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Abstract: Solar energy is an economic and clean power source subject to natural variability, while
energy storage might attenuate it, ultimately, effective and operationally feasible forecasting tech-
niques for energy management are needed for better grid integration. This work presents a novel
deterministic forecast method considering: irradiance pattern classification, Markov chains, fuzzy
logic and an operational approach. The method developed was applied in a rolling manner for six
years to a target location with no prior data to assess performance and its changes as new local data
becomes available. Clearness index, diffuse fraction and irradiance hourly forecasts are analyzed on
a yearly basis but also for 20 day types, and compared against smart persistence. Results show the
proposed method outperforms smart persistence by ~10% for clearness index and diffuse fraction on
the base case, but there are significant differences across the 20 day types analyzed, reaching up to
+60% for clear days. Forecast lead time has the greatest impact in forecasting performance, which
is important for any practical implementation. Seasonality in data gaps or rejected data can have a
definite effect in performance assessment. A novel, comprehensive and detailed analysis framework
was shown to present a better assessment of forecasters’ performance.

Keywords: solar power forecasting; renewable energy; solar energy; Markov chains; fuzzy logic;
heuristics

1. Introduction

As installed solar energy capacity increases worldwide, its appropriate management
becomes a pressing matter for electric system operators. As more efforts are directed
towards further renewable energy integration to established grids, the issue of natural
variability of renewable energy becomes concerning. Several studies show that renewable
energy dumps due to system operational constraints can be significant and have proposed
different dispatch schemes to counter this [1,2]. This does not solve the issue, but com-
plicates it by introducing a new aspect to energy management: appropriate storage and
dispatch of energy; hence, solar power forecasting becomes an invaluable tool. To this end,
several methods have been developed to produce forecasts and have been presented in
comprehensive literature reviews [3–8], with statistical methods being very popular.

1.1. Statistical Forecasting Methods: Introduction and Challenges

Statistical methods apply time series analysis to develop forecasts. A general formula-
tion for this family of methods is presented in Equation (1), where Y(k), U(k) and e(k) stand
for the k-th value of the output, input variables and forecast error, respectively. A, B and C
stand for the model coefficients that need fitting to match the observations and m, n and
p represent the model’s order. When B = C = 0, the model is called autoregressive (AR),

Energies 2021, 14, 6005. https://doi.org/10.3390/en14186005 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0742-4661
https://orcid.org/0000-0003-1132-7589
https://doi.org/10.3390/en14186005
https://doi.org/10.3390/en14186005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14186005
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14186005?type=check_update&version=3


Energies 2021, 14, 6005 2 of 24

when only C = 0, the model is called autoregressive with external inputs (ARX) and when
C 6= 0 it is an autoregressive moving-average model with external inputs (B 6= 0, ARMAX
model) or without them (B = 0, ARMA model) [9].

AnY(k) + · · · + A0Y(k−m) = BnU(k) + · · ·+ B0U(k−n) + Cne(k−1) + · · ·+ C0e(k−p) (1)

A procedure presented by Box et al. [10] uses the autocorrelation (ACF) and partial
autocorrelation functions (PACF) of the time series, to determine model structure. Since
time series can exhibit seasonality, it is often suggested to use the derivative of the time
series for the seasonality period, to eliminate this trend and better determine the model’s
dynamics, calling such models SARMA (seasonal autoregressive moving average). The core
of the methodology is that a particular model (AR/ARMA) exhibits a distinct, identifiable
pattern in its ACF and PACF. By identifying the lags in which the ACF and PACF peak or
decay, the model order (m/n/p parameters in Equation (1)) can be determined. Finally,
linear or nonlinear estimators are employed to determine the model’s coefficients.

1.2. Emergence and Challenges of Artificial Intelligence as Forecasting Tool

Recently, applications of artificial intelligence techniques for solar power forecasting
have continually increased due to their ability to model highly nonlinear phenomena and
pattern identification, provided by analyzing correlation and clustering between input and
output variables [11]. Likewise, Cai et al. [12] present the contrast against conventional
statistical techniques, their shortcomings and the emergence of deep learning techniques as
a response. These techniques rely on two main concepts: first, identify and classify patterns
or features to be reproduced and second, the actual forecast is based on the training of a
structure to generate outputs based on the identified pattern to be reproduced. Examples
are presented in Table 1 and current issues for these methods on Table 2.

Table 1. Example artificial intelligence approaches for solar radiation forecasting.

Source Method Dataset

Lan et al. [13]

Combination of frequency analysis
to identify irradiance patterns,
principal component analysis to
identify characteristic features and
neural networks are used to
forecast future features of
irradiance that are translated back
to an irradiance forecast.

One year of data

Theocharides et al. [14]

Several neural networks were
developed to produce GHI
forecasts, which are then
clusterized and finally, through
statistical processing, the final
forecast is produced as a linear
combination of the clusters.

210 days

Du Plessis et al. [15]

Several neural networks were
developed for meteorological data
to forecast a photovoltaic plant
output at the subunit level and then
scaled up to plant-wide production.

Two years training and 1 year
of validation data.
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Table 2. Current issues in artificial intelligence applications for solar power forecasting.

Source Issue or Concern

Wang et al. [16] and Sethi and
Kantardzic [17]

Neural networks/deep learning approaches have not
seen sufficient adoption, despite growing interest in
them, due to their complex black-box nature and lack of
explainability and interpretability

Wang. et al. [18] These approaches are prone to model overfitting and
insufficient generalization ability, being hyperspecific.

Wang. et al. [16]

Explainability is of great importance, therefore,
proposed a new approach through direct explainable
neural networks that can provide further insights in the
input–output relationship to assist in result
interpretation and model explanation.

Ahmed et al. [19]

Appropriate weather classification is important for solar
photovoltaic power forecasting assessment, and there
are challenges to overcome in these classifications,
presenting that most authors employ four or less classes.

Wang et al. [20]
Separate forecast models for each weather class should
improve forecasting performance; therefore, having a
higher number of classes would be beneficial.

Regardless of the success of these techniques, one issue remains regarding the interop-
erability of the approach, meaning that the resulting structures are created based on the
specific characteristics of the data and the classifier itself is specific to each case of study.
Therefore, a generalized classification scheme would benefit the development of forecasting
methods by allowing interoperability and ease of implementation and comparison across
studies.

1.3. Current State of the Art in Solar Power Forecasting Performance Assessment

Several well-regarded metrics have been presented in the literature for performance
evaluation, however, there is not a defined standard on which metrics to report nor how
appropriate they are as meaningful indicators of a forecaster’s performance [21]. Fur-
thermore, when comparison against a reference baseline method is required, there may
not be an overall agreement on the details of the implementation of such method and
there is still debate regarding this topic, to which works such as [22] attempt to set the
details for a standardized method. Additionally, as solar power forecasting has transi-
tioned from the naïve persistence (irradiance I remains constant through forecast window,
Equation (2), [23–25]) towards the smart persistence as the reference method (clear sky
index Ktcs remains constant through forecast window, Equation (3), [25,26]), the readers
must be aware of which reference was used, making analysis and result comparison more
difficult.

Î(t+∆t) = I(t) (2)

Î(t+∆t) = Ics(t+∆t) × Ktcs(t)
= Îcs(t+∆t) ×

I(t)
Ics(t)

(3)

From this body of knowledge, a baseline can be established regarding the performance
of different forecasting methods. Results presented in [6,8] were analyzed considering
that: (a) must have been assessed with a minimum of one year of validation data and (b)
only hourly forecasts were considered. The normalized root mean square error (nRMSE)
was the most commonly reported metric, with typical values in the range of 17 ± 8.25%,
although values of 3% and 38% have been reported as well. Figure 1 presents results from
selected works [27,28]; however, the reader is referred to [6,8] for a more detailed coverage
of performance statistics.
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Figure 1. Some selected results from the literature showcasing typical performance cases for solar
radiation forecasting, based on [27,28].

Despite the fact that several well-known metrics and procedures for forecasting
performance assessment are presented in the literature, most studies are limited to assessing
performance of the entire evaluation period, while some further detail at how performance
varies with month or season [16,29–31], but comparatively few studies provide details at
the type-of-day [15] level or for specific values or ranges for Kt [14,32]. This analysis is
of interest, because as Figure 1 shows, the same method can yield very different results
as a function of the variability of the location under analysis. Often, the type-of-day
categories are defined subjectively, and [33] showed that Kt alone is not a sufficient metric
to characterize day type, proving that these approaches are not sufficient to accurately
characterize performance under specific atmospheric dynamics. Further, studies commonly
use training–evaluation–testing datasets that, in sum, encompass all of their available data,
but rarely evaluate how data aggregation affects forecasting performance, and the testing
datasets are frequently composed of few years or even fractions of a year. It is therefore
necessary to develop an assessment framework that addresses these shortcomings.

Finally, academic work in this area has mostly been oriented towards developing
techniques to increase forecast accuracy. However, recent studies have shown that this
approach is insufficient, as there are several critical issues pertaining to implementation
and performance assessment that have not been standardized or that have not reached
scientific consensus. For the operational aspect of forecasting, the method should be able
to be integrated seamlessly in the decision-making process regarding energy dispatch.
Yang et al. [34] point to key issues related with database requirements, computational
time required to obtain useful results, time difference between forecasted energy and the
anticipation on which the forecast must be provided (lead time) and data processing to
comply with temporal resolution requirements.

1.4. Present Work and Scientific Contributions

From these arguments, the authors have decided to develop a novel statistical solar
forecasting method and a comprehensive assessment methodology, aimed at addressing
the issues detected in the literature review. Namely, the novelty and contributions of this
work are summarized as follows:

1. A novel solar radiation forecasting method was developed based on pattern identifica-
tion and classification, probability and heuristic methodology, considering operational
needs of decision-making parties. The heuristic method developed for this application
presents an intuitive, explainable, interpretable and effective way to forecast solar
irradiance, by relying on concepts of probability, possibility and human reasoning,
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overcoming the limitation of complex mathematical abstraction and black-box charac-
teristics of advanced state-of-the-art statistical and artificial intelligence methods.

2. A generalized explicit irradiance pattern classification scheme was employed for
performance assessment and forecasting, by classifying irradiance patterns through
an analytical expression that yields similar results to clustering techniques, with the
advantage of easy implementation across studies.

3. A comprehensive performance assessment framework was developed to analyze not
only how forecasting performance changes as a function of forecast horizon and lead
time, but to evaluate the effect of data aggregation into the knowledge base has on
forecasting skill, how quality control and/or data gaps affect performance assessment
and how the forecaster performs under different objectively defined day types.

This work is organized as follows: Section 1 deals with the introduction and a brief
state-of-the-art description in the issues relevant and under study in solar radiation fore-
casting. Section 2 presents the data sources and explains the forecasting methodology
and Section 3 deals with performance assessment methodology. Finally, the fourth section
presents the results and discussion, and Section 5 presents the conclusions.

2. Data Sources and Methodology

Data corresponds to seven measurement stations throughout Chile (Arica, La Tirana,
Crucero, Diego de Almagro, Carrera Pinto, Santiago and Curicó), from 2012 to 2017 with
one-minute temporal resolution, integrated to obtain hourly data. Measurement station
location, data availability and quality control scheme are detailed in [33,35]. The ESRA
clear sky model [36] was used due to its simplicity and accuracy, showing good agreement
with ground measurements [35].

While conventional statistical methods have been extensively employed for solar
power forecasting, as described in the introductory section, these models are more suited
to accurately reproduce the dynamics of a system whose nature/parameters do not change
significantly. When this is not the case it is necessary to repeat the fitting procedure to
match the new dynamics. This poses not only a complexity to maintain an updated model,
but also because very different dynamic patterns can emerge even within the same range
of static characteristics (i.e., for the same mean Ktcs for a given period, wildly different
irradiance patterns can occur), a statement supported by [19,37].

Figure 2 illustrates this conundrum. The top-left subfigure displays the probability a
particular one-minute value for Ktcs occurs for 20 possible categories with similar hourly
Ktcs and the top-right subfigure presents the one-minute time series of Ktcs values for a
representative time series of the corresponding category. By applying the Box–Jenkins
methodology to identify which model structure would be the most appropriate, very
different ACF and PACF patterns emerge for each time series that represents the different
Ktcs patterns (shown in the bottom subfigures). Therefore, different structures would need
to be developed for each pattern (with additional uncertainty, as different patterns can exist
within the same Ktcs class) and an additional effort would need to be made to correctly
identify transitions across patterns. Ultimately, no one-model-fits-all approach can be
employed and similar results are obtained for hourly time series.

Based on the previously discussed limitations of conventional statistical techniques,
and the more modern artificial intelligence/deep learning approaches, and considering
that the short-term variability of the solar resource is inherently stochastic in its origin,
a probability-oriented approach, through Markov chains, is suited to represent these
phenomena as the probability distribution to transition from a defined origin state to a
destination state in the future, or simply, a chain of connected states [6]. In this way, the
problem is first shifted to define the characteristics of such states, then to quantify their
transitions and finally to resolve a point value within the destination state.
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Examples of this approach are presented in Bhardwaj et al. [38], where Markov
chains were used to model transitions for atmospheric variables (temperature, humidity,
sunshine hours, atmospheric pressure and wind speed) and a generalized fuzzy model
was developed to take these variables as inputs to produce solar irradiance as the output.
Sanjari and Gooi [39] produced probabilistic forecasts for photovoltaic plants as a function
of irradiance, temperature and the plant’s previous production, using a Markov model.
Clusters for different patterns for inputs were constructed based on data similarity using
either a shape similarity approach [38] or a pattern discovery method [39]. While these
approaches proved successful, the method is highly dependent on the characteristics of
the data, as the resulting clusters are defined based on mathematical abstractions and
no straightforward relations allow for simple understanding of the data characteristics
and cluster boundaries, but more importantly, the interoperability or how the resulting
construct can be applied to a different context, a shortcoming shared by [13–15] and already
expressed in the introductory section.

However, in Castillejo-Cuberos and Escobar [33] it was determined that the overall
specific static and dynamic characteristics of solar irradiance for a determined time period,
or state, are summarized by the clearness index (Kt), the diffuse fraction (K) and the vari-
ability of the solar resource. By defining a variable termed the solar resource quality score
(QS), irradiance patterns can be classified in an explicit scheme comparable to clustering
techniques, but providing a straightforward approach and a simple analytical expression
on which to perform the classification, easily translatable across studies, overcoming the
issue of data specificity previously discussed. The only variables needed are the global hor-
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izontal irradiance (GHI), diffuse horizontal irradiance (DHI) and extraterrestrial irradiance
(Io).

The QS is a measure of how close a particular state is from the ideal of full atmospheric
clearness (Kt = 1), no attenuation (K = 0) and constant irradiance (variability = 0). To
quantify variability, the variability score (VScd f ) defined by Lave et al. [40] was used,
defined as the probability that a particular ramp rate (RR = dGHI/dt) exceeds a given
threshold ramp (RR0 = 1000 W/m2) during an evaluation period. The quality score uses
the normalized VScd f or nVScd f , which is the result of linearly mapping the VScd f from
the range 0.002–0.4054 to 0–1 [33].

Kt =
GHI

Io
(4)

K =
DHI
GHI

(5)

VScd f = min

√( RR
RR0

)2
+ (P(|RR∆t| > RR0)− 1)2

 (6)

QS = 1−

√
(1− Kt)

2 + (K)2 +
(

nVScd f

)2

√
3

(7)

In [33], solar resource patterns were classified in 20 classes (or states) from overcast to
cloudless (Figure 3). From the time series of hourly Kt, K and VScd f values, an hourly time
series of these discrete states can be constructed after applying this classification scheme.
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Then, to model the probability that a particular state could develop into another at a
future time, transition matrices are constructed from these data. Since the actual physical
phenomenon (irradiance time series) would now be represented by a continuous series of
discrete states (irradiance classes) then, for each time instance (hour), the following state



Energies 2021, 14, 6005 8 of 24

would only be a function of the previous one, for which assuming a perfect forecast, it
would amount to a one-hour forecast horizon. As the lead time is a construct that results
from the operational need to know future states with enough anticipation to prepare and
enact appropriate measurements, it is not part of the physical reality of the phenomenon to
be modeled and its value is determined by the specific need of the end user of the forecast.

Thus, given these two temporal parameters, there are infinite combinations of forecast
horizons and lead times on which the transitions could be modeled. Therefore, striving to
reproduce the atmospheric dynamics that govern solar resource patterns in a simple yet
general way and based on the consideration that each state only depends on the previous
one, the probability of transition is modeled corresponding to a forecast horizon of 1 h and
no lead time.

Then, the probability of transition is modeled based on historical values by means
of transition matrixes, in which for each hour, the preceding state (i.e., irradiance class)
is compared against the current one, and the corresponding transition is added to a
totalization matrix. Once this process is completed, the counts are normalized across origin
states as to obtain the transition probability distribution from each origin state to each
end state. This process is presented in Figure 4 where P(i,j) represents the probability to
transition from “i” origin state towards “j” destination state.
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Figure 4. Workflow to construct transition probability matrixes after irradiance pattern classification
has been performed.

However, this procedure does not consider the relationship of irradiance patterns
with solar geometry and seasonality, as the same solar elevation (α) can correspond to
very different times of day across stations due to the effect of declination. To capture
these seasonality effects (intradaily and intermonthly), transition matrices are developed
for nine cases: for α, (in increments of 30◦) and hour angle (ωh) according to sunrise
and sunset angles (ωsr and ωss, respectively) for the following sets: (i) ωh < 0.5 ωsr,
(ii) 0.5 ωsr ≤ 0.5 ωh < 0.5 ωss and (iii) 0.5 ωss ≤ ωh.

Once the irradiance class origin/destination probability distribution is known, what
follows is to determine the corresponding deterministic forecast. As the Kt and K distribu-
tions overlap for more than one irradiance class (Figure 3), the complexity of the reversion
process increases. To deal with this complexity, while maintaining human interpretability
and experience into the process, a fuzzy logic approach was employed, as in [38].

Fuzzy logic, proposed by Zadeh [41], is a framework of multivariate logic that aims at
translating human reasoning of imperfect logic with uncertainty. Instead of dealing with all
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true or false affirmations of binary logic, fuzzy logic evaluates how “accurate” is a particular
affirmation by considering the membership degree of an input to a linguistic affirmation
that is translated into a fuzzy rule. In [42–45] it is established that fuzzy logic is compatible
with, although distinct to, probability theory in a framework of possibility, the main
difference being that probability is concerned with “what will happen” while possibility
refers to “what can happen”. This compatibility, the ability to approach the reasoning
process from an inherently uncertain point of view, and the fact that a possibility framework
is compatible with discrimination against scenarios that are physically impossible (i.e., a
Kt = 1 with K = 1), makes the fuzzy logic approach suitable for this work.

Barragán [46] explains in detail the mathematical foundation of fuzzy logic in a
comprehensive manner and the reader is referred to this work should a high level of
detail be needed; however, Figure 5 presents a summary of the procedure. First, numeric
values for variables are compared against affirmations or rules (membership functions)
to determine their degree of membership to a particular affirmation, resulting in a fuzzy
number representing this membership. In the second stage, all affirmations are aggregated
using fuzzy logic set operators (such as addition, product, intersection or negation) to
establish the current state of affairs in the system under analysis. Then, using a series
of rules that constitute the knowledge base of the fuzzy logic system and have been
defined either by previous experience and/or human expert knowledge, an inference is
made regarding the most appropriate or likely outcome. Finally, since all this process
is performed using fuzzy numbers, it is necessary to translate the results back to a crisp
numerical value, in a process called de-fuzzification.
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The concept of set membership is taken from fuzzy logic to assess the membership
degree of a Kt-K-QS value to a certain irradiance class and Figure 6 presents the workflow
for each variable, using QS as example. First, the variable is evaluated using Gaussian
membership functions defined for each of the 20 defined classes presented in Figure 3 to
determine the most similar class or origin state (Figure 6a). Then, the transition probability
distribution corresponding to the origin state (Figure 6c) is extracted from the general
transition matrix (Figure 6b). This distribution represents the probability of transition from
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the current origin state to the destination (or forecasted) state. Equation (8) presents the
Gaussian membership function in which x refers to the variable to be tested, µx and σx
represent the mean and standard deviation of the set, respectively.

GMF = exp
(
−(x−µx)2

2∗σx2 )
(8)
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Figure 6. Workflow to determine the likelihood function for QS on a test case with origin state:
Kt = 0.667, K = 0.333 and QS = 0.667. Membership function for QS (a), state transition probabil-
ity matrix (b), future state probability of occurrence (c), QS ranges for each destination state (d),
probability-weighed likelihood function for QS at each possible destination state (e), likelihood
function for QS (f).

Since each destination state has a range of values defined by the corresponding mean
and standard deviation of its irradiance class (Figure 6d) and there is a definite probability
of occurrence for each state, the overall likelihood of a particular value being realized
depends upon a combination of these two facts. This relationship can be expressed through
the product operator, and therefore the fuzzy “likelihood” variable is defined as the product
of the probability of occurrence of a state and the degree of membership for a variable’s
values for each state (Figure 6e). Since there are still a multitude of destination states in
which the forecasted variable could be realized between one or another, the algebraic sum
of the fuzzy sets corresponding to each origin state results in the overall likelihood function
for that variable (Figure 6f).
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Equation (7) shows the relationship between these variables; therefore, a Kt-K-QS
space exists for a given VScd f (Figure 7a) and the forecast output must belong to it. Since
VScd f is used to describe the intrahourly variability, has a wider distribution of values and
has the least effect in QS compared to Kt and K [33], for this work it has been assumed
that the intrahourly variability is preserved across hours. With this VScd f value, the Kt-K-
QS space is constructed (Figure 7b) and using the previously determined QS likelihood
function (Figure 7c) the Kt-K-QS space can be mapped into the QS likelihood function in
the Kt-K space (Figure 7d).
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plausibility space (d), combined Kt-K likelihood (e), overall likelihood function for a Kt-K-QS triad, with the forecasted
value at the centroid (f).

However, certain Kt-K combinations violate physical irradiance limits, for which
no forecast can be produced. Hence, there exists a binary plausibility space (Figure 7e)
representing this (1 for plausible and 0 for implausible values), with Kt and K limits
being derived from the irradiance limits for GHI, DHI and direct normal irradiance (DNI)
established by [47,48] calculated at the forecast’s corresponding α and Io. The last space
to consider is constructed from the likelihood functions of Kt and K (Figure 7f). Finally,
the product operator is used to aggregate the QS likelihood space, the combined Kt-K
likelihood and the plausibility space, to obtain the overall combined likelihood in the
Kt-K-QS space, representing the overall likelihood for the combination of variables. To
obtain the crisp numerical Kt, K and QS values, a centroid defuzzification has been chosen,
as this criterion considers the information of all the space and not just the maximum value.

Once the Kt and K forecasts have been obtained, the corresponding irradiances are
calculated using Equations (4), (5) and (9). Since the application of interest is power
forecasting for photovoltaic plants, the tilted plane irradiances are calculated for fixed (at
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latitude), one and two-axis tracking surfaces, using the HDKR transposition model [49],
with a ground surface albedo of 0.2.

DNI =
(GHI − DHI)

sin α
(9)

For performance assessment, the proposed method is compared against smart per-
sistence (persistence henceforth) as it is the current reference method. To reduce forecast
uncertainty due to the clear sky model, especially in cases of marked changes in Linke
turbidity during nonclear conditions (as demonstrated in [35]), Kt will be used instead
of Ktcs. As stated in Section 1, persistence forecasting as consensus baseline method has
transitioned from naïve persistence (i.e., irradiance remains constant, Equation (2)) [23–25]
towards smart persistence (i.e., clear sky index remains constant, Equation (3)) [25,26].
However, the estimation of the clear sky irradiance is subject to astronomical uncertainties
(solar geometry modeling, Earth–Sun distance modeling and solar constant estimation
uncertainty), atmospheric properties uncertainty (such as aerosol optical depth and inte-
grated water vapor column estimation, among others, with specific effects depending on
the clear sky model being used) and the intrinsic clear sky modeling error (which is model
dependent). Even under perfect circumstances in which these parameters are estimated
with low uncertainty on clear days, the clear sky modeling error can amount to ~2–3%
for GHI and ~8% for DNI [50] and [51] further elaborates on the sensitivities of clear sky
models to uncertainty in their inputs. Finally, in [35] it was shown than under practical
applications, it is difficult to maintain accurate and updated estimates of atmospheric
properties used for clear sky modeling, that can result in significant estimation errors.

Therefore, in order to reduce forecast uncertainty due to clear sky modeling, the
clearness index (Kt) will be used instead of the clear sky clearness index (Ktcs) for GHI
persistence forecasts, as the former is much less subject to uncertainty than the latter, as
it is only affected by the astronomical uncertainties. Likewise, the corresponding DHI
forecast stems from this GHI forecast and assuming persistency of the diffuse fraction.
For consistent evaluation, the persistence forecasts will be subject to the physical limit
constraints previously described.

Data are grouped into two sets: a training set consisting of all but the last year and
the evaluation set consisting of the last year. Data for the seven measurement stations
are considered, however, to assess the performance of the proposed method, the Santiago
station is the one to be analyzed. First, it will be assumed that no previous data for this
station exist and then, gradually, data from each additional year are considered for the
training set, to simulate data availability once the forecasting scheme is put into operation.

3. Assessment Methodology

The proposed method’s performance is assessed through a set of commonly used
error metrics featured in the literature, as reported by [21,34,52], namely, the mean bias
error (MBE), the root mean square error (RMSE), the normalized root mean square error
(NRMSE), the mean absolute percent error (MAPE), the time series correlation (ρ) and the
skill score (SS).

MBE =
∑i=n

i=1 ei

n
(10)

RMSE =

√√√√(
∑i=n

i=1 ei
2
)

n
(11)

NRMSE =
RMSE
Iobserved

(12)

MAPE = 100×

(
∑i=n

i=1 |ei|
)

n
(13)
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ρ =
∑i=n

i=1

((
I f orecasti

− I f orecast

)
×
(

Iobservedi
− Iobserved

))√
∑i=n

i=1

(
I f orecasti

− I f orecast

)2
×∑i=n

i=1
(

Iobservedi
− Iobserved

)2
(14)

SS ≈ 1− RMSEtested_method
RMSEre f erence_method

(15)

Since module capacities are reported at standard testing conditions (STC, 1000 W/m2

∼= 25 ◦C) and plants vary in capacity, it is reasonable to estimate electric power production
as the product of the nominal production capacity by the irradiance on the module’s
surface and reference the error metric to the nominal plant capacity Cnominal , following [32].
Therefore, the errors are calculated as follows: eirr for irradiance, while epower for power
production at tilted plane cases. Only valid data points that passed quality control are
considered for error calculation.

eirr = I f orecast − Iobservation (16)

epower =
Cnominal I f orecast − Cnominal Iobservation

Cnominal Iobservation
=

I f orecast − Iobservation

Iobservation
(17)

4. Results and Discussion
4.1. Data Aggregation Effect on Forecasting Performance

The reference case, Santiago 2012 with one-hour forecast horizon and no lead time,
proves the proposed forecasting methodology generality by resulting in positive SS, despite
not having previous information of this location’s dynamics. As additional data become
available, performance increases for the first year of new data and continues to improve
with each passing year. Forecasting performance for GHI is closely tied to Kt, while for
DHI is more complex, as it compounds the forecasting error of K with Kt, therefore results
are larger than GHI alone. Since DNI is calculated from GHI, the good GHI forecasting
performance is carried over to DNI.

As tilted plane irradiance can be considered a weighted sum of the three compo-
nents, with variable weights according to solar geometry, individual component forecast
errors can be somewhat balanced by the others, resulting in a more uniform performance
(Figure 8, right). Two-axis tracking forecasting performance is highest among tilted planes,
as it depends more upon DNI due to the negligible angle of incidence, whereas fixed plane
and one axis tracking have performance close to Kt/K levels.
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Figure 8. Effect of data aggregation to the knowledge base on forecasting skill.

The method tends to perform worst around sunrise due to changes in atmospheric
dynamics occurring during the night, potentially resulting in considerable forecasting
errors for the sunrise forecast window. Figure 9 presents the actual and forecasted time
series for Kt, K and irradiances on one completely clear day, one clear with a slightly higher
K and variability, and the third one is very variable, having overcast, intermediate and
clear periods. For the first day, the forecast was accurate with only DNI overestimation
towards sunset due to a combination of overestimation of Kt and underestimation of K.



Energies 2021, 14, 6005 14 of 24

This propagated into the tilted irradiance forecast, especially for the two-axis tracking case
due to its higher dependence on DNI. The forecast for the second day was accurate as well.
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The third day showcases the worst performing situation: when the conditions of the
first hour to be forecasted on a day are significantly different than the last forecasted hour
of the previous day. The last forecast corresponded to clear sky, which due to unavailability
of data in the night hours suggests clear skies during sunrise. During the night the situation
changed into an overcast morning resulting in large forecasting error. As daytime data
become available, the forecast is rapidly corrected, reducing error.

Once the effect of data aggregation on forecasting performance has been studied,
the effect of forecast horizon and forecast lead time can be studied. For this analysis, the
training data will consider up to Santiago 2016 data and evaluate performance for 2017 at
up to 4 hours’ horizon with up to 2 h lead time.

4.2. Effect of Forecast Horizon and Lead Time in Forecasting Performance

Despite the knowledge base being based on historic hour-to-hour transitions with
no lead time, the results show the proposed forecasting methodology can be extended
for longer time horizons and lead times. From Figure 10, the proposed method showed
resistance to performance degradation as the forecasting horizon and lead time increases,
with K being the only exception to this behavior. For no lead time cases, the proposed
method produces useful forecasts for up to a two-hour forecast horizon while its overall
skill is best for the 3 h forecast horizon with a lead time of one hour.

To analyze the detailed performance metrics for each case, Taylor diagrams are chosen.
They allow a more detailed, independent analysis for each case, as they summarize several
metrics in a single chart based on the relationship presented in Equation (18) [53]. In this
diagram, forecast performance is presented as distance to the observations (reference) set,
which is perfectly correlated and has no error with itself (σre f erence set, ρ = 1, RMSE = 0). The
farther away from the reference a case is, the performance is worst. For the sake of clarity,
only cases of 0–1 h lead times are presented.

cRMSE2 = σre f erence set
2 + σtest set

2 − 2× σre f erence set × σtest set × ρ

cRMSE2 = RMSE2 −MBE2 (18)
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Figure 10. Forecasting skill performance for different forecast horizons and lead times (FLT), time units in hours: clearness
index and diffuse fraction in the first row, horizontally referenced irradiance middle row and tilted plane irradiance bottom
row.

Figure 11 presents results for Kt and K forecasts. Data points for persistence tend
to follow the corresponding standard deviation isoline, due to the persistence forecast
being a shifted version of the original time series with increasing decimation as forecast
horizon and/or lead times extends. The resulting time series tends to keep most of the
distribution characteristics of the original; however, correlation lowers and therefore RMSE
increases, with the lead time having the most significant effect. This chart evidences the
good performance in forecasting skill for the proposed method, as the increase in the RMSE
is lower than persistence and shows better correlation with the original time series, as it is
not subject to the decimation as is the persistence forecast.
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From Figure 12, GHI presents excellent correlation, whereas for DHI and DNI it
is considerably lower. This can be explained by: (a) for GHI, forecasting error in DNI
and DHI can be somewhat compensated through the closure equation, therefore, the
relative differences are not large; (b) DHI has compounding effects from the extraterrestrial
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irradiance, Kt and K forecasting; (c) DNI is a derived parameter from GHI and DHI,
weighted by the nonlinear term of sin(α); (d) since DNI fluctuates according to cloud
coverage pattern and optical thickness, strong variations can be present at intra- and
interhourly levels, making its forecast difficult. In all cases, the proposed method has a
lower increase in RMSE than persistence. For tilted irradiance, the proposed method tends
to be closer to the standard deviation isoline of the irradiance reference and consistently
shows higher correlations and lower RMSEs than their corresponding persistence forecasts.
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4.3. Forecast Performance Assessment as a Function of Day Type

The results presented so far corresponded to whole one-year time series of the evalua-
tion dataset, as is often presented in literature. Nevertheless, an important aspect to analyze
forecasting performance under different atmospheric conditions. While authors have previ-
ously analyzed performance according to subjective discrete day classifications [15] or as a
function of specific daily Kt values [14,32], the classification presented in [33] proves useful
to analyze performance characteristics for deterministically defined typical day types with
well-defined characteristics, independently of solar geometry and seasonal effects. Only
valid data points were considered for error calculation. Figure 8 shows that when invalid
days or gaps have seasonal character, this can impact the results. Performance for 2016
suddenly and significantly decreased when compared to the rest while Figure 13 shows the
majority of invalid data points for this year occurred around the summer months, when
the skies are clearer and the method’s performance is best.
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Figure 13. Valid (yellow) and invalid (blue) days for each available year of data for Santiago.

For Kt and K forecasts (Figure 14), results show poor performance for overcast condi-
tions (day class ≤ 4), but for variable days onwards (day class ≥ 6 for Kt and day class ≥ 8
for K) mean performance is consistently and significantly better than persistence, except
for the clearest day class. Despite the fact that the method is clearly underperforming in a
determined set of conditions, this is comparatively rare when compared to the range of
meteorological conditions under analysis, as the day type distribution shows that only
~10% of days are category 4 or lower and mean day class forecasting skills are positive
for over 75% of days. By recalling results for 2017 on Figure 8, the forecasting skill for
Kt as 0.12 while for K was 0.08; however, Figure 14 shows mean day class forecasting
skills on very different ranges compared to the yearly value, which exceed it for ~60% of
days for Kt and K and reaching extreme values of [−0.6,0.8] and [−36,0.8], respectively.
Therefore, the proposed analysis framework shows its value by allowing a deeper look
into the forecasting performance for different atmospheric conditions.
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Figure 15 shows similar trends for GHI and Kt, with very low skill for DHI, albeit
with significant spread for each day class due to the interaction between Kt and K for
DHI forecasting. DNI presents a significant spread at lower day classes, since DNI can be
zero at overcast hours and different to zero for others, which can occur at given moments
of cloudy or variable days, and this would substantially increase RMSE. However, DNI
mean day class forecasting skill is consistently positive for day classes 8 onwards, which
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represent the vast majority of days. However, given that the proposed method’s GHI and
DHI performance improves from day classes 7 onwards (≥75% of days), the forecasting
skill for DNI also improves to values greater than the average 0.13 for the year. For tilted
irradiances results are similar, albeit the proposed method has consistent positive skill
for day classes 8 onwards (~70% of days). Due to the compounding effect of horizontally
referenced irradiance forecasting and the nonlinearity of the transposition model, two
observations can be made: the spread for a given day class can be significant, but the
overall patterns for the different tilted planes under analysis are similar. Finally, for a finer
presentation of the individual error metrics that increase the level of detail for this analysis,
the reader is referred to the Appendix A.
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5. Conclusions

In this work, a solar energy forecasting method was developed that estimates Kt and
K, the corresponding horizontally referenced irradiances on tilted, tracking surfaces. This
method is based on the premise that solar irradiance patterns can be classified according
to their static and dynamic characteristics through the metric termed quality score (QS)
and that for any given state, there is a probability distribution function to transition to
another future state. These transitions can be accurately represented by transition matrices
according to solar geometry. Since each irradiance class (or state) is defined by Kt, K and
VScd f , this representation proves to be independent of yearly and time-of-day seasonality,
while allowing for the flexibility to capture a new location’s particular dynamics once
the knowledge base is updated with fresh data for that site. Forecasting performance
was assessed for 6 years in a rolling manner, for a location on which initially no data
were available, to evaluate how performance changes as new local data is added to the
knowledge base, simulating its operational deployment. The assessment framework is
thorough, exceeding the conventional one-year assessment period of most studies and
exploring not only the one-year performance, but also on a typical day case basis.

Given the marked inertias and start/stop times of hydro/thermal generators, it is
necessary to provide system operators with forecast information such that it is operationally
feasible to consider it in the dispatch problem to improve the solution against a no-forecast
case, defining this anticipation as the forecast lead time. If this task cannot be achieved,
then regardless of the forecast’s quality, it is for all practical purposes useless because it
is disconnected from the application it should serve: to positively influence a decision.
That is why in this work the effect of the forecast lead time in the forecast performance has
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been analyzed, using 0–2 h for lead time, showing that this parameter has a significant
effect in forecasting performance, giving additional value to the results presented in this
manuscript.

The proposed method performed competitively against other methods in the literature
and consistently provided for superior performance against the reference smart persistence
due to maintaining a higher correlation with the actual data time series and by being
more resistant to an increase in NRMSE. The most challenging condition for the proposed
method relates with changes in atmospheric conditions between sunset and sunrise that
cannot be foreseen since solar data are unavailable, in which the first forecast window for
a new day can exhibit significant error as it is based on the last known atmospheric state
that differs greatly from the current. Nevertheless, once new data are available for the next
forecast window, the method is quick to adapt and even on highly variable days it can offer
superior performance compared to persistence.

A significant contribution of this study is the assessment methodology, allowing for
a better understanding of the characteristics of forecasting performance in the context
of the local characteristics of solar irradiance. Data availability has a definite effect in
the conventional one-year assessments when data were unavailable/flawed in seasons in
which the method consistently over- or under-performs the yearly mean. Additionally, for
certain day types the error would consistently be much lower or higher than persistence
and the overall yearly performance is determined by this distribution along with that of
day types during the year, which depends upon the location. Finally, this analysis allows
for identifying specific conditions where the method performed best or worst and therefore,
providing information for future work concerning where improvements can be made to
enhance its performance.
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Appendix A

This Appendix presents in a finer detail the individual error metrics for the assessed
forecast method, to supplement the results shown in Section 4.3 of the manuscript. Namely,
MBE, RMSE and MAPE are presented for each day class, along with the corresponding
distributions of Kt, K and irradiance.

Figure A1 presents MBE and RMSE for Kt and K, along with the corresponding range
of daily values, to further contextualize the characteristics of each day type. The proposed
method shows a marked bias to forecast clearer conditions for day classes under 6, which
explains the comparatively poor performance under these conditions (daily Kt < 0.3 and
K > 0.8). As expected, RMSE tends to increase for the middle day classes, due to the fact
that these are the ones that present the greatest variability.
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Figure A1. Error metrics for Kt (top row) and K (bottom row) as a function of day class. Dashed line represents yearly
performance. Cumulative distribution of day types presented in secondary axis.

Figure A2 presents a similar analysis, but for GHI, DHI, DNI and one-axis tracking
tilted irradiance, while Figure A3 presents the MAPE. GHI exhibits the same MBE and
RMSE patterns as Kt, as expected, but with a wider spread of values for each class, due
to the different Io that could occur on each day. DHI can have significant percent errors
for the more overcast day classes but otherwise is 15–35% for the remainder. As presented
in Section 4.3, DNI has the highest MAPE and RMSE error at lower day classes due to
estimation of DNI by the forecaster in instances when there is none, even if the MBE is
comparatively low. Finally, tilted irradiance exhibits a consistently low mean bias across
day classes, with RMSE under 25% in the worst conditions, with similar MAPE values,
although for the vast majority of days (and the yearly mean) it is close to 10%. Results for
tilted irradiance are presented for one-axis tracking only due to similarity to other tracking
planes, as to avoid redundancy.
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