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Abstract: The flyback converters are widely used in low power applications. The switch typically
requires 600 V breakdown voltage in order to perform large step-down voltage. Thus, slight variation
on the switch control can either permanently damage the switch or decrease the efficiency of the
power conversion. In order to achieve higher power efficiency, the previous literature suggested
operating the flyback converter in the discontinuous current mode (DCM). It is then required
to understand the critical conditions of the DCM through analyzing the dynamic behavior and
discontinuous current mechanism. This paper started from the current waveform analyses, proceeded
to the derivation of zero current switching (ZCS) formulation, and finally reached the necessary
conditions for the DCM. The entire DCM operation was divided into three phases that subsequently
affect the result of the zero voltage switching (ZVS) and then to the ZCS. The experiment shows a
power efficiency of over 96% when the output power is around 65 W. The switch used in this paper
is a Gallium Nitride High-Electron-Mobility Transistor (GaN HEMT) that is advantageous at the
high breakdown voltage up to 800 V. The important findings from the experiments include that the
output power increases with the increasing input DC voltage and the duty cycle is rather linearly
decreasing with the increasing switching frequency when both the zero voltage switching (ZVS) and
ZCS conditions are satisfied simultaneously.

Keywords: flyback; discontinuous current mode; GaN HEMT

1. Introduction

The rapid advancement of electric vehicles [1–3], military technology [4], grid tech-
nology [5,6] and factory automation [7] have led to an increased demand for the dc-dc
converter. Isolated converters are required, where isolation is needed between the input
and output side. Flyback converters are widely used topology for low power and large
step-down voltage applications. During the transfer of energy from the input to the output
side, an intermediate flyback transformer is used. The transformer is designed such that the
primary windings turns of the transformer are higher compared to the secondary winding
turns for large step-down voltage applications.

The converter usually operates in two modes based on the output load. In continuous
conduction mode (CCM), the transformer is unable to transfer the complete energy since
the part of energy always remains in the core. In this mode, the semiconductor switch is
stressed at a higher voltage [8–10]. In addition, it leads to hard switching operation, which
decreases the conversion efficiency. In [11–15], an active clamp-based flyback converter
is discussed to reduce the voltage stress on the switch. However, using the additional
switch requires an additional gate driver circuit. Apart from that, this topology increases
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the current stress on the switch. That can considerably affect the switch lifetime especially
if the Gallium Nitride High Electron Mobility Transistor (GaN HEMT) based power switch
is used [16–20]. In terms of output voltage control of the converter, the bandwidth is
limited by the right half-plane zero location. Considering these limitations in the CCM
operation, the converter is preferred to operate in the discontinuous conduction mode
(DCM). However, this mode of operation brings other challenges for the circuit designer,
such as larger filter requirements at the input and output side [21–24], and increased
electromagnetic interference [25,26]. The detailed comparison between both operations
is discussed in [27,28]. In the DCM operation, the transformer is able to transfer the
complete energy to the output side. In other words, the transformer secondary winding
current becomes zero. However, due to the presence of leakage inductance and output
capacitance of the switch, results in the voltage oscillation which is because of the resonance
effect that is discussed in [29]. Few studies have presented some methods using divided
resonant capacitor [30], the secondary-side resonant method [31], and dynamic resonant
period control [32], for mitigating voltage spike and increasing power conversion efficiency
to improve the traditional methods, such as RCD clamp circuit, or active clamp circuit.
In [30], the design methodology for a flyback converter with divided resonant capacitor
is analyzed by considering leakage and load variations, which is discussed to reduce the
voltage spikes and improve the efficiency of the switch. This method further improves
the overall conversion efficiency of the converter. In [31], a secondary-side resonant
method is proposed using equivalent circuit analysis model to improve synchronous
rectifier operation and reduce primary RMS current. In [32], a dynamic resonant period
control for zero voltage switching is proposed, which can adjust the ON-time in auxiliary
switch to reduce leakage energy loss and prevent large voltage stress on the component,
while the efficiency of the converter is further improved by achieving the zero voltage
during the switching ON of the switch. The designed methodology for the ZVS operation
is discussed in [33,34]. According to these studies, taking equivalent circuit analysis
model and design methodology as consideration for achieving ZVS and ZCS operation are
important issue to reach the superior performance. The quasi-resonant flyback converter
in [31–34] use multiple switches to activate the voltage oscillation on the secondary side.
The quasi-resonant flyback converter in [30] is equipped with a resonance capacitance
on the secondary side. The quasi-resonant flyback converter in [35] controls the duty
calculated every switching period. Their methods are practical with additional sensors
required. Our paper derives the originality of the DCM resonance due to the interaction
between the output voltage and the output current with simple duty control and without
additional transistor switch and sensor feedback. Our method is not quite in the domain
of quasi-resonant flyback converters. We are looking for the low switching loss method
which yields a high efficiency in the DCM operation for a conventional flyback converter
in high switching frequency using GaN HEMT. Our method is simply achieved by having
ZVS with ZCS occurred simultaneously in the instance of switching. The quasi-resonant
flyback converter achieved only ZCS and not the ZVS.

To date, quite several flyback controllers are available in the market. In addition to the
conventional single working-mode controller, some multiple working-mode controllers,
such as UCC 28600 [36] and XDPS21071 [37] for Secondary-Side-Regulated (SSR), and LM
5180 for Primary-Side-Regulated (PSR) [38], have also been developed for improving the
conversion efficiency of the flyback throughout the entire load [39,40]. It was commonly
agreed that the flyback converter with low output current is suitable for discontinuous
current mode (DCM) operation and continuous current mode (CCM) operation is suitable
for large output current. In general, the DCM operation yields better power conversion
efficiency. On the other hand, the DCM can cause larger voltage peak, which may damage
the switch. The suitable operation modes depending on the application and the switch
used. Take XDPS21071 [37] for example, it operates in a guaranteed DCM mode under
all conditions. To maximize efficiency at light and medium loads, XDPS21071 also im-
plemented frequency reduction mode and burst mode. For USB PD applications, CCM
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operation under fixed-frequency control makes EMI and system design relatively sim-
ple. Moreover, several of the previous literature present more complete analysis with the
parasitic components including transformer parasitic capacitance, leakage inductance or
the diode parasitic capacitance [41–45] in flyback converter to show the good agreement
between simulation and measurement results.

This paper aims to provide an insight of the DCM mechanism and zero current
switching approach without basing on the trial and error method and intend to utilize
the theories to reduce the number of experiments, which are organized as follows. In
Section 2, the detailed operation of the flyback converter is discussed in the ZCS. During
the discussion, a template of the key waveforms is used in the OFF period of the switch. The
template waveform is divided into three intervals based on the (1) drain to source voltage
rising period, (2) current conduction period in the secondary winding and (3) zero current
conduction period in the secondary winding. In these intervals, governing equations
of the converters are derived, and the key parameters are calculated. In Section 3, a
SPICE simulation analysis method is carried out. Based on the SPICE analysis, the critical
conditions for the DCM operation, including the conditions of large resistor load and
small duty cycle, can be verified. Afterward, experimental results are presented, and the
comparison with SPICE analysis is provided in Section 4. The conclusion of this work is
discussed in Section 5.

2. Materials and Methods

The transistor used in this paper is cascode power module derived from D-mode GaN
HEMT described in [46], shown in Figure 1. An N-type metal oxide semiconductor (NMOS)
in series with the D-mode GaN HEMT is connected to achieve the module operation similar
to the enhancement mode. The NMOS is always remained on during regular operation.
The GaN HEMT is then switched on and off by using a charge pump-based circuit and
a conventional gate driver. Since the GaN HEMT is driven independently, the highly
negative gate to source voltage surge during turn off is avoided, and in addition, high
switching frequency operation is made possible. The parameter of GaN device is analyzed
using a Keysight B1500A. The turn-on voltage (vGS,on) for the D-mode GaN HEMT is−7 V,
the drain-source parasitic capacitance (CDS) is 30 pF. The breakdown voltage of the GaN
HEMT is 800 V and the maximum current is 35 A.
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Figure 1. The cascode GaN HEMT power module.

2.1. Flyback Converter Circuit

Figure 2 depicts an equivalent circuit of the flyback converter. There are two diodes,
the rectifier diode (DS) and the snubber diode (DB), used in the circuit. The rectifier diode
is a fast recovery diode (FRD) and the snubber diode is a high breakdown voltage up to
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1000 V diode which is not a fast recovery diode. The output capacitor (CO) is large enough
that allows the output voltage to be assumed constant during analyses.
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Figure 2. The equivalent circuit of flyback converter.

2.2. Transformer

The equivalent circuit of the transformer is modified from the Steinmetz equivalent
circuit as shown in Figure 3. Assuming that RP and RS are very small and Rcore is very
large, the power loss due to them are ignored from the analysis. The overall inductance
on the primary side is LP which can be divided into two parts, namely the magnetization
inductance LPm and the leakage inductance LPl, in terms of the coupling coefficient. The
individual inductances are defined as follows.

LPm = kLP (1)

and
LPl = (1− k)LP (2)
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Since the flyback converter uses windings in opposite dot-orientation as a convention,
we thus define the current as follows.

iP = iPm − iPi = iPm − iS/a (3)
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In the flyback converter arrangement, iPi is a non-negative value, i.e., iPi ≥ 0, since
iS ≥ 0 for the secondary winding outputs to a diode DS in series. The voltage on the
primary winding is written as:

vP = LPl
diP
dt

+ vPi (4)

The voltage on the mutual inductance is exerted by the magnetization current.

vPi = LPm
diPm

dt
(5)

Thus, Equation (4) is then simplified into:

vP = LP
diPm

dt
− aLPl

diS
dt

(6)

The turn ratio a is defined as follows.

a =
N1

N2
=

√
LP − LPl
LS − LSl

≈

√
LP
LS

(7)

The leakage inductances can be measured from the short circuit test in order to
distinguish it from the overall inductance. The coupling coefficient is estimated as follows.

k =

√
1− LPl

LP
(8)

The parameters of the transformer in this paper, measured from the open and short
circuit test [47] using the RLC meter GWINSTEK LCR819, are listed in Table 1.

Table 1. Parameters of the transformer.

Symbol Original Value Unit

LP RLC meter open circuit test 400 µH
RP RLC meter open circuit test 0.9 Ohm
Qoc RLC meter open circuit test 277.4 -
Cm RLC meter short circuit test 333.7 nF
LPl RLC meter short circuit test 9.97 µH
LS RLC meter open circuit test 10.27 µH
LSl RLC meter short circuit test 0.27 µH
a Equation (7) 6.24 -
k Equation (8) 98.7% -

2.3. Wave Form Assumptions

The wave forms for the vDS, iS and iP are as shown in Figure 4. The wave forms are
obtained empirically from the experiments, which yield good efficiencies from the input
and output power relations.

During the switch turn-on time, the inductor current rises in a ramp-up function
which correlates with the inductance LP and input voltage VDD as follows.

IP,max =
δTVDD

LP
(9)

During the switch turn-off time, the output current iS is in a sinusoidal alike ramp-
down function. The peak of the ramp function is denoted by iS,max. The current flows to
the capacitor CO within a time period called the continuous current mode time tCCM.
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There are three phases during the turn-off process of the switch, which are

(1) the drain-source voltage rising phase,
(2) the current flowing on the secondary winding phase, and,
(3) the zero current in the secondary winding phase.

2.4. Steady State Assumptions

We had applied two assumptions in the steady state of the flyback converter as follows.

(1) The ratio of the peak value of currents is:

iS,max = ζaiP,max (10)

where ζ denotes the transformer peak current attenuation. It shall be noted that the
attenuation does not imply the energy loss; however, it has the effect to the current
flowing time on the secondary winding.

(2) Current flows in the secondary winding only during the diode conduction time which
is referred to as the continuous current time tCC. This assumption can be written into
two equations separately as follows.

tCC = λ(1− δ)T, 0 ≤ λ ≤ 1 (11)

iS,max

2
tCC
T

=
VO
RO

(12)

Substituting Equation (12) into (10), we obtain:

iS,max

a
VOtCC

aLS
= ζiP,max = ζ

VDDδT
LP

(13)

Equation (13) subsequently yields:

tCC = ζ
VDDδT

aVO
(14)

Substituting Equation (14) into (11), we obtain:

λ = ζ
δ

a(1− δ)

VDD
VO

(15)
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From Equations (12)–(14), we calculate the output voltage VO as follows.

VDDδT
LP

ζ
VDDδ

a
=

V2
O

RO
(16)

The voltage gain is then written as follows.

VO

VDD
= δ

√
ζROT
2LP

= δ

√
ζRO

2LP fS
(17)

The transformer peak current attenuation ζ, which may also be deemed as the power
efficiency, may be evaluated from the experiment as follows.

ζ = V2
O

a fSLP

δV2
DDRO

(18)

The experimental examples are as shown in Table 2. The necessary condition for the
ZVS is aVO/VDD ≥ 1. Referring to Figure 4, the drain-source voltage vDS will have a steady
state value at VDD when the current on both the primary iP and the secondary winding
iS are zero, the only current flowing to the switch is the current from the snubber. The
drain-source voltage vDS will drop from VDD + aVO to VDD. Assuming the damping of the
voltage oscillation is small, the minimum voltage of vDS is VDD − aVO which must be a
non-positive voltage. At the time when vDS = 0, the switch turns on again that is known as
the ZVS.

Table 2. Parameters used to estimate output voltage.

Symbol Original Value Unit

a Measurement (LCR819) 6.24 -
RO Measurement (Element) 50 Ohm
LP Measurement (LCR819) 400 µH

VDD Input parameter 300 V
δ Input parameter 48% -
fS Input parameter 280 kHz

T = 1/fS Input parameter 3.57 µs
VO Measurement (on Flyback) 56.3 V
ζ Equation (18) 1 -

tCC Equation (14) 1.5 µs

2.5. Drain-Source Voltage Rising Phase

In the drain-source voltage rising phase we have assumed that the current on the
secondary winding is zero. The equivalent circuit is as shown in Figure 5. During this
phase, the diode transits from its reverse bias state to the forward bias state. The junction
capacitor Cj0 must be refilled with the reverse recovery charge Qrr. The drain-source
capacitor CDS needs also also need the reverse recovery charge on the way to turn the
switch off.

The KVL equation yields that:

VDD = vP + vDS = LP
diP
dt

+ vDS (19)

where:
iD = Coss

dvDS
dt

= (CDS + CGD)
dvDS

dt
(20)
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The current flowing in the snubber is written as follows.

diB
dt

+
1

RBsCj0
iB =

1
RBs

dvDS
dt

(21)

The KCL equation can be stated as follows.

iD = Coss
dvDS

dt
= iP − iB (22)

From Equation (19), we obtain the following equation.

VDD = LP
d(iD + iB)

dt
+ vDS (23)

Substituting (21) by neglecting the term diB/dt in Equation (23), we have:

LP
(
Coss + Cj0

)d2vDS
dt2 + vDS = VDD (24)

It is then written in the standard form of the 2nd order system equation as follows.

d2vDS
dt2 + ω1

2vDS = ω1
2VDD (25)

where the resonant frequency is:

ω1 =
1√

LP
(
Coss + Cj0

) (26)

The rising time is assumed one tenth of the oscillation period time, which is approxi-
mately 36 degree phase forward.

tr =
1

10 f1
=

1
10

2π

ω1
(27)

The nominal values of the parameters and the calculation result is shown in Table 3.
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Table 3. Parameters used to estimate the rising time.

Symbol Original Value Unit

LP Measurement (LCR819) 400 µH
Coss Measurement (B1500A) 130 @ VDS = 200 V pF
Cj0 Measurement (Element) 10 pF

f 1 = ω1/2π Equation (26) 670 kHz
tr Equation (27) 150 ns

2.6. Current Flowing on the Secondary Winding Phase

Referred to Figure 6, the output diode DS start conducting as the −vP ≥ avO. The
transformer is transforming the voltage from the secondary winding back to the primary
winding providing the equivalence LSm = LPm/a2 and iSm = a iPm. It is important to note
that the snubber diode is not a fast recovery diode, which will allow the reverse current
through. Then the following equations are derived assuming that CB > 10 CDS and the core
loss is neglected, which results in iB > 10 iD. In addition, LPm >> LPl is assumed during the
derivation and the voltage drop on the leakage inductor is ignored. From Equation (3), we
obtain that:

aiP = −iSi = iSm − iS (28)

In addition:

iP = iB = −CB
d(vP + iPRBs)

dt
= −CB

d
(

vP + (iSm − iS)
RBs

a

)
dt

(29)
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Figure 6. Equivalent circuit for the current flowing on the secondary winding phase.

On the secondary winding side, the current is:

LSl
diS
dt

= −vP
a
− vO (30)

Substituting the above equation into Equation (28) then into (29), we have:

iSm − iS = −aCB
dvP
dt
− CBRBs

diSm
dt

+ CBRBs
diS
dt

(31)

Knowing that diSm/dt = vSi/LSm = a vP/LPm, we substitute Equation (30) into the
Equation (31) to obtain that:

iSm − iS = −aCB
dvP
dt
− aCBRBS

vP
LPm
− CBRBS

LSl

(vP
a

+ vO

)
(32)

Taking time derivative to the above equation, we have:

CB
d2vP

dt2 + RBsCB

(
1

LPm
+

1
a2LSl

)
dvP
dt

+

(
1

LPm
+

1
a2LSl

)
vP = − vO

aLSl
(33)
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Considering the LPm >> a2 LSl, the above equation can be written into a standard form
of a 2nd order differential equation as follows.

d2vP

dt2 + 2ξ2ω2
dvP
dt

+ ω2
2vP = −vO

a
ω2

2 (34)

In the above equation, the natural frequency and the damping ratio are as follows.

ω2 =
1

a
√

LSlCB
(35)

ξ2 =
RBs
2a

√
CB
LSl

(36)

It is worth to note that the damping ratio derived in the above equation is in the form
for quality factor of the current amplification. That is to say the transformer is activating
in this phase; the current on the primary winding will affect the current on the seconding
winding. The nominal values of the parameters and the calculation results are shown
in Table 4. Equation (34) is valid when the current iP on the primary winding becomes
negative until the current iP becomes positive. At the time when the current iP is zero, there
is no more magnetization required on the secondary winding and Equation (30) will be
revised into as follows.

LS
diS
dt

= vO (37)

Table 4. Parameters used to estimate the frequency of the current on secondary winding.

Symbol Original Value Unit

CB Measurment (Element) 1 nF
a Measurement (LCR819) 6.24 -

RBs Measurment (Element) 33 Ohm
LSl Measurement (LCR819) 270 nH

f 2 = ω2/2π Equation (35) 500 kHz

Thus, the current iS will immediately change from decreasing function into an increas-
ing function as shown in Figure 7. Shortly when the current iP on the primary winding
becomes negative again after time td, Equation (34) is once again activated. The frequency
of the current derived from the parameters of the transformer and the snubber, as shown
in Table 4, indicates that the minimum time to complete the current hurdle is 2 µs. Thus,
the maximum switching frequency fS in the current arrangement shall be less than 500 kHz
when the duty ratio is 50%.
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Figure 7. Response of the transformer current and the current on the secondary winding.
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2.7. Zero Current in the Secondary Winding Phase and Zero Current Switching

As stated in the previous section that the necessary condition for the zero-voltage
switching is aVO/VDD ≥ 1. The snubber diode DB simultaneously turns off when no
current is flowing in in the secondary winding as shown in Figure 8. In this zero current in
the secondary winding phase, assuming that iB is negligibly small, the steady state voltage
for vDS is supposed VDD when the initial value of vDS is VDD + aVO.
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Figure 8. Equivalent circuit for the zero current in the secondary winding phase.

The capacitor Coss withdraws the charge in according to the equation as follows.

iD = Coss
dvDS

dt
(38)

The KVL equation yields that:

LP
diP
dt

+ vDS = LP
d(iD + iB)

dt
+ vDS = VDD (39)

Assuming that iB is negligibly small compared with diB/dt, Equation (21) yields that:

diB
dt

=
1

RBs

dvDS
dt

(40)

We can reformulate Equation (39) as follows.

d2vDS
dt2 + 2ξ3ω3

dvDS
dt

+ ω3
2vDS = ω3

2VDD (41)

The resonant frequency is:

ω3 =
1√

LPCoss
(42)

ξ3 =

{
1

2RBs

√
LP

Coss
when iB > 0

0 else
(43)

The switch turns off when the first derivative of vDS becomes zero is called ZCS.
According to Equation (41), the time required to complete the half time period of resonance
is defined as tZ which can be expressed as follows.

tZ =
1

2 f3
=

π

ω3
(44)

We shall note that the damping ratio of Equation (43) is in a form of voltage amplifica-
tion of resonance. The nominal values of the parameters and the calculation result is as
shown in Table 5. As stated previously, the zero-voltage switching and further ZVS can be
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successful only when we have a larger turn ratio a subjected to the same voltage output VO.
Thus, the transformer design is a critical issue to the flyback converter in order to achieve a
high-power conversion efficiency.

Table 5. Parameters used to estimate the rising time.

Symbol Original Value Unit

LP Measurement (LCR819) 400 µH
Coss Measurement (B1500A) 130 @ VDS = 200 V pF

f 3 = ω3/2π Equation (42) 700 kHz
tZ Equation (44) 710 ns

3. Analysis

The analyses were used as tools to bridge the differences between the experiment
and the derivations with assumptions. The first analysis is the SPICE analysis. The circuit
parameters shown in the SPICE analysis are identical to those used in the experiment except
the switch transistor, the input DC voltage VDD, the switching frequency, the duty cycle
and the load resistor. The second analysis based on the SPICE analysis is applied to verify
the critical conditions for the DCM. The DCM operation is valid when the load resistor is
large and the duty cycle of the switching is small. The corresponding analyses were also
compared with the experiments. The satisfactory consistency allowed the designer to use
the equations for verification of the DCM existence in different flyback converter designs.

3.1. SPICE Simulation Analysis

The flyback converter is simulated using the OrCAD, and the schematic diagram of
the circuit is shown in Figure 9. During the simulation, parameters are considered the
same as used for the above analysis. However, parasitic inductances are added at the input
power supply (Lin,par) and switch (LM1,par) to mimic their non-ideality due to the connecting
wire and the lead of the switch, respectively. A voltage source is connected in series with
the output capacitance to reduce the simulation time for achieving the steady-state. The
steady-state waveform of the circuit is shown in Figure 10. The waveforms represent the
gate voltage (vG), switch voltage (vDS), output diode current (iS) and output voltage (VO)
with their respective colors, as shown in the schematic. It is observed that the iS becomes
zero within the (1 − δ)T interval, which leads to ZCS of the switch. The capacitor Co is
provided with the initial condition (IC) of 56.3 VDC as the steady state output voltage and
the SPICE simulation runs for only 1ms. We added a parasitic capacitance 50 pF to the
primary winding of the transformer to increase the reality. The flyback converter result is
for the purpose of comparing the analysis with the experiment and theoretical data using
the identical circuit parameters, therefore it satisfies neither ZVS nor ZCS condition.
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3.2. Critical Condition for DCM

The derivations provided in this section are based on the assumption that the power
efficiency is 100%. The output voltage for the CCM is well-known as follows.

VO =
δ

a(1− δ)
VDD (45)

According to Equation (9), the maximum current IP,max on the inductor LP can be writ-
ten in terms of switching frequency fs, duty cycle δ and input DC Voltage VDD as follows.

IP,max =
δVDD
LP fS

(46)

According to Equation (17) providing the transformer peak current attenuation ζ = 1,
the output resistance RO can be written in terms of switching frequency fS, output voltage
VO, input DC Voltage VDD, turn ratio a and duty cycle δ as follows.

RO = 2LP fS

(
1
δ2

VO
VDD

)
VO

VDD
(47)

Substituting Equation (45) into the above equation, we obtain the critical condition for
output resistance RO which locates at the border of CCM and DCM as follows.

RO = 2
LP fS

aδ(1− δ)

VO
VDD

(48)

Substituting Equation (46) into the above equation, we can rewrite the condition for
DCM as follows.

RO ≥ 2
VO

aiP,max(1− δ)
(49)

According to Equation (45), if the output voltage VO is higher than δ/a(1 − δ)VDD then
the output current which reduces the operation will become DCM. Thus, the duty cycle δ
should follow also the equation below to achieve the DCM.

1− δ

δ
≥ VDD

aVO
(50)

The SPICE circuit is operated at different VDD and RO to find out the boundary
condition also known as critical condition. During the operation, the VO and fS are
maintained constant 20 V and 150 kHz, respectively. The current iS can be observed
at different simulations to distinguish the kinds of operations. The simulation results
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compared to the derivation in equation (50) and experiments are summarized in Figure 11.
Afterward, the boundary condition between CCM and DCM operation is determined for
the provided VDD and RO.
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4. Results and Comparisons

In order to validate the proposed method, a medium voltage experimental setup is
prepared as shown in Figure 12, and waveforms are shown in Figure 13. In the experiment,
we used a D-mode GaN HEMT transistor fabricated by Elite advanced laser Co. The
gate voltage in light blue color is switching from 0 to −12 V with the charge pump gate
drive recommended in [48]. The circuit parameters follow the parameters provided in
Tables 1–5. The circuit parameters follow the parameters provided in Tables 1–5. An
operating condition (VDD, fS, δ and RO) is considered (150 V, 150 kHz, 66% and 50 Ohm),
respectively. The measured VO is found to be 53.4 V. The power output is 57 W under
the efficiency 97.3% power conversion. The waveform matches closely to the theoretical
waveform. As stated previously, at the time when the current iP is zero, there is no more
magnetization required on the secondary winding and Equation (30) will be revised into
Equation (37), the current iS will immediately change from decreasing function into an
increasing function as shown in Figure 13. The dynamic waveforms due to the load change
and different snubber designs are shown in Figure 14.
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The other high voltage experimental setup yields waveforms are shown in Figure 15.
An operating condition (VDD, fS, δ and RO) is considered (300 V, 280 kHz, 48% and 50 Ohm),
respectively. The measured VO is found to be 56.3 V. The detailed key parameters com-
parison among the theoretical, OrCAD analysis, and experimental results are provided in
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Table 6. From Table 6, it is observed that the tCC obtained from the theoretical is higher
than both the SPICE analysis and experiment. The reason for the differences due to the
oscillation waveform of the iS of the SPICE analysis is somehow different from the other
two. The oscillation causes the peak of iS to reach a value higher than aiP,max. Therefore, the
time required for the transformer to transfer the same amount of energy to the output side
is less. The tr parameter from the theoretical, SPICE analysis and experiment are found to
be 150 and 130 ns, respectively. This is because the CDS value during the simulation might
be less than that of the experiment. The f2 frequency obtained from the SPICE is twice
higher than the theoretical, whereas the value obtained from the experiment is 1.6 times
higher. The tZ parameter obtained from the theoretical, SPICE and experiment are 710,
700 and 530 ns, respectively. The reason for having less tZ time during the experiment
because the tCC time is larger. In summary, the theoretical yields values, a bit closer to the
experiment than the SPICE does, however the total period of switching time was obtained
incorrectly from the theoretical. The switching time period of the experiment is 3.57 µs.
It is incorrect when we add up the tCC and tZ in the “theoretical” column of Table 6; the
switch turn-off time of the theoretical became 2.2 µs which is supposed 1.86 µs subjected to
the duty ratio 48%. On the other hand, the SPICE analysis can yield closer match to the
experiments on the timing.

Table 6. Parameters comparison between SPICE analysis and experimentation.

Symbol Description Theoretical SPICE
Figure 10 Experiment Unit

fS Switching Frequency - - 280 kHz
δ Duty cycle of switching - - 48% -

tCC Continuous Current Time 1.5
in Table 2 1.05 1.25 µs

tr
Current rise time in
secondary winding

150
in Table 3 130 130 ns

f2
Natural frequency of the

current resonance in
secondary winding

500
in Table 4 1000 800 kHz

tZ
Zero current time in
secondary winding

710
in Table 5 700 530 ns

The power efficiency of the result shown in Figure 15 is 96.2% for 65 W output power.
The power input is calculated by average the multiplication on the 10,000 samples, from
the purple curve in Figure 15a, for 6 to 10 periods of switching as follows.

Pin = (∑ iD) VDD/10,000

The power input is calculated by average the multiplication on the 10,000 samples,
from the green curve in Figure 15a, for 6 to 10 periods of switching as follows.

Pout = (∑iS) Vo/10,000

The power efficiency is calculated from the equation as follows.

Efficiency (%) = Pin/Pout × 100%

Even though we demonstrated the efficiency without considering the EMI filter with
AC/DC converter. However, with input AC voltage being 220 V can convert AC into the
DC VDD = 300 V, the EMI filter will only consume less than 0.1 W from the total power
of 65 W. The overall efficiency is still higher than 96%. It is also worth to note that the
output diode with average 1 A go through it will consume 1 W. Thus, other circuit elements
including the snubber circuit consumes only 1.5 W.
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Many other experiments have been performed to examine the ZCS performance for
the flyback converter which are summarized as shown in Figure 16. It is observed from
the experiments that the output power increases with the increasing input DC voltage as
shown in Figure 16a. The maximum power efficiency occurs at around VDD = 150 V which
is equivalent to the AC input voltage 110 V that is commonly adopted in America, Canada,
Japan and Taiwan. The maximum power output is at higher AC input voltage which yields
higher DC output VDD from the AC/DC converter. It is also observed from the experiments
that both the power and power efficiency will be degraded subjected to the snubber resistor
quality or precision as shown in Figure 16b, however not much. The result as depicted
in Figure 16c shows that the duty cycle is rather linearly decreasing with the increasing
switching frequency. In order to adjust the output voltage in the closed loop control of
flyback converter, we need to adjust the switching frequency according to Equation (17).
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The algorithm is quite simple to implement in the logic ICs or microprocessors due to the
linearity of the duty cycle vs. switching frequency. It may be naming the ratio between
duty cycle vs. switching frequency as the duty line equation as follows.

δ = δ0 − D fS (51)
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The corresponding D as shown in Figure 16c is 191.4, which implies that for the
current circuit parameters does not allow the circuit to be switching in the frequency higher
than 500 kHz. The result is in consistent with the f2 in Table 4. Equation (17) can then be
rewritten as follows providing that the efficiency is assumed 100%.

∆VO =
−∆ fS

fS
1/2

(
3
2

δ0

fS
+

1
2

D
)√

RO
2LP

VDD ≈ −∆ fS
DVO

2(δ0 − D fS)
(52)

Equation (52) indicates that the output voltage is decreasing with the increasing
switching frequency, which is in consistent with the output power decreasing as shown in
Figure 16c. The circuit allows the designer to adjust the switching frequency and the duty
cycle are recommended in variable frequency pulse width modulation (VFPWM) [49]. With
the VFPWM, we are able to control both the switching frequency and the duty cycle through
simple voltage inputs separately. The DCM with ZCS fulfillment can then be achieved.
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5. Analysis and Discussion

The design methodology of the DCM control directly relates to the determination of
the switching frequency and the duty. The target is to achieve the best efficiency through
the proper selection of transformer and snubber circuit parameters. The low switching
loss strategy proposed in this paper can yield a high efficiency in the DCM operation
for a conventional flyback converter with high switching frequency using GaN HEMT.
Our method is simply achieved by having ZVS with ZCS occurred simultaneously in the
instance of switching. The step-by-step design methodology is depicted in Figure 17. In
this method we started from studying the flyback converter specifications which include
mainly the input voltage (typically 150/300 V), the power density (W/cc), the output
power (W) and the output voltage (V). From the specifications, the output load (Ohm), the
input voltage, the output voltage and the switching frequency together determines the
critical condition for CCM or the BCM. It is then using the transformer turn ratio and input
voltage to determine the minimum breakdown voltage for the GaN HEMT as well as the
current rating required. After the transistor has been verified in its feasible working range,
then ZVS and ZCS are determined from the equations stated in Section 2. According to
either the PSpice simulation or experiments, we then determine the redesign of the snubber
or the selection of transformers.
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6. Conclusions

The flyback converter can yield higher power efficiency during the DCM than that of
the CCM for less than 100 W low power output. The new knowledges that are conveyed in
this paper including the DCM resonance mechanism and the relation among switching
frequency, duty, ZVS and ZCS. The understanding of the DCM resonance mechanism is
the key to fulfill ZVS and ZCS simultaneously and thus the switching loss of the flyback
converter can be reduced. This paper provides an insight of the DCM mechanism. The
current jumps to its first maximum after the switch turns off and bumps back, later on, to
its second maximum. This paper explains the reason why the current bumps back and how
that prolongs the current flowing time. The precise calculation of the current flowing time
proceeds the drain-source voltage of the switch to swing down toward zero voltage. This
paper shows that the drain-source voltage swing on the switch is critical to the ZVS. The
condition enabling the ZVS to occur is to increase the turn ratio a of the transformer. In
contrast with the quasi-resonant fly back converter wherein it makes use of the parasitic
elements to manipulate the inductor voltage partially resemble a resonance action. The
DCM resonant behaves as a nature from the current in its secondary winding. The control
of the DCM can be implemented by controlling the switching frequency. The duty cycle
following the switching frequency change can be adjusted in a linear way achieved by using
the VFPWM that the authors have presented before. Nevertheless, the output resistance
on the load is an important factor that affects the output voltage. For the heavy load
application, the transformer made with small inductance is preferred in order to allow the
DCM to occur. This paper demonstrated the particular applications own as high as 97.6%
power efficiency. The high-power efficiency for fast charging application may be targeting
at the 99% efficiency. This can be accomplished by further redesign the transformer, use the
AMR (active MOS rectifier) or ideal diode on the secondary winding to replace the normal
FRD (fast recovery diode), and/or integrate the power module together with the gate drive
into a SiP (system in chip) packaging. These possibilities to promote the power efficiency
to its extreme will be included in our future work.
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Nomenclature

Symbol Abbreviation
LP inductance of primary winding
LPm magnetization inductance of primary winding
LPl leakage inductance of primary winding
LS inductance of secondary winding
LSl leakage inductance of secondary winding
k coupling coefficient of transformer
a turn ratio of transformer
Cm coupling capacitance of transformer
CDS drain-source parasitic capacitance of the switch
Coss output parasitic capacitance of the switch
vDS drain-source voltage of the switch
CB snubber capacitance
tCCM continuous current mode time
DS diode on secondary winding
DB diode of the snubber
δ duty cycle of the switching
ω natural frequency of response
ξ damping ratio of response
CO output capacitance
RO output resistance
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