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Abstract: Re-entrant jet causes cloud cavitation shedding, and cavitating vortical flow results in flow
field instability. In the present work, a method of water injection is proposed to hinder re-entrant
jet and suppress vortex in cloud cavitating flow of a NACA66 (MOD) hydrofoil (Re = 5.1 × 105,
σ = 0.83). A combination of filter-based density corrected turbulence model (FBDCM) with the
Zwart–Gerber–Belamri cavitation model (ZGB) is adopted to obtain the transient flow characteristics
while vortex structures are identified by Q criterion & λ2 criterion. Results demonstrate that the
injected water flow reduces the range of the low-pressure zone below 1940 Pa on the suction surface
by 54.76%. Vortex structures are observed both inside the attached and shedding cavitation, and the
water injection shrinks the vortex region. The water injection successfully blocks the re-entrant jet by
generating a favorable pressure gradient (FPG) and effectively weakens the re-entrant jet intensity by
46.98%. The water injection shrinks the vortex distribution area near the hydrofoil suction surface,
which makes the flow in the boundary layer more stable. From an energy transfer perspective, the
water injection supplies energy to the near-wall flow, and hence keeps the steadiness of the flow field.

Keywords: cloud cavitation; vortical flow; water injection; re-entrant jet; flow control

1. Introduction

Cavitation widely exists in the low-pressure area of hydraulic machinery [1–3]. The
collapse of cavitation causes an impact on the blades of hydraulic machines such as hydro
turbines, pumps, and propellers [4,5]. Cavitation is often accompanied by noise and
severe vibration, resulting in fatigue damage of pumps [6]. Moreover, cavitation has a
negative effect on the operation stability and energy performance of hydro turbines in
tidal energy conversion [7]. The hydrofoil is a key work component of rotating machinery
such as pumps and turbines [8], and the study of its cavitating flow is of great significance;
therefore, revealing the mechanism of the cavitation suppression of hydrofoil is helpful to
find more efficient and targeted suppression methods.

Cavitation can be manipulated by either active flow control methods or passive meth-
ods. The difference between the two strategies is whether additional energy is added [9].
For the passive method, the wall properties of hydrofoil are usually modified in order
to control cavitating flow. Che et al. [10] placed an obstacle on the trailing edge of a
NACA0015 hydrofoil. They found that it can block re-entrant jet and suppress sheet cav-
ity, but the effect on cavitation control is weak when it comes to the transitional cavity
oscillation condition. Zhang et al. [11] arranged obstacles on the hydrofoil to improve the
low—pressure distribution in the near-wall region in the cavitating flow field, as a result of
weakening the cloud cavitation shedding. Capurso et al. [12] designed slots and guided
the fluid from the pressure to suction sides of the hydrofoil to prevent cavitation from
developing. Kadivar et al. [13,14] applied cylindrical cavitating-bubble generators (CCGs)
on the hydrofoil suction side and found that CCGs can effectively suppress cavitation
and reduce the cavitation-induced vibration. Some scholars [15,16] proposed micro vortex
generators (VGs) on the hydrofoil leading edge, and they found that vortexes generated
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from VGs can manipulate the boundary layers. Liu et al. applied a C groove [17,18] and
T-shape structures [8] on the hydrofoil tip clearance and successfully suppressed the tip
leakage vortex and cavitation inception and development. There are many advantages to
the passive control method, such as requiring no external energy and implementing easily;
however, the working conditions of hydraulic machinery do not always stay the same in
practice [19]; therefore, it is difficult for passive methods to achieve precise adjustment
when the working condition of hydraulic machinery changes [20].

The active control methods are different from passive control methods, which usually
inject water or gas to the flow field, aiming at improving flow performance or suppressing
sheet/cloud cavitation. Maltsev et al. [21] found that when the active method is adopted,
the flow separation of hydrofoil with high attack angles is effectively avoided. de Giorgi
et al. [22] applied one single synthetic jet-actuator on hydrofoil NACA0015, and they
achieved a certain control of the cloud cavitation. Timoshevskiy et al. [9,23–25] achieved
suppression of sheet cavitation experimentally [26] and numerically by means of the tan-
gential liquid injection to the main flow field. Lu et al. [27] experimentally realized the
suppression of cloud cavitation by the active injection method. Wang et al. [28] experimen-
tally studied the influence of active jet flow on sheet/cloud cavitation and reduced the
maximum sheet cavity length by 79.4%. Lee et al. [29] even applied the water injection
method to a marine propeller and realized the suppression of tip vortex cavitation. The
aforementioned active methods can not only improve the flow field, but also can flexibly
achieve relatively precise adjustment when working condition changes [19].

The turbulence model plays a vital role in numerical simulation, and the interaction
between turbulence and cavitation is very complex [30]. Some empirical coefficients in the
numerical model seriously affect the accuracy and uncertainty [31]. Huang et al. blended
FBM (filter-based model) [32] with DCM (density correction model) [33] through a function,
and they used this new turbulence model to numerically investigate cavitation flow around
a Clark-Y hydrofoil. They proved that the new FBDCM model combines the merits of
both FBM and DCM, which can capture the details of turbulence flow and the evolution of
cavity patterns [34]. Yu et al. [35] verified that the FBDCM model could accurately describe
the unsteady cavity shedding on NACA66 hydrofoil. Cheng et al. [36] and Long et al. [37]
used the combination of the FBDCM turbulence model and ZGB cavitation model [38] to
study the characteristics of cavitation flow around the Clark-Y hydrofoil, showing that this
configuration has good prediction accuracy. Based on the FBDCM model, the inception
and development of the attached and cloud cavity, and also the characteristics of the
multi-scale effect of turbulent flow and multi-phase flow in the cavitation process can be
predicted accurately.

At present, explanations for the evolution of sheet cavitation to cloud cavitation
are mainly divided into two types: the re-entrant jet mechanism and the shock wave
mechanism. Many scholars researched the unsteady characteristic of cavitating flow
around hydrofoil caused by re-entrant jet. Kawanami et al. [39] confirmed the existence
of the re-entrant jet in the flow field and its remarkable influence on cavity shedding
experimentally. Callenaere et al. [40] considered that the re-entrant jet is the main reason
for the instability of the flow field, and the re-entrant jet thickness should be given sufficient
attention. Ji et al. [41] studied the shedding characteristics of the cavity, and they found
that the primary shedding is induced by the collision between the attached cavity and the
re-entrant jet. The re-entrant jet mechanism reveals the reason why sheet cavitation evolves
into cloud cavitation. Moreover, scholars found that the cavitation dynamic behavior is
closely related to vortex structures [42–44]; therefore, controlling the re-entrant jet is the
main idea to suppress the cavitation development and reduce vortex intensity. The shock
wave mechanism is relevant to the compressibility of the vapor phase, liquid phase, and
their mixed phase [45]. When the cavity collapses, the shock wave propagates quickly
upstream and interacts with the attached cavity. The shock wave mechanism reveals that
the flow mechanism is responsible for the transition from attached cavitation (stable) to
shedding cloud cavitation (periodically) [46]; however, the compressibility of the fluid
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must be considered when the shock wave mechanism is investigated numerically [47].
In this paper, we discuss the water injection suppressing cavitation and vortex from the
perspective of the re-entrant jet mechanism.

The active control method, water injection, is proposed in our previous work [27,28]
and proved effective for suppressing cavitation experimentally; however, the mechanism
of how the water injection suppresses cavitation is still being explored. The shedding
cloud cavitation is closely related to the re-entrant jet behavior. Moreover, strong vortex–
cavitation interaction exists in the shedding cavitation cloud [44], and the vortical flow
entraining cavitation makes the flow field unstable. Issues such as re-entrant behavior,
cavity shedding, vortex structures in cloud cavitating flow, and how the water injection
affects them are deserved to be further studied. This paper numerically investigates the
influence of water injection on the re-entrant jet behavior and vortex structures, then reveals
the mechanism of water injection suppressing cloud cavitation.

2. Research Objectives
2.1. Introduction to the Water Injection Method

Figure 1 displays that 25 jet holes in line are set on the hydrofoil suction surface.
Continuous water vertically jets out of the chamber (inside the hydrofoil) through the
25 equidistant distributed jet holes. The radius of each hole is r = 0.7 mm and the distance
between each hole is ∆s = 2.5 mm. Both the chord length C and span length A of the
hydrofoil are 0.07 m. The jet holes are located at 0.19C from the hydrofoil leading edge. The
outlet velocity of jet holes is set as 3.25 m/s in this numerical calculation. The configuration
mentioned above corresponds to our previous experiments [27].
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Figure 1. Introduction to the water injection method: (a) the modified hydrofoil model used in this numerical simulation;
(b) the hydrofoil models used in our previous experiments [27,28].

2.2. Simulation Setup

Figure 2 illustrates the configuration of the whole calculation domain. An NACA66
(MOD) hydrofoil (with the attack angle of α = 8◦) is placed in the fluid domain. In order to
guarantee the calculation stable, the inlet is set as 3.0C distance from the leading edge of
the hydrofoil, and the outlet is 5.0C downstream the trailing edge. The inlet velocity is set
as U∞ = 7.83 m/s, and the outlet boundary is chosen as P∞ = 27,325 Pa. The no-slip wall
boundary conditions are applied on the hydrofoil surface and the tunnel wall. The water
density is set as ρ = 998 kg/m3. The saturated vapor pressure is P* = 1940 Pa at the test
temperature T = 17 ◦C. Consequently, the corresponding Reynolds number is 5.1 × 105

and the cavitation number is σ = 0.83. The numerical configuration mentioned above also
corresponds to our previous experiments [27].
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2.3. Mesh Arrangement

Figure 3 illustrates the hexahedral structured mesh obtained by the software of ICEM
19.2. Grids near the jet holes and the leading/trailing edge are refined, as shown in
Figure 3b,c.
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Table 1 gives the mesh independence results. The lift coefficient Cl, drag coefficient
Cd and lift-drag ratio K = Cl/Cd are taken into evaluation. The values of Cl, Cd, and K
tend to stay the same when the nodes number is 11,129,600; therefore, Mesh 2 is adopted
in the following investigation. In Mesh 2, there are 184 nodes arranged along the chord
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direction and 234 nodes along the span direction. The values of y+ on the hydrofoil surface
are within 0.5–2.

Table 1. Check for mesh independence.

Mesh Type Nodes Cl Cd K

Mesh 1 Coarse 7,659,400 0.7133 0.1433 4.9976
Mesh 2 Medium 11,129,600 0.7386 0.1123 6.6963
Mesh 3 Dense 16,223,500 0.7374 0.1127 6.6915

3. Numerical Methods

The software Fluent 19.2 is employed to obtain numerical calculation results. The
turbulence model of FBDCM [34] and the cavitation model of ZGB [38] are adopted to
obtain the transient cavitating flow characteristics. Considering the calculation time and
solution accuracy, the time step is set as 0.5 ms. The calculated velocity and pressure
distribution are analyzed to discuss the effect of water injection on the re-entrant jet
behavior. Vortex identification methods, including Q criterion and λ2 criterion, are adopted
to analyze the vortex motion characteristics in the near-wall region and in cavitating flow.
Figure 4 shows the flowchart of numerical simulation in this paper. The original and
modified hydrofoil are named H0 and H1 in short, respectively.
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3.1. Turbulence Model

The governing equations are described as:

∂ρm

∂t
+

∂(ρmuj)

∂xj
= 0 (1)

∂ρmui
∂t

+
∂
(
ρmuiuj

)
∂xj

= − ∂p
∂xi

+
∂

∂xj

[
(um + ut)

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂uk
∂xk

δij

)]
(2)

The governing equations are described as:

ρm = ρlαl + ρvαv (3)

µm = µlαl + µvαv (4)

where ρm, µm, and µt are the mixed-phase density and mixed-phase laminar/turbulent
viscosity coefficient, i and j represent the coordinate directions, and p and u are the pressure
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and velocity of the mixture phase, respectively. αv denotes the vapor volume fraction, l and
v indicate the liquid and vapor phase, respectively.

According to the aforementioned literature about the turbulence model, the FBDCM
turbulence model [34] is adopted to analyze the flow characteristics. Firstly, the turbulence
viscosity of the standard k-ε turbulence model is:

µt = ρmCµ
k2

ε
(5)

where k represents the turbulence kinetic energy, and ε denotes the dissipation rate of
turbulence kinetic energy, and the correction coefficient Cµ is set as 0.085 recommended in
reference [48].

Then, based on the aforementioned standard k-ε turbulence model, the FBDCM model
blends the FBM [32] (Equation (6)) and DCM [33] (Equation (7)) models according to the
density of the local fluid. The fFBM and fDCM are the correction coefficients of the filtering
model and the density correction model, respectively. In the FBDCM model, a function χ
(ρm/ρl) is adopted to correct the turbulent viscosity µt of Equation (5), as shown below:

µt_FBM = fFBM · µt, fFBM = min
[
1, λε/k3/2

]
(6)

µt_DCM = fDCM · µt, fDCM =
ρv + (αl)

n(ρl − ρv)

ρv + αl(ρl − ρv)
(7)

χ

(
ρm

ρl

)
= 0.5 + tan h

[
C1(0.6ρm/ρl − C2)

0.2(1− 2C2) + C2

]
/(2 tan hC1) (8)

fFBDCM = χ

(
ρm

ρl

)
fFBM +

[
1− χ

(
ρm

ρl

)]
fDCM (9)

µt_FBDCM = µt · fFBDCM (10)

where C1 and C2 are constants, and the recommended values are C1 = 4 and C2 = 0.2
in literature [49]. The density correction factor n = 10 in Equation (7) recommended in
literature [50] is adopted.

3.2. Cavitation Model

For the cavitation model, the ZGB model [38] is adopted in this numerical study. The
model is based on the mass transport Equation (11), as follows:

∂ρmαv

∂t
+

∂
(
ρmujαv

)
∂xj

= Re − Rc (11)

P ≤ Pv, Re = Fvap
3αnuc(1− αv)ρv

RB

√
2
3

Pv − P
ρl

(12)

P ≥ Pv, Rc = Fcond
3αvρv

RB

√
2
3

P− Pv

ρl
(13)

Pv = Psat +
1
2
(0.39ρk) (14)

where RB is the bubble radius (the reference value is 1 µm); the reference value of αnuc for
nucleation amount is 5 × 10−4; Fvap is the evaporation coefficient (the reference value is
50); Fcond represents the condensation coefficient (the reference value is 0.01). Considering
the influence of turbulent kinetic energy on cavitation, the saturated vapor pressure Pv is
modified by Equation (14) in Equations (12) and (13).
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3.3. Vortex Identification Methods

The tensor J of velocity gradient can be divided into the symmetric part: S (strain rate
tensor) and the antisymmetric part: R (spin tensor). The formulas are as follow:

S = 0.5× (J + JT), R = 0.5× (J − JT) (15)

J =

 Ux Uy Uz
Vx Vy Vz
Wx Wy Wz

 (16)

where U, V, and W are the velocities of the flow field relative to the three directions of
Cartesian coordinate system x, y, and z, respectively.

Jeong et al. [50] believed that the minimum pressure caused by vortical flow is one
of the necessary conditions for vortex determination. The tensor S2 + R2 has three real
eigenvalues, and when there are two negative eigenvalues, there is a minimum value of
pressure in the region. The symmetric tensor S2 + R2 contributes to vortex formation; that
is, a region of S2 + R2 with two negative eigenvalues connected represents that there exist
vortexes. When the second eigenvalue (λ2) of S2 + R2 is negative, the existence of vortexes
is determined, namely the λ2 criterion:

λ2 [s
−2] < 0 (17)

Hunt et al. [51] defined the second matrix invariant Q of velocity gradient tensor J in
the flow field. The region with Q positive value is determined as vortex existence [51]. The
Q can be expressed as:

Q [s−2] = 0.5 ∗ (‖R‖2
F − ‖S‖

2
F) (18)

Researchers believe that the vortex shown by Q and λ2 methods can clearly reflect the
vortex structures in cavitating flow [52–54]. The time Tc represents the time required for
the main stream to flow through the chord length C of the hydrofoil.

In order to facilitate the discussion later, the values of Q and λ2 are conducted as
dimensionless:

Tc = C/U∞ (19)

Q = Q× T2
c , λ2 = λ2 × T2

c (20)

where C = 0.07 m is the hydrofoil chord length and U∞ = 7.83 m/s is the velocity of the main
stream. These criteria can realize the recognition and visualization of vortex structures.

4. Simulation Validation

In order to verify the accuracy of the numerical method, the numerical calculation
configuration of the same Reynolds number and cavitation number with that of the experi-
ment [27] are compared. As shown in Figure 5a, 25 equidistant cut-planes in the hydrofoil
span direction are extracted, and then superimposed to display the cavity patterns, which
will ensure that the experimental results are as realistic as possible. Figure 5b indicates
that the shape of cavitation tends to be stable as the number of cut-planes increases to
25. Figure 6a–e,a’–e’ show the cavity patterns at several moments in one periodical time
Tcycle. The time-averaged cavity patterns are shown in Figure 6f,f’. It is observed that the
numerical simulations are in good agreement with experimental observations.

Figure 7 illustrates the dimensionless cavity area S/S0 quantitatively and shedding
cycle for the numerical (0.5 ms time step) and experimental results in five cycles. The
S0 is the cross-sectional area of the NACA66 (MOD) hydrofoil, and the cavity area S
is normalized by area S0. The errors of the cavity shedding period and dimensionless
cavitation area S/S0 are about 6.4% and 1.8%, respectively. A time step sensibility analysis
is checked in Table 2. It can be seen that when the time step is set as 0.1 ms, the prediction
accuracy is also relatively high; however, this configuration consumes a lot of computer
resources. When the time step set as 0.5 ms, the prediction accuracy is close to that of
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0.1 ms, and the error is within an acceptable range. Based on the above analysis, the mesh
and numerical methods adopted in this paper are suitable and reasonable for calculating
the flow field.
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Table 2. Time step sensibility analysis.

Turbulence &
Cavitation Model Time Step

Cavity
Shedding
Period T

Cavity
Area S/S0

Error T Error S/S0

FBDCM ZGB 0.5 ms 54.3 ms 0.6468 −6.4% −1.8%
FBDCM ZGB 0.1 ms 55.1 ms 0.6739 −5.0% 2.3%

Experiment [27] 58.0 ms 0.6587
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5. Results and Discussion
5.1. Vortex Performance

In order to describe the vortex visually and quantitatively, the vortex line coupled with
the λ2 value is introduced. As shown in Figure 8, the tangent direction of a certain point on
the vortex line is consistent with the vorticity direction at that point. The determination of
the rotation direction is based on the right-hand rule: the direction pointed at by the right
thumb is the vorticity direction of a certain point on the vortex line, and the direction of the
other circling four fingers is the rotation direction of the vortex. The value of λ2 indicates
the vortex intensity. The smaller the λ2 value, the higher the vortex intensity is.

Energies 2021, 14, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 7. Comparison of dimensionless cavitation area evolution [27]. (σ = 0.83, Re = 5.1 × 105). 

5. Results and Discussion 
5.1. Vortex Performance 

In order to describe the vortex visually and quantitatively, the vortex line coupled 
with the λ2 value is introduced. As shown in Figure 8, the tangent direction of a certain 
point on the vortex line is consistent with the vorticity direction at that point. The deter-
mination of the rotation direction is based on the right-hand rule: the direction pointed at 
by the right thumb is the vorticity direction of a certain point on the vortex line, and the 
direction of the other circling four fingers is the rotation direction of the vortex. The value 
of λ2 indicates the vortex intensity. The smaller the λ2 value, the higher the vortex intensity 
is. 

 
Figure 8. Schematic diagram of the vortex intensity distribution and vortex direction. 

Figure 9 illustrates the distribution of vortex lines and the cavitation evolution pro-
cess in one time cycle (cavity shape is defined by iso-surface of vapor volume fraction αv 
= 0.85). The period for H0 and H1 hydrofoil is indicated as T0 and T1, respectively. In order 
to observe more clearly, additional arrows are used to mark the main rotation direction of 
the vortexes in a certain region based on the right-hand rule. The lowest vortex intensity 
is shown in orange color and the highest vortex intensity is shown in blue color. 

As shown in Figure 9a, vortex and cavity are interweaved all over above the suction 
surface of H0 during the entire period. The vortexes with different rotation directions are 
observed because the cavitation in the previous cycle causes unstable flow. The process 

Figure 8. Schematic diagram of the vortex intensity distribution and vortex direction.

Figure 9 illustrates the distribution of vortex lines and the cavitation evolution process
in one time cycle (cavity shape is defined by iso-surface of vapor volume fraction αv = 0.85).
The period for H0 and H1 hydrofoil is indicated as T0 and T1, respectively. In order to
observe more clearly, additional arrows are used to mark the main rotation direction of the
vortexes in a certain region based on the right-hand rule. The lowest vortex intensity is
shown in orange color and the highest vortex intensity is shown in blue color.

As shown in Figure 9a, vortex and cavity are interweaved all over above the suction
surface of H0 during the entire period. The vortexes with different rotation directions are
observed because the cavitation in the previous cycle causes unstable flow. The process
from the moment t2 to t3 is the development stage of attached cavitation, and the vortex
lines are mainly distributed along the −z-axis direction. The attached cavity rolls in the
clockwise direction and moves downstream. At the t4 moment, the wide-range cloud
cavity shedding appears near the trailing edge. From the moment t4 to t8, the cavitation
evolution shows the process of shedding–expansion–collapse, and the vortex structures are
complicated. In particular, the cavity at t8 moment even trends to rotate around the x-axis.
It is worth mentioning that vortexes with high intensity rotate around the +z direction
near the trailing edge from the moment t2 to t4. The reason is that the recirculating flow
crossing the trailing edge supplies the re-entrant jet with energy and further causes serious
cavity shedding.

Figure 9b illustrates that the water injection obviously suppresses cavitation and
weakens vortex intensity. Different from the vortex structures covering all over the suction
surface of original hydrofoil H0, only fewer vortexes cover the leading edge and trailing
edge of the H1 hydrofoil. From the moment t1 to t3, the vortex intensity around H1 is
observed to be much lower than that around H0, and the vortex lines are parallel to each
other, indicating that the flow field is relatively stable. During the process from the moment
t4 to t6, the cavity evolution also experiences the process of shedding–expansion–collapse,
but the vortex generating area is much smaller than that of the original hydrofoil H0. Then,
the flow field becomes stable again after the moment t7. Compared with H0, the vortex
intensity near the trailing edge of H1 is reduced, showing that the strength of recirculating
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flow is weakened. We conclude that the vortex motion is closely related to the cavitating
flow. The water injection significantly weakens the vortex intensity and reduces the vortex
region; thereby, cloud cavitation is avoided.
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5.2. Re-Entrant Jet Behavior

The re-entrant jet may cause cavity shedding and flow separation; however, water
injection will change the re-entrant jet behavior. Figure 10 displays the velocity and pressure
distributions on the suction surface of the original hydrofoil H0 in one period T0. In order
to show more clearly, additional right-pointing arrows (in yellow color) are added in
figures to represent the direction of the main flow, and the left-pointing arrows (in blue
color) indicate the direction of the re-entrant jet. The added dotted lines mark the location
where the two streams collide. At the moment of t1, the re-entrant jet interfaces with the
mainstream at a distance of 0.6C from the leading edge. From t1 to t5, the re-entrant jet
propagates upstream and reaches the farthest position (0.05C from the leading edge). At
the moment of t5, the re-entrant jet is distributed almost all over the suction surface. Then
starting from t7, the re-entrant jet gradually retracts and returns to 0.6C again at t8.

As shown in Figure 11, the average region of the re-entrant jet in an entire period for
H1 is significantly reduced after the water injection. The re-entrant jet starts to propagate
upstream at the moment of t1 and reaches the farthest position (near the jet holes at 0.2C)
at t4. Starting from t5, the re-entrant jet begins to retract downstream. At t8, the re-entrant
jet retreats to the position about 0.8C from the leading edge.

Based on the above analysis, the water injection is proved valuable to block the
development of the re-entrant jet and shorten the duration of the low pressure on H1.
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5.3. Relationship between Cavity and Re-Entrant Jet

In order to discuss how the interaction of cavitation and re-entrant jet vary (after water
injection adopted), a monitoring line is set near the hydrofoil suction surface, as shown in
Figure 12. This kind of method is generally used to analyze the transient characteristics
of cavitating flow in the near-wall region of hydrofoil [55,56]. The general idea can be
described as: by adding the time dimension, the numerical results on the monitoring line
are extracted and reconstructed to the two-dimensional flow field space–time contours of
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pressure, velocity, vapor fraction, etc. The monitoring line is set 0.2 mm away from the
hydrofoil upper surface in this paper. The numerical results on the monitoring line are
extracted from average data on 25 cut-planes (the configuration of the 25 cut-planes was
described in the previous section).
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Figure 12. Schematic diagram of near-wall monitoring line.

Figure 13 shows the contours of x-velocity as a function of space and time. The
influence of water injection on the re-entrant jet intensity is quantitatively investigated.
The re-entrant jet with high intensity is almost concentrated in the range of 0.5C–1.0C. The
negative velocity of H0 reaches its maximum value of −6 m/s, observed in the range of
0.7C–0.9C. For H1, the injected water divides the negative velocity region into two parts.
When the re-entrant jet propagates upstream near the jet hole (0.19C from the leading
edge), its velocity gradually reduces to zero. Meanwhile, a region of negative X velocity
appears again within the distance between 0.09C and 0.19C, as shown in the marked
circles. This phenomenon can be explained by Figure 14, which shows the comparison
of streamlines distribution at the midplane of H0 and H1 at the same corresponding time
(0.5T0 for the original hydrofoil and 0.5T1 for the modified hydrofoil). For H0, the re-
entrant jet propagates to the leading edge. For H1, the injected water flow is mixed with
the main flow and then they flow downstream together; therefore, the re-entrant jet is
resisted downstream of the jet hole and turns back and flows downstream together with
the injected water flow and the main flow. It can also be seen from Figure 14b that a small
incoming stream is blocked by the injected water flow and turns back to the leading edge,
thus forming a small vortex structure. According to the numerical calculation results, the
time-average velocity of the re-entrant jet in the near-wall region of H0 and H1 is−2.93 m/s
and −1.55 m/s, respectively. The water injection reduces the re-entrant jet intensity by
46.98%.
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Time evolution of vapor volume fraction αv as a function of space and time is shown
in Figure 15. For the original hydrofoil H0, the near-wall cavitation can be divided into
three parts: attached cavity region I (αv > 0.7), vapor–water mixing region II (αv < 0.7),
and free cavity region III. As indicated in Figure 14b, the cavity area for H1 is significantly
smaller than that of H0, and it is divided into parts I and II by the jet holes. Moreover, there
is no free cavity region III (free cavity) observed near the trailing edge of H1, proving that
water injection can suppress cavitating flow downstream. Combining Figures 13 and 15 to
observe the contour of re-entrant jet area and the shape of cavitation area, it is not difficult
to find that the development of the re-entrant jet is responsible for triggering the cavity
detachment [56], and hence resulting in an unsteady flow field.
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5.4. Suppressing Mechanism

In this section, we first explore how the water injection inhibits the development of
the re-entrant jet and weakens its intensity. Then, the internal mechanism of water injection
on suppressing cloud cavitation is discussed. As shown in Figure 16, the outline of the
low-pressure (less than the saturated pressure P* = 1940 Pa) region corresponds to the
cavitation region in Figure 15. It can be seen that the low-pressure area for H0 is from
0.02C to 0.86C while 0.02C to 0.4C for H1. The water injection significantly reduces the
low-pressure area, and therefore, suppresses the occurrence and development of cavitation
fundamentally.
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It is worth mentioning that the pressure variation from downstream to upstream
of H0 shows more dramatic than that of H1. The adverse pressure gradient can lead
to the production of vortex and re-entrant jet, which is the main cause of cloud cavity
shedding [57]; therefore, it is worth exploring the influence of water injection on the
pressure gradient near-wall. The local pressure coefficient and dimensionless pressure
gradient are defined as:

Cp =
2(p− p∞)

ρU2
∞

(21)

gradCp =
∂Cp

∂(x/C)
(22)

where p represents the local pressure and p∞ denotes the far-field pressure.
The positive value of gradCp in this paper represents the adverse pressure gradient

(APG). APG makes the flow direction of the local fluid opposite to the mainstream, which is
one of the main reasons for forming the re-entrant jet. The negative value of gradCp in this
paper indicates the favorable pressure gradient (FPG) from the leading edge to the trailing
edge. FPG makes the flow direction of the local fluid consistent with the mainstream. In
Figure 13, re-entrant jet with high intensity is mainly concentrated in the range of 0.5C
to 1.0C for H0, which corresponds to the high APG region in Figure 17. As shown in
Figure 17b, the injected water generates high FPG downstream of the jet hole, which is
this effect that resists the re-entrant jet propagating upstream. The pressure of the injected
water flow is relatively high, which makes a high APG appear upstream of the jet holes,
and thus a small range of negative velocity region appears, correspondingly, as shown in
Figure 14b; therefore, this region is not defined as a “re-entrant jet”, because it is caused
by the water injection. The re-entrant jet has been blocked by the FPG generated by the
injected water flow. In order to understand the FPG generated by water injection more
clearly, Figure 18 shows an enlarged view around the jet hole on the midplane of H1 (The
corresponding position view of H0 is also displayed) at a certain moment (0.75T0 for H0
and 0.75T1 for H1). It can be seen from Figure 18b that a pair of APG and FPG appears
above the jet hole. The FPG generated by water injection is higher than the APG in the
re-entrant jet region, thus hindering the development of the re-entrant jet.
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Figure 19 illustrates the distribution of Q values near the suction surface wall. The
positive (in red color) and negative (in blue color) values indicate vortexes with opposite
directions according to reference [36]. The vortex structures for H0 are distributed nearly all
over the entire suction surface, while for H1, it is mainly concentrated on the leading edge
and near the jet holes. As indicated in Figure 19b, the distribution area of Q is drastically
reduced when the water injection is adopted. The injected water generates vortexes near
the jet holes, making the position of the vortexes more forward than that of H0. From
0.4C to 1.0C, there are still large vortexes on H0, while small vortexes on H1, and there are
almost no vortexes detected on H1 near the trailing edge. Vortex causes flow instability,
and the water injection reduces vortexes, thus stabilizing the effect on the boundary layer.

Based on the above results, we can infer as follows: For H0, the shedding of large
vortexes caused large-scale flow separation, which leads to the speed loss on the suction
surface. The shedding vortexes transfer energy in the form of direct dissipation near the
trailing edge of the hydrofoil. The kinetic energy of the vortex is converted into internal
energy, resulting in an abrupt rise of pressure at the moment of cavity collapse, and hence
unsteadiness. For H1, due to the mixing effect of the main flow, re-entrant jet, and attached
cavity, the vortexes are generated near the jet holes and then directly dissipated nearby,
instead of continuing to propagate to the trailing edge. The fluid kinetic energy near the
hydrofoil wall is relatively low, while far away from the wall is larger. The water injection
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brings fluid kinetic energy to the near-wall region, which avoids large-scale separation of
the boundary layer and stabilizes the entire flow field.
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6. Conclusions

In this study, we conducted a computational investigation of the water injection
method effect on suppressing vortical flow and re-entrant jet for a three-dimensional
NACA66 hydrofoil under the cloud cavitation condition (σ = 0.83, Re = 5.1 × 105). Based
on the numerical results, the qualitative and quantitative analyses demonstrate that the
proposed method can effectively hinder the re-entrant jet development and suppress the
cloud cavitation and vortex. The detailed conclusions are summarized as follows:

1. The water injection reduces the area of the low-pressure (<1940 Pa) region on the
hydrofoil suction surface, thus suppressing the cavitation occurrence and develop-
ment. The maximum range of low pressure is approximately 0.02C to 0.86C for H0
and 0.02C to 0.4C for H1, which is decreased by 54.76%. In the near-wall region of
H1, the vapor–water mixing region II (αv < 0.7) shrinks significantly, and free cavity
region III is no longer found.

2. The vortexes are observed both inside the attached cavitation and the shedding
cloud cavitation, and the water injection makes the vortex region shrink. The vortex
structures above the suction surface of H1 are only distributed near the leading edge
and trailing edge. Compared with H0, the λ2 values coupled on the vortex lines of H1
are relatively higher, indicating that the swirling strength is weakened.

3. The water injection produces the FPGs locally, which hinders the propagation of the
re-entrant jet and weakens its strength. For H0, the area of the re-entrant jet covers the
entire suction surface at certain moments; For H1, when the re-entrant jet propagates
to about 0.2C, it begins to retract. Compared with H0, the intensity of the re-entrant
jet on the H1 suction surface is reduced by 46.98%. The water injected from jet holes
itself has momentum, thus generating FPG. The water injection provides energy to
the boundary layer, and hence steadiness the flow field; therefore, flow separation is
suppressed.

4. The vortex causes flow instability, and the water injection suppresses vortexes in
the near-wall region, thus stabilizing the boundary layer. The Q distribution in the
near-wall region indicates that vortexes are generated near the jet holes. For H0, the
large vortexes are widely distributed from the leading edge to the trailing edge, and
there are almost no vortexes in the range of 0.4–1.0C for H1.
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