and wmin define the initial and final inertia weight and their values are chosen
as 1.2 and 0.2, respectively, and Gmax is the maximum number of iterations. Inertia weight
is an important factor in the convergence of the particles of a swarm.

A representation of the particle movement in PSO and the vector representation of
each article is shown in Figure 3.
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2.4. WT-LUBE-PSO Model

This paper proposes the LUBE method for the construction of PIs. A k-fold cross
validation method is used in order to determine the optimal NN structure for the proposed
model. Feed-forward NNs are used and the number of neurons of the hidden layers is
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changed from 1 to 20 with a step of 1 neuron. The k-fold cross validation is used on the
training set in order to separate it from the test set. The k-fold method divides the training
set into k complementary folds, where the k − 1 folds are used for the training process of
the NNs and the rest of the folds are used for the validation process [23]. A 5-fold cross
validation is proposed in this work.

The PSO algorithm is further used in order to optimize the weights and biases of
the neural network. Apart from the definition of the optimal NN structure, a 5-fold cross
validation is further implemented to define the optimal number of the particles of the
swarm for the PSO algorithm.

The wavelet transformation is implemented in the wind power data in order to further
simplify the wind power data series and facilitate the data preprocessing. The provided
wind power time-series are decomposed through a Db4 wavelet function in order to be
analyzed to their approximation and detail coefficients. The approximation A3 and the
details D3, D2 and D1 produced from the decomposition process are used as inputs for the
proposed NN model. Consequently, the accuracy of the whole model is improved overall.

The minimization of the CWC cost function is the optimization criterion of the pro-
posed model since it allows the concurrent optimization of both the calibration and the
sharpness of the constructed PIs.

3. Case Study
3.1. Data

The dataset used in this work is the one used in the tracks of the Global Energy
Forecasting Competition 2014 (GEFCom2014) [12]. It contains hourly data collected from
10 wind farms in Australia, consisting of wind observations from two different altitudes,
10 m and 100 m above ground. For each of the ten cases, the data provided consist of the
zonal and meridional wind components (u10, v10, u100, v100) as well as the values of the
produced wind power normalized by each farm’s nominal capacity. In this paper, the
data from the wind farms of Zone 1 and Zone 7 are used. The wind speed (ws) and wind
direction (wd) are computed by:

ws =
√

u2 + v2 (17)

and

wd =
180
π

tan−1(u, v) =



tan−1( u
v
)

i f u > 0
tan−1( u

v
)
+ π i f u < 0 and v ≥ 0

tan−1( u
v
)
+ π i f u < 0 and v < 0

π
2 i f u = 0 and v > 0
−π

2 i f u = 0 and v < 0
unde f ined i f u = 0 and v = 0

(18)

The correlation between wind speed and wind direction with their zonal and merid-
ional wind components is presented in Figure 4.
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This work is focused on researching the seasonality of the given datasets, as well as
the accuracy of the proposed model in every season. As a result, the datasets used for
the training and evaluation of the models contain hourly information from 1 June 2012 to
31 May 2013 for each of the wind farms. The wind power data from the training dataset
are normalized to [0, 1], while the wind speed and wind direction data are normalized to
[−1, 1]. The dataset of each zone is further divided into four seasons in order to make the
seasonal analysis possible:

• Summer 2012: 2208 hourly sets of data
• Autumn 2012: 2184 hourly sets of data
• Winter 2012–2013: 2160 hourly sets of data
• Spring 2013: 2208 hourly sets of data

3.2. Methodology of Case Study

A flow chart of the proposed PSO-based LUBE methodology is shown in Figure 5.
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More specifically, for each one of the two zones researched, the dataset is randomly
split into a training set and a test set. Of the data, 75% are used for the training process
and the remaining 25% used for testing. The training set is split into sub-training sets and
validation sets via the five-fold cross validation method. The five-fold cross validation is
further implemented into the PSO algorithm to estimate the optimal number of particles.

A wavelet function of type Daubechies of order 4 is implemented to analyze the
wind power data for each component in order to simplify the preprocessing of the wind
power database.

The initialization process deals with NN and PSO parameter initialization. An optimal
initialization of the NN weights leads to better and more accurate results for the forecasting
model. The Yam-Chow initialization method is adopted in this work in order to execute
the weight initialization of the FFNN used for the training process. The Yam-Chow
initialization algorithm was introduced in [24], in order to improve the training speed of
the FFNN. The aim of this method is to decrease the initial NN error by preventing the NN
from becoming stuck with the initial weights. The outputs of the hidden layers remain in
the active region where the derivative of the activation function gives large values. The
optimal values of the weights from the last hidden layer are evaluated by a least-squares
method. A flow chart of the Yam-Chow initialization process is presented in Figure 6.
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The magnitude of the weights for a pattern p is defined by:

θl
p ≤ s


s
√

3

(nl+1)∑
nl+1
i=1

(
Ql

p,i

)2 for weights with uniform distribution

s
√

1

(nl+1)∑
nl+1
i=1

(
Ql

p,i

)2 for weights with normal distribution
(19)

where θl
p is the magnitude of weights, Q is the output of layer l and nl is a large number. In

order to confirm that the hidden neurons’ outputs remain in the active region, the following
value is used:

θl = min
(

θl
p

)
for p = 1, . . . , P (20)

The initialization process is the following: θl is evaluated by applying (19) and (20),
by using the input layers for l = 1. Afterwards, the weights are initialized randomly with
a uniform distribution between −θ1 and θ1 or with a normal distribution N

(
0, (θl

p)
2
)

.

Then, a2
p,i is evaluated by feedforwarding the input patterns through the network with the

initialized weights. Afterwards, for l = 1, 2, . . . , L − 2, θl is evaluated by applying (19) and
(20) using the output of layer l. The weights are again initialized randomly with a uniform
distribution between −θ1 and θ1 or with a normal distribution N

(
0, (θl

p)
2
)

. Then, al+1
p,i is

evaluated by feedforwarding the outputs of al
p,i through the network with the initialized

weights. When the aL+1
p,i or AL−1 is found, the last layer of weights WL−1 is calculated by a

least-squares method and derives from:

minimize‖AL−1WL−1 − S‖2 (21)

where S is a matrix with entries:
si,j = f−1(Ki,j

)
(22)

where Ki,j are the entries of the target matrix D.
However, due to the fact that the LUBE-based methodology used in this work has

two outputs in order to construct the PI bounds, the Yam-Chow initialization methodology
is appropriately modified in order for the matrix D to have two output columns instead
of one.

As mentioned in Section 2, the velocity and position updates are two core procedures
of the PSO algorithm. Through Equations (14) and (15), the velocity and position of the
particles of the swarm are updated.

Moreover, a mutation operator is implemented for the PSO. Mutation operators intend
to add variability into a population by creating variation in a present individual and as
a result decrease the possibility of the population being trapped into local optima [25].
As a result, by implementing a mutation operator into PSO, the proposed methodology
manages to further enhance the algorithm’s performance by improving its global search
capacity. The Gaussian mutation operator is applied to the particles via:

mutate(xid) = xid + gaussian(σ) (23)

where xid is the particle position dimension and σ is set to 0.1 times the range of the
particle dimension.

The mutation rate linearly decreases during the optimization process in order to
provide more search space to the algorithm before the convergence of the particles.

When the update of the weights is complete, the new PIs are constructed via the LUBE
methodology, followed by the estimation of PICP, PINRW and the calculation of the CWC
cost function. In order to update the pbest and gbest values, the CWC cost function criterion
is used. For each particle, when the new CWC value is smaller than the already existing
CWC value of pbest, then the pbest for this particle is replaced by the new weights. As for the
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gbest, if the new value of CWC of the pbest is smaller than the one of the gbest, then the gbest
is updated.

The training process is concluded when the maximum number of iterations is reached.
The evaluation of the above-presented model is measured by the evaluation metrics of
PICP, PINAW, CWC and CRPS. The whole process is repeated five times, in order to be
able to statistically analyze the performance of the forecasting model.

A flow chart presenting the whole model’s process is presented in Figure 7.
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4. Results

Table 1 shows the optimal values of the model’s hyperparameters after fine-tuning
while Table 2 shows the optimal BELM model’s hyperparameters.



Energies 2021, 14, 5942 13 of 23

Table 1. Optimal values of the proposed model’s hyperparameters.

Parameter Value

Hidden layer activation function Bipolar Sigmoid
Output layer activation function Sigmoid
Number of input layer neurons (Ni) 9
Number of hidden layer neurons (Nh) 5 (WT-LUBE-PSO-CWC)
Confidence level (µ) 0.9
h 80
Number of particles (nparticles) 80
w Linear decrease, wmax = 0.7, wmin = 0.4
c1 1.2
c2 1.3
Number of iterations (niter) 100
xmax 4
vmax 1

Table 2. Optimal values of the BELM’s hyperparameters.

Parameter Value

Hidden layer activation function Sigmoid
Output layer activation function Sigmoid
Number of input layer neurons (Ni) 4
Number of hidden layer neurons (Nh) 80–100
Confidence level (µ) 0.9
Number of ELMs 300–700

Figure 8 shows the convergence speed of the proposed LUBE-PSO-CWC with and
without the Yam-Chow initialization technique. The dataset used to generate the results
of Figure 8 is that of the autumn 2012 data of zone 7. With Yam-Chow initialization, the
convergence rate is higher and more constant throughout the iterations even though the
convergence speed is smaller compared to random initialization. This means that with
the Yam-Chow initialization, fewer iterations are needed for the weights and biases to
converge to their global optimal values.
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Tables 3–6 present the results of the evaluation of five different training sessions,
for each season of zone 1, of the proposed WT-LUBE-PSO-CWC in comparison with the
bootstrap extreme learning machine (BELM) [26] for a confidence level of 0.9. The chosen
evaluation indices are PICP, PINAW, CWC and CRPS. For each evaluation index, the
median value of the five different training sessions is calculated, while the best median
values are indicated with bold. Similarly, Tables 7–10 compare the results of the proposed
WT-LUBE-PSO-CWC with the results of BELM, for data corresponding to zone 7.
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Table 3. Results of the evaluation of 5 training sessions of WT-LUBE-PSO-CWC and BELM models in zone 1 for summer
2012 at the 0.9 confidence level.

Zone 1—Summer 2012

Run
WT-LUBE-PSO-CWC BELM

PICP PINAW CWC CRPS PICP PINAW CWC CRPS

1 0.929348 0.587711 0.587711 0.121268 0.913043 0.611533 0.611533 0.152232
2 0.936594 0.560942 0.560942 0.121168 0.922101 0.589988 0.589988 0.132506
3 0.940217 0.571155 0.571155 0.112708 0.865942 0.579842 15.83073 0.138088
4 0.929348 0.592777 0.592777 0.118424 0.889493 0.611881 2.929591 0.148789
5 0.936594 0.577429 0.577429 0.120047 0.916667 0.616082 0.616082 0.130332

median 0.936594 0.577429 0.577429 0.121168 0.913043 0.611533 0.616082 0.132506

Table 4. Results of the evaluation of 5 training sessions of WT-LUBE-PSO-CWC and BELM models in zone 1 for autumn
2012 at the 0.9 confidence level.

Zone 1—Autumn 2012

Run
WT-LUBE-PSO-CWC BELM

PICP PINAW CWC CRPS PICP PINAW CWC CRPS

1 0.92674 0.50296 0.50296 0.112927 0.886447 0.502549 3.459768 0.125717
2 0.924908 0.521468 0.521468 0.109748 0.90293 0.507688 0.507688 0.134878
3 0.930403 0.534903 0.534903 0.111522 0.904762 0.523628 0.523628 0.111435
4 0.924908 0.524709 0.524709 0.112485 0.899267 0.529151 1.58951 0.130973
5 0.946886 0.514152 0.514152 0.118943 0.904762 0.536038 0.536038 0.122838

median 0.92674 0.521468 0.521468 0.112485 0.90293 0.523628 0.536038 0.125717

Table 5. Results of the evaluation of 5 training sessions of WT-LUBE-PSO-CWC and BELM models in zone 1 for winter
2012/2013 at the 0.9 confidence level.

Zone 1—Winter 2012/2013

Run
WT-LUBE-PSO-CWC BELM

PICP PINAW CWC CRPS PICP PINAW CWC CRPS

1 0.937037 0.581447 0.581447 0.109235 0.914815 0.550184 0.550184 0.105005
2 0.937037 0.548112 0.548112 0.114477 0.925926 0.552575 0.552575 0.128891
3 0.944444 0.544087 0.544087 0.108662 0.909259 0.535228 0.535228 0.10603
4 0.924074 0.560784 0.560784 0.109268 0.922222 0.555262 0.555262 0.09775
5 0.927778 0.536349 0.536349 0.108738 0.892593 0.551755 2.360426 0.110122

median 0.937037 0.548112 0.548112 0.109235 0.914815 0.551755 0.552575 0.10603

Table 6. Results of the evaluation of 5 training sessions of WT-LUBE-PSO-CWC and BELM models in zone 1 for spring 2013
at the 0.9 confidence level.

Zone 1—Spring 2013

Run
WT-LUBE-PSO-CWC BELM

PICP PINAW CWC CRPS PICP PINAW CWC CRPS

1 0.938406 0.505186 0.505186 0.09981 0.887681 0.460694 3.139865 0.113165
2 0.913043 0.508106 0.508106 0.105044 0.896739 0.493109 1.791167 0.106054
3 0.902174 0.493714 0.493714 0.102296 0.902174 0.490428 0.490428 0.110525
4 0.931159 0.478736 0.478736 0.106332 0.914855 0.49164 0.49164 0.109636
5 0.932971 0.484572 0.484572 0.109075 0.902174 0.48363 0.48363 0.10796

median 0.931159 0.493714 0.493714 0.105044 0.902174 0.490428 0.49164 0.109636
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Table 7. Results of the evaluation of 5 training sessions of WT-LUBE-PSO-CWC and BELM models in zone 7 for summer
2012 at the 0.9 confidence level.

Zone 7—Summer 2012

Run
WT-LUBE-PSO-CWC BELM

PICP PINAW CWC CRPS PICP PINAW CWC CRPS

1 0.905797 0.420878 0.420878 0.0799 0.927536 0.520722 0.520722 0.110875
2 0.936594 0.454452 0.454452 0.089045 0.907609 0.5125 0.5125 0.100855
3 0.95471 0.498952 0.498952 0.078147 0.902174 0.495 0.495 0.104277
4 0.918478 0.457658 0.457658 0.081495 0.900362 0.50293 0.50293 0.096438
5 0.902174 0.437809 0.437809 0.086198 0.889493 0.511255 2.828965 0.113313

median 0.918478 0.454452 0.454452 0.081495 0.902174 0.511255 0.5125 0.104277

Table 8. Results of the evaluation of 5 training sessions of WT-LUBE-PSO-CWC and BELM models in zone 7 for autumn
2012 at the 0.9 confidence level.

Zone 7—Autumn 2012

Run
WT-LUBE-PSO-CWC BELM

PICP PINAW CWC CRPS PICP PINAW CWC CRPS

1 0.923077 0.421657 0.421657 0.08538 0.899267 0.426496 1.486855 0.08155
2 0.945055 0.425308 0.425308 0.079008 0.891941 0.414129 2.319523 0.095855
3 0.945055 0.439539 0.439539 0.075649 0.90293 0.399998 0.399998 0.089744
4 0.928571 0.441432 0.441432 0.081322 0.904762 0.419534 0.419534 0.099277
5 0.930403 0.413597 0.413597 0.087648 0.917582 0.431348 0.431348 0.08648

median 0.930403 0.425308 0.425308 0.081322 0.90293 0.419534 0.431348 0.089744

Table 9. Results of the evaluation of 5 training sessions of WT-LUBE-PSO-CWC and BELM models in zone 7 for winter
2012/2013 at the 0.9 confidence level.

Zone 7—Winter 2012/2013

Run
WT-LUBE-PSO-CWC BELM

PICP PINAW CWC CRPS PICP PINAW CWC CRPS

1 0.925926 0.426906 0.426906 0.079494 0.894444 0.45616 2.015783 0.079817
2 0.925926 0.426392 0.426392 0.078519 0.933333 0.4851 0.4851 0.082459
3 0.937037 0.425057 0.425057 0.071934 0.890741 0.478075 2.575564 0.085244
4 0.92037 0.421845 0.421845 0.072957 0.916667 0.497856 0.497856 0.094215
5 0.948148 0.447134 0.447134 0.075061 0.905556 0.463056 0.463056 0.08969

median 0.925926 0.426392 0.426392 0.075061 0.905556 0.478075 0.497856 0.085244

Table 10. Results of the evaluation of 5 training sessions of WT-LUBE-PSO-CWC and BELM models in zone 7 for spring
2013 at the 0.9 confidence level.

Zone 7—Spring 2013

Run
WT-LUBE-PSO-CWC BELM

PICP PINAW CWC CRPS PICP PINAW CWC CRPS

1 0.905797 0.488969 0.488969 0.089862 0.923913 0.468896 0.468896 0.095562
2 0.922101 0.441415 0.441415 0.087679 0.916667 0.455027 0.455027 0.101341
3 0.947464 0.474707 0.474707 0.103661 0.92029 0.465497 0.465497 0.097224
4 0.95471 0.449573 0.449573 0.086386 0.925725 0.464865 0.464865 0.094885
5 0.927536 0.436783 0.436783 0.091514 0.925725 0.468675 0.468675 0.092209

median 0.927536 0.449573 0.449573 0.089862 0.923913 0.465497 0.465497 0.095562



Energies 2021, 14, 5942 16 of 23

Tables 3–10 show that the proposed WT-LUBE-PSO-CWC outperforms BELM in both
PICP and CWC. Specifically, the proposed WT-LUBE-PSO-CWC achieves a higher median
PICP in all cases, and a lower median CWC in seven out of eight cases. BELM achieves a
slightly better median CWC only for the spring 2013 dataset of zone 1. This means that
the generated PIs by WT-LUBE-PSO-CWC have a bigger coverage rate, even though they
have a smaller range on average. The proposed model also has a more stable response,
since in every run of each case, PICP is equal to or higher than the nominal confidence
level. On the other hand, the coverage probability of the PIs generated by BELM cannot
reach the nominal confidence level in several runs, resulting in a much higher CWC value.
Furthermore, in terms of the CRPS error metric, the proposed model outperformed the
BELM model significantly in seven out of eight cases.

In order to further prove the superiority of the proposed model, comparative re-
sults between the proposed WT-LUBE-PSO-CWC model and BELM are presented in
Tables 11 and 12 for a confidence level of 0.85 and 0.95, respectively. Due to space limita-
tions, the median values for five training sessions of PICP, CWC and CRPS for each model
are presented for every season from summer 2012 to spring 2013. It can be derived that
in 14 out of 16 cases, the proposed WT-LUBE-PSO-CWC achieves a higher median PICP,
while only in 2 out of 16 cases BELM has a slightly better median PICP. The median PICP
values of the proposed model remain equal or higher than the nominal confidence level
in all cases. Concerning the median CWC values, the proposed model outperforms the
BELM model in all cases. In terms of CRPS, the proposed model outperformed the BELM
model in 13 out of 16 cases. More specifically, for the dataset of Zone 1, the proposed
model outperformed the BELM model for both the 0.85 and 0.95 confidence level. For
the dataset of Zone 7, the BELM model gave slightly better results for autumn for both
confidence levels, which is probably a result of the quality of the data compared to the
dataset of Zone 1.

Table 11. Results of the evaluation of WT-LUBE-PSO-CWC and BELM models in zone 1 and zone 7 for summer 2012 to
spring 2013 at the 0.85 confidence level.

Zone Model Summer Autumn Winter Spring

PICP CWC CRPS PICP CWC CRPS PICP CWC CRPS PICP CWC CRPS

1 WT-LUBE-PSO-CWC 0.875903 0.547588 0.11204 0.865436 0.45893 0.106135 0.87037 0.498768 0.11564 0.879284 0.479383 0.096623
BELM 0.858696 0.574703 0.139883 0.857143 0.594353 0.111091 0.896296 0.641032 0.120683 0.865942 0.539754 0.109648

7 WT-LUBE-PSO-CWC 0.894928 0.427838 0.078971 0.897373 0.402987 0.080684 0.874636 0.39901 0.073401 0.864986 0.427365 0.085136
BELM 0.858696 0.51434 0.107031 0.869963 0.543002 0.076599 0.894444 0.643254 0.089209 0.880435 0.566996 0.086786

Table 12. Results of the evaluation of WT-LUBE-PSO-CWC and BELM models in zone 1 and zone 7 for summer 2012 to
spring 2013 at the 0.95 confidence level.

Zone Model Summer Autumn Winter Spring

PICP CWC CRPS PICP CWC CRPS PICP CWC CRPS PICP CWC CRPS

1 WT-LUBE-PSO-CWC 0.9782609 0.6986929 0.129676 0.978022 0.6546803 0.119676 0.9759259 0.6840675 0.099521 0.9800725 0.6174573 0.097464
BELM 0.9655797 0.7730771 0.136406 0.952381 0.7562133 0.120782 0.9537037 0.7781812 0.112971 0.9619565 0.7032684 0.119499

7 WT-LUBE-PSO-CWC 0.9800725 0.5942572 0.094644 0.9871795 0.5563049 0.093777 0.9740741 0.5301191 0.083982 0.9764493 0.5867283 0.104113
BELM 0.9673913 0.774709 0.099621 0.952381 0.7583182 0.086475 0.9555556 0.7805898 0.094225 0.9601449 0.7049268 0.080201

Figures 9 and 10 show the PIs generated by the WT-LUBE-PSO-CWC and the BELM
methods, respectively, for the autumn 2012 dataset of zone 7. In each figure, the upper chart
shows the PIs for the first 48 predictions of the test set (first two days), and the lower chart
shows the predicted PIs for the whole test set (546 samples, i.e., 23 days). The red spots in
Figures 9 and 10 refer to the spot forecasts in each case, while the blue lines in the upper
charts indicate the PIs’ width. The quality of the PIs generated by WT-LUBE-PSO-CWC is
generally higher than the quality of the PIs generated by BELM. For the rest of the seasons
researched, the conclusions drawn for the PIs are generally similar for the two methods
compared; however, due to space limitations, only one season is presented.
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In Table 13, an overall comparison between BELM and the proposed WT-LUBE-PSO-
CWC model is made for every case of each zone concerning the 0.9 confidence level. The
average values of CWC, PICP and the model’s run time are obtained by the corresponding
median values of the eight cases shown in Tables 3–10. The average CWC of WT-LUBE-
PSO-CWC is 0.487056, which is 5.05% less than the average CWC of BELM. The average
PICP of WT-LUBE-PSO-CWC is 0.929234, which is 2.29% more than the average PICP of
BELM. The conclusion is that both coverage rate (CWC) and average PI range (PICP) are
improved with the proposed WT-LUBE-PSO-CWC model. As expected, however, BELM is
faster, since its core consists of extreme learning machines.
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Table 13. Overall comparison of WT-LUBE-PSO-CWC and BELM models for every case of each zone.

Comparisons WT-LUBE-PSO-CWC BELM Difference (%)

Average CWC 0.487056 0.512942 −5.05
Average PICP 0.929234 0.908442 2.29
Average CRPS 0.096859 0.10609 −9.53
Average run time (s) 126 27 366.67
Number of cases with best
CWC 7 1 600.00

Number of cases with best
PICP 8 0 ∞

Number of cases with best
CRPS 7 1 600.00

In order to achieve a more reliable evaluation of the performance of WT-LUBE-PSO-
CWC and BELM, the two models are trained and evaluated again, this time with year-long
datasets, containing information from 1 June 2012 to 31 May 2013 for both zones 1 and 7.
Thus, the dataset of each zone consists of 8760 hourly sets of data. Again, the training sets
consist of 75% of the initial datasets and the remaining 25% correspond to the test sets. The
results are shown in Table 14. The median values of PICP, CWC and CRPS for each zone are
obtained after five implementations of the training and the evaluation process. In order to
show the effect of wavelet transformation, the results are also obtained for LUBE-PSO-CWC
without the wavelet transform. Thus, the input data of LUBE-PSO-CWC without wavelet
consist only of the original input data of the GEFCom 2014. Again, WT-LUBE-PSO-CWC
outperforms BELM in both coverage rate and average PI range, in both zones. Additionally,
it can be seen from Table 14 that the application of wavelet transformation improves the
obtained results of LUBE-PSO-CWC, in both PICP and CWC.

Table 14. Results of the WT-LUBE-PSO-CWC, LUBE-PSO-CWC and BELM models for zone 1 and zone 7 for the year-
long dataset.

WT-LUBE-PSO-
CWC LUBE-PSO-CWC BELM Combined

WT-LUBE-PSO-CWC/BELM

Zone 1
Median PICP 0.936986 0.935662 0.910502 0.936094

Median CWC 0.544786 0.549686 0.554566 0.549782

Median CRPS 0.102015 0.102911 0.107595 0.105501

Zone 7
Median PICP 0.933836 0.926073 0.906393 0.914383

Median CWC 0.44327 0.455288 0.477433 0.468975

Median CRPS 0.073684 0.07768 0.082439 0.096369

In Table 14, the results of the combined BELM and WT-LUBE-PSO-CWC methods are
also presented. Combined PIs can improve forecasts in both accuracy and calibration [27].
The PIs generated by both BELM and WT-LUBE-PSO-CWC are characterized by a low level
of overconfidence. Furthermore, the correlation between the two models is small. Thus, the
best methods to combine PIs are the average method, the median method and the exterior
trimming method [28]. Since there are only two methodologies involved, the average (Avg)
method is chosen. Combined PIs do not seem to improve the overall performance of the
forecasts. Although the results of the combined method are better than those of BELM, the
WT-LUBE-PSO-CWC method still has the best performance. However, if more methods
were combined and a more complex combination method was used, the results could
probably be improved.

In order to present the accuracy of the results from a seasonal point of view, Figure 11
shows the average value of the median CWC between the proposed WT-LUBE-PSO-CWC
and BELM models for each season in zone 1 and 7. For both zones, the worst performance
is obtained in summer. The average values per season of the values shown in Figure 11
are presented in Table 15. Again, the highest average CWC is observed in summer. This is
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expected, since in summer the average wind speed is usually lower than during the rest
of the year, resulting in a bigger fluctuation in wind power output, or no power output
at all, for longer periods of time. On the other hand, the best results are obtained in
spring and autumn. Consequently, in the summer a greater error rate of the wind power
forecasts should be expected, while the smallest error rates should be expected in spring
and autumn.
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Table 15. Average CWC and standard deviation of CWC per season between both models obtained from both zones.

Parameter Summer Autumn Winter Spring

Average CWC 0.540116 0.47854 0.506234 0.475106
Standard deviation of CWC 0.071331 0.058337 0.058726 0.021322

Table 15 presents the standard deviation of the values of CWC shown in Figure 11.
The biggest standard deviation of CWC is obtained in summer, while the lowest standard
deviation of CWC is obtained in spring. This means that when using spring data, WT-LUBE-
PSO-CWC and BELM have a more stable response, independent from the geographical
location of the wind farm. On the other hand, when using summer data, the models have
a more unstable response, which means that the quality of the results has a much bigger
dependence on the geographical location of the wind farm.

It can be further observed from Figure 11 that there is a slight difference in the median
CWC between spring and autumn in Zone 1 and Zone 7. Considering that each data zone
concerns wind farms in different locations, the difference in the median CWC could be a
result of the different quality of data during those specific seasons. As a result, for Zone 1
the spring data are of better quality than the autumn data, while for Zone 7 the autumn
data provide better results. Furthermore, the technical characteristics of the wind farms
located in each zone could also play a significant role in the observed difference in the
median CWC between spring and autumn in Zone 1 and Zone 7.

Table 16 presents the average number of observations below the lower limit and above
the upper limit of the PIs. For the BELM method, the average number of observations
above the upper prediction limit is significantly higher than the observations below the
lower prediction limit, for almost every test case. This is even more evident for the WT-
LUBE-PSO-CWC method. This is probably related to the fact that more target values of
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the datasets lie near 0 instead of 1, since the output of a wind farm is rarely close to its
nominal level. The fact that for the WT-LUBE-PSO-CWC method the observations below
the lower prediction limit are less compared to those for the BELM method proves that
the WT-LUBE-PSO-CWC method is more accurate. The only test cases where the average
number of observations below the lower prediction limit is higher than the average number
of observations above the upper prediction limit are those related to the summer datasets.
Due to space limitations, only the observations exceeding the PI limits for a confidence level
of 0.9 are presented, since the results for confidence levels of 0.85 and 0.95 were relatively
similar to those presented in Table 16.

Table 16. Average number of observations below the lower limit and above the upper limit of the PIs for 0.9 confidence level.

Zone Model Summer Autumn Winter Spring

Avg Lower Avg Upper Avg Lower Avg Upper Avg Lower Avg Upper Avg Lower Avg Upper

1 WT-LUBE-PSO-CWC 17 18 7.8 27.8 0.8 35.2 6.8 31.8

BELM 27 23.6 21 20.2 15.4 28.6 18.8 23.4

7 WT-LUBE-PSO-CWC 19.6 13.4 16 18.6 8.4 22.8 10.6 29.6

BELM 26.8 24.4 14.4 19 26 34 19.4 22.4

It is concluded that the proposed WT-LUBE-PSO-CWC model with the proposed
Gaussian mutation operator overall achieves better results than the state-of-the-art BELM
methodology. Its PIs have on average a bigger coverage rate, while maintaining a smaller
average range. These results are observed for both seasonal datasets and year-long datasets,
for both zone 1 and zone 7. Additionally, WT-LUBE-PSO-CWC has a much more stable
response than BELM, since its coverage rate is equal to or higher than the nominal confi-
dence level in all cases. Initializing the weights and biases of LUBE-PSO-CWC with the
Yam-Chow technique leads to a higher convergence rate, while using the wavelet trans-
formation further improves the results of the model in both PICP and CWC. In summer,
the generated PIs are of the lowest quality, both in terms of CWC and stability. On the
other hand, the best results are obtained in autumn and spring. In spring, not only is the
best average CWC obtained, but also the standard deviation of the results is the lowest,
resulting in high stability.

5. Discussion and Future Research

A LUBE method was proposed in this paper for the PI construction and was further
developed and extended. A wavelet transformation methodology was applied to the wind
power data of the publicly available GEFCom2014 database, in order to analyze the wind
power series down to its components and simplify the preprocessing procedure. In order
to evaluate the constructed PIs, the PINRW evaluation index was proposed over PINAW,
since PINRW enlarges wider PIs, while PINAW gives equal weights to the widths of a PI.
The CWC cost function was developed and further modified in order to research the case
study as a single objective optimization problem. A PSO algorithm along with a mutation
operator was implemented in order to further optimize the WT-LUBE methodology. The
proposed WT-LUBE-PSO-CWC model was finally used to minimize the cost function and
provide optimal PIs.

Datasets from two zones of the provided data were used in this paper in order to
evaluate the proposed model’s accuracy. The seasonality of zone 1 and zone 7 of the
provided data was researched. A five-fold cross validation method was used to define the
optimal NN structure as well as to estimate the optimal number of the particles of the PSO.
Furthermore, being a LUBE-based model, the proposed methodology successfully allowed
for an easier and faster PI construction.

Compared to the state-of-the-art BELM model, the proposed methodology managed
to efficiently construct higher-quality PIs, by achieving higher PICP as well as narrower
PINAW evaluation metrics. Moreover, the Yam-Chow initialization technique further
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improved the training speed of the FFNNs, since fewer iterations are needed for the
weights and biases to converge to their global optimal values.

Aiming to further improve and develop the efficiency and the accuracy of the proposed
methodology, various possible directions exist.

5.1. Multi-Objective Methodology

The work presented in this paper focuses on minimizing the CWC cost function and
thus on optimizing a single objective problem. In the future, in order to further highlight
the efficiency of the proposed model in real-life problems, the focus should be to develop a
multi-objective optimization methodology based on the proposed WT-LUBE-PSO-CWC
model. Focusing on evaluating multi-objective optimization problems from different
research fields, and adapting them to deal with wind power forecasting problems, could
be a possible extension of the proposed methodology.

5.2. Spatio-Temporal Correlation

Recent works aim to highlight the importance of the spatio-temporal correlation
between different wind farms’ datasets in order to provide more efficient wind power
forecasting models. Instead of limiting the input datasets to one wind farm, exploiting
different historical or meteorological data from different wind farms could increase the
amount of data and consequently improve the accuracy of the proposed model. Developing
the proposed method from a spatio-temporal viewpoint and comparing it with novel spatio-
temporal-based methodologies, i.e., the calibrated regime-switching method [29], could be
a significant extension of our proposed model.

5.3. Data Tests

The proposed methodology relied on the use of the dataset’s wind components and
the generated normalized wind power values. Further use of meteorological data or
the use of a greater amount of historical data could further improve the accuracy of the
proposed model as well as further improve its computational cost. Furthermore, adapting
the proposed work to more complex data could further improve its accuracy, as well as its
adaptability to different situations.

6. Conclusions

In the proposed work, a LUBE method was adopted in order to efficiently provide
accurate PIs of wind power predictions. The PSO algorithm was proposed for the opti-
mization process, while the wavelet transform was adopted to perform the preprocessing
of the input data.

Compared to the state-of-the-art BELM method, the results of the proposed work
are encouraging. The proposed WT-LUBE-PSO-CWC model successfully managed to
surpass the BELM model in the majority of the comparisons presented in Section 4. The
main advantage of the proposed model is its architecture. Considering the fact that it is
a model based on NN technology, it offers a lot of possibilities in its use. By successfully
modifying input data for different problems, the proposed model could efficiently adapt
to real-life forecasting problems. Thanks to its NN-based technology, the proposed work
is not limited by the technical parameters of wind farms. Moreover, its adaptation in a
seasonal context showed that the seasonal results follow a specific pattern. This could
further allow adapting the forecasting model according to the forecasting season of interest
in order to optimize the forecasting results from a seasonal perspective. The proposed
combination of different methodologies, not only for the forecasting process, but also for
the preprocessing and the optimization processes, offers high development potential that
is not limited to only wind power forecasting.
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