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performance of VSC-HVDC with impedance-compensated synchronisation method connected to weak AC
grid”, here we proposed Adaptive Impedance-Conditioned Phase-Locked Loop.

Abstract: In this paper, an adaptive version of the impedance-conditioned phase-locked loop (IC-
PLL), namely the adaptive IC-PLL (AIC-PLL), is proposed. The IC-PLL has recently been proposed
to address the issue of synchronisation with a weak AC grid by supplementing the conventional
synchronous reference frame phase-locked loop (SRF-PLL) with an additional virtual impedance
term. The resulting IC-PLL aims to synchronise the converter to a remote and stronger point in
the grid, hence increasing the upper bound on the achievable power transfer achieved by the VSC
converter connected to the weak grid. However, the issue of the variable grid strength imposes
another challenge in the operation of the IC-PLL. This is because the IC-PLL requires impedance
estimation methods to estimate the value of the virtual impedance part. In AIC-PLL, the virtual
impedance part is estimated by appending another dynamic loop in the exciting IC-PLL. In this
method, an additional closed loop is involved so that the values of the virtual inductance and
resistance are internally estimated and adapted. Hence, the VSC converter becomes effectively
viable for the case of the grid strength variable, where the estimation of the grid impedance becomes
unnecessary. The results show that the converter that relies on AIC-PLL has the ability to transfer
power that is approximately equal to the theoretical maximum power while maintaining satisfactory
dynamic performance.

Keywords: phase-locked loop (PLL); vector current control; VSC-HVDC; weak grid

1. Introduction

The integration of renewable energy sources, which are usually located in remote
areas, is often realised using high voltage direct current (HVDC) based on voltage sources
converter (VSC) technology [1]. In the operation of the VSC converter, the phase angle
of the AC grid voltage at the point of common coupling is considered to be critical to
ensure correct synchronisation of the connected power converter with the grid. Through
synchronisation, only information of the fundamental component is extracted and provided
to the converters [2]. This information is typically obtained using the so-called phase-locked
loop (PLL). When the PLL is locked, the output signal of the PLL synchronises with the
input signal, where both signals oscillate at the same frequency with a particular value of
a phase shift [3]. In addition, the phase angle of the grid voltage is utilised to transform
the sinusoidally varying AC quantities into quasistationary dq-axis quantities by means
of the Park transformation. Hence, three-phase AC currents are transformed into their
corresponding active and reactive components that can then be controlled independently
using standard PI/PID regulators [4–6]. Therefore, the ability of the PLL to accurately
synchronise with the grid and estimate the phase angle of the grid voltage at the point of
common coupling directly impacts the performance of the overall closed-loop system, and,
in particular, its ability to independently control the exchange of active and reactive power

Energies 2021, 14, 6040. https://doi.org/10.3390/en14196040 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en14196040
https://doi.org/10.3390/en14196040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14196040
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14196040?type=check_update&version=1


Energies 2021, 14, 6040 2 of 24

with the AC grid at the point of common coupling. Hence, if PLL loses synchronisation
with the grid, then, as a consequence, the corresponding VSC converter will also lose
synchronisation with the AC system to which it is connected [7].

The renewable energy sources are usually integrated into grids with long transmission
lines, which leads to a large value of the Thevenin equivalent AC grid impedance, and
such a system is called a “weak grid” [8,9]. Typically, the strength of the grid is measured
by the short circuit ratio (SCR). According to [10,11], the SCR is the ratio of the short circuit
capacity to DC link rated power, and it is mathematically defined as

SCR =
Sac

Pdc
=

U2

ZgPdc
. (1)

where Sac is the short circuit capacity of the AC system at the point of common coupling
and Pdc is the rated DC power of the HVDC link. If the voltage at PCC is assumed to be
identical to the base value, and the rated power of the HVDC is used as the base power of
the AC system, Equation (1) can be further simplified as

SCR =
U2

ZgPdc
=

U2

Zg
U2

base
Zbase

=
1

Zg(p.u.)
(2)

where Ubase and Zbase are the base values of the voltage and impedance, respectively, and
Zg(p.u.) is the value of the impedance in per unit. Based on [10], the strength of the
AC system is strong if SCR > 3, 2 < SCR < 3 for a weak grid and SCR < 2 for a very
weak grid.

Weak grid connections impose challenges on the operation of the VSC-HVDC system.
The voltage at the PCC becomes more sensitive to power variations in the case of the weak
grid connections; this, in turn, will affect the stability and dynamic performance of the
system [12,13]. The high sensitivity to power variations leads to high voltage fluctuations.
Therefore, the utilised PLL needs to be sufficiently fast to lock with the variations in the
voltage. However, fast PLL, i.e., large bandwidth, leads to high frequency components
and noise to propagate through the system and causing system instability [14]. In addition,
there is a theoretical limitation for each value of SCR on the maximum power that the
VSC-HVDC system can transmit to or from the AC system [10,15]. Another challenge
emerges when the converter connected to the weak AC grid, which is the mutual coupling
in controlling the active power and voltage. The interactions between the active power
control and voltage control increase as the value of the grid impedance increases [16].
Therefore, it is essential to consider the PLL both in terms of the static (steady-state) power
transfer and the dynamic performance of the power converter.

Hence, several modifications in the PLL are suggested to deal with this problem.
In [17,18], the voltage sensorless technique was proposed. In this method, a virtual flux
concept is utilised to synchronise the converter with the grid at the point of synchronisation
without any needing for the physical sensor, where PLL uses flux instead of the voltage
to generate the angle of the point of synchronisation. However, this technique needs for
advanced estimation method for providing the information of the grid impedance. Another
approach that is suggested to deal with a weak grid problem is modifying the SRF-PLL
by attaching a damping factor term in order to suppress the oscillation that exhibits in the
voltage at PCC due to the weak grid connections [19]. It was shown that with a certain
value of the damping factor, the system stability is enhanced. However, this approach is
limited to a weak grid with a SCR > 1.83.

In [20,21], the impedance-conditioned phase-locked loop (IC-PLL) is proposed to
address the issue of synchronisation with weak AC grid by supplementing the conven-
tional synchronous reference frame phase-locked loop (SRF-PLL) with additional virtual
impedance term. As a result, increasing the upper bound on the achievable power transfer
achieved by the VSC converter connected to the weak grid [21]. However, this approach
requires for the grid impedance to be estimated accurately so that the virtual impedance
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branch compensates the high-value grid impedance. Hence, the VSC converter is synchro-
nised to the point at the infinite bus voltage, where the voltage operates in a relatively
robust manner concerning the perturbations that happen in the voltage at PCC. Refs. [22,23]
show that the value of the virtual impedance has an impact on the dynamic performance
of the system. The system provides the optimal dynamic response when the value of the
virtual impedance equal to the value of the grid impedance. The task of grid synchroni-
sation becomes particularly challenging in the cases where the grid impedance is varied,
which is the case that IC-PLL needs for adapting the value of the virtual impedance so that
the VSC converter maintains the synchronisation with the infinite bus voltage.

In the literature, the approaches that are used to estimate the value of the grid
impedance is based on the deliberate creation of a disturbance at the PCC, and the value of
impedance is calculated based on the grid response to this distortion. These disturbances
can be based on power variation in both active and reactive power at the PCC [24] and a
current spike at PCC [25]. However, the accuracy of the estimation depends on the size
of the disturbances, which may become challenging in the case of a weak grid system. In
addition, these approaches require for additional signal processing method to deal with
the influence of the nonlinear loads connected close to PCC.

Therefore, the proposed AIC-PLL has the ability to estimate the value of the grid
impedance so that the VSC converter maintains the synchronisation with the infinite bus
voltage, without any requirements for the sophisticated methods of the impedance value
estimation. Furthermore, this method does not require any source of disturbance, which
is essential in the other methods, for the estimation of the accurate value of the grid
impedance. Therefore, the VSC converter that uses AIC-PLL has the ability to transfer
power equals to maximum theoretical power with a satisfactory dynamic performance in
the case of the grid impedance variation.

The paper is organised as follows. In Section 2, we provide a general description of
the studied system. In Section 3, we explain the operation limits of the VSC-HVDC system,
where the maximum theoretical power and the maximum power that the VSC-HVDC
system can transfer are explained. Descriptions about different types of PLL, including the
proposed AIC-PLL, are provided in Section 4. A study about stability limits for an AIC-PLL-
based converter is provided in Section 5; in this section, a comparison between AIC-PLL
and IC-PLL (virtual impedance equals to grid impedance) with the theoretical maximum
power is given for a range of grid impedance. In Section 6, dynamic performance studies
for AIC-PLL- and IC-PLL-based converters are given considering various parameters.
The impact of the AIC-PLL low pass filter on the dynamic performance of the system is
described in Section 7. Finally, in Section 8, we provide the conclusion.

2. Overview of the General System Configuration

The studied system is shown in Figure 1. The overall system consists of two main
parts: the upper part, which represents the AC network (in this part, Rc and Lc represent
the converter resistance and inductance), and Rg and Lg represent the grid resistance and
inductance, respectively. The C f represents the AC capacitor connected to the filter bus.
The symbols v, u and e represent the voltage vector of the VSC converter, the filter bus and
AC source, respectively. V, U and E are their corresponding voltage magnitudes. The AC
source is considered as the voltage reference, and it is a constant-frequency stiff voltage
source. The phase angle of v, u are θv and θu, respectively. The symbols P and Q are the
active and reactive powers from the VSC to the AC system. The quantity ic is the current
vector of the phase reactor, and ig is the current vector to the AC source.
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Figure 1. Closed Loop for VSC-HVDC system.

In this system, the active power and voltage magnitude are controlled at the point
of common coupling through outer loop controller, by which the desired value of the
converter current i∗c is manipulated. The presuperscript c for any quantity refers to the
converter side for that quantity, and postsubscripts d and q refer to d and q components.

3. Operation Limits of the VSC-HVDC System

The operation limit is defined in terms of the maximum power that the VSC converter
can transfer in steady-state while maintaining the stability of the system. For a general
power system consisting of two voltage sources given by U and E, interconnected via
impedance Zg = Rg + jXg, as shown in Figure 2, there is a theoretical maximum power that
is considered the theoretical operation limit that cannot be exceeded [26]. This theoretical
maximum power is given by

Pmax(p.u.) =
U · E
|Zg|

±U2 Rg

|Zg|2
, (3)

where all the values of the voltages and the AC circuit parameters are in per-unit quantities,
and the sign ’+’ is for the inverter operation and ’-’ is for the rectifier operation.

However, the VSC-HVDC system may not be able to transfer power equals to the
theoretical maximum power Pmax, which is due to the presence of the feedback element,
where the dynamic of this element may affect on the stability of the system. Therefore, in
the case of the VSC-HVDC system shown in Figure 1, Pmax represents the maximum power
that is transferred between the voltage u at PCC and the voltage e at the infinite bus and
Pmax ≤ Pmax.
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Figure 2. Simplified AC circuit model.

4. Grid Synchronisation Techniques for Converter Connected to Weak Grid

In the following subsections, two types of grid synchronisation methods are presented.
The first one is IC-PLL, which is presented in general. The second one is the proposed
AIC-PLL, where this method is described in detail.

4.1. Impedance-Conditioned PLL (IC-PLL)

In this section, an impedance-conditioned PLL (IC-PLL)-based system is considered.
In this technique, the converter is not synchronised to the voltage at the point of common
coupling (PCC); it is instead synchronised to the virtual remote point in the stiff grid.
Hence, this provides better synchronisation (as a result, better stability), as the converter is
synchronised to a virtual point near to the infinite bus so that the PLL receives a signal with
less fluctuation than the signal that is received by PLL in the case of synchronising to the
weak grid point [21]. The location of the virtual point depends on the value of the virtual
impedance. When this value increases, the virtual point shifts from PCC to infinite bus.

The IC-PLL consists of SRF-PLL, which is the upper part in Figure 3, and the virtual
impedance as indicated in the lower part in the figure. In the IC-PLL, the dq components of
the voltage at the virtual point is obtained by subtracting the dq components of the voltage
u at PCC from the voltage drop across the virtual impedance. The virtual impedance can
be defined as

Zv
g = Rv

g + jωPLLLv
g,

and the virtual voltage, which is indicated in Figure 3 by its dq components uv
d uv

q , can be
defined as

uv
d = cud − cigdRv

g + ωPLLLv
g

cigq,

uv
q = cuq − cigqRv

g −ωPLLLv
g

cigd.
(4)

where the additional inputs to the PLL is the grid side current ig in the dq frame [20],
The mathematical model of the IC-PLL is defined as

dθPLL
dt

= ωbKpPLLtan−1
uv

q f

uv
d f

+ ωbKiPLLγPLL, (5)

where γPLL =
∫ t

0 tan−1 uv
q f

uv
d f

dτ,

θPLL is the phase angle deviation between the PLL orientation and the grid voltage.
The mathematical model of the low pass filter of the IC-PLL is defined as in Equation (6).

duv
d f

dt
= −ωFLPLLuv

d f + ωFLPLLuv
d,

duv
q f

dt
= −ωFLPLLuv

q f + ωFLPLLuv
q .

(6)
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where ωFL,PLL is the angular frequency of the PLL low pass filter.
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Figure 3. Block diagram of the impedance-conditioned PLL.

4.2. Adaptive Impedance-Conditioned PLL (AIC-PLL)

The exiting IC-PLL is modified so that another closed loop is included in order to
adapt the value of the virtual resistance and inductance of the virtual impedance part. As
it is shown in Figure 4, the value of θPLL is fed into two compensators HL(s) and HR(s), in
order to generate the virtual inductance and resistance values L̂v and R̂v, respectively. To
understand how the AIC-PLL functions in terms of the phase angles of the voltages, the
block diagram in Figure 4 is simplified to be represented as in Figure 5.
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Figure 4. Schematic diagram of the AIC-PLL system.
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Figure 5. Simplified model of the AIC-PLL.

In Figure 5, two feedback closed loops simplify the AIC-PLL in Figure 4, where:
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• The inner loop represents the linearised version of the conventional SRF-PLL, in which
the transfer function HPLL(s) ' HFL,PLL(s) · HC(s), where HFL,PLL(s) and HC(s) are
the transfer functions of the PLL low pass filter and PLL compensator, respectively,

providing that the angle arctan(
uv

q f
uv

d f
) ' 0.

• The outer loop depicts the virtual impedance part, where L̂v = θPLL · HL(s) and
R̂v = θPLL · HR(s).

• The value of θuv is the phase angle of the virtual voltage, which is the voltage across
the virtual impedance.

In the outer loop, the value of the θuv −→ θu through manipulating the values of
L̂v and R̂v where L̂v −→ Lg, R̂v −→ Rg. The angle (θu − θuv) is the phase angle of the
voltage at the point of synchronisation, which is (θu − θuv = 0) when the converter is
synchronised to the infinite bus voltage. By the inner loop, which represents the traditional
SRF-PLL, the estimated angle value θPLL converges to the point of synchronisation angle,
where θPLL −→ (θu − θuv). As a result of this and in the steady-state, the VSC converter
is synchronised to the infinite bus voltage, where θuv = θu and θPLL = 0. In order to
demonstrate how the voltages and currents are manipulated in the AIC-PLL, the vector
diagram is plotted in Figure 6.
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✓uv
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u
v
d

u
v
q

E

Ig

RgIg

j!LgIg

j!L̂vIg

R̂vIg

U

U
v

✓PLL

↵

�

!ct

Figure 6. Vector diagram of the AIC-PLL.

In Figure 6, the symbol Uv is the magnitude of the voltage uv across the virtual
impedance with its phase angle θuv, and this angle is measured with respect to the voltage
u at PCC. The voltage uv is aligned with the voltage u when the value of the virtual
impedance is equal to zero (R̂v = 0, L̂v = 0). In this case, the value of the angle θuv = 0, i.e.,
the converter is synchronised to the voltage at PCC. Hence, the value of θPLL = θu which
is fed into compensators HL(s) and HR(s) to generate L̂v and R̂v, respectively. As these
values increase the voltage uv shifts away from voltage u toward voltage E (as shown in
Figure 6), and as result of this, θuv → θu and θPLL → 0.

The modelling of the VSC-HVDC system utilises AIC-PLL is the same as that one
utilises IC-PLL with considering the following model of the AIC-PLL

uv
d = cud − cigdR̂v + ωPLL L̂v

cigq, (7)

uv
q = cuq − cigqR̂v −ωPLL L̂v

cigd, (8)

where
L̂v = ±(HL(s) · θPLL),
R̂v = ±(HR(s) · θPLL).
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HL(s) =
KLvi

s + KLvp, HR(s) =
KRvi

s + KRvp.
where the sign (+) is for the inverter operation and (-) is for the rectifier operation. The
reason for that is the voltage u at the PCC leads the voltage E at the infinite bus in the
case of the inverter operation, i.e. the phase angle θPLL is positive, while in the case of the
rectifier operation, the voltage u lags the voltage E, which results in the phase angle θPLL
to be negative.

5. Stability Limits of AIC-PLL-Based VSC Converter

In order to study the stability of the system for various types of PLLs, the operating
points of the system are obtained first. The operating points are calculated by solving
f(x0, u0) = 0 for x0 numerically, where the f(x, u) is the set of the nonlinear Equation (A16)
that are provided in the Appendix B. The maximum theoretical power that is calculated
by Equation (3) for a certain value of the grid impedance is approximately equal to the
maximum power by which the nonlinear equations return a real solution. However, the
system may not be able to operate according to the calculated operating points, i.e., these
operating points are unstable. The operating points x0 are considered stable if all the
eigenvalues of the matrix A, which is provided in the Appendix C, has negative real parts,
where this method is referred as the first method of Lyapunov [27].

The results of the small signal stability analysis for different types of PLLs are shown
in Figure 7, where U∗ = 1 p.u. for Zg = [0.1, 2] p.u. and ωFL,PLL = 400 rad/s.

Figure 7. Steady-state power transfer stability limits of VSC-HVDC system for different types of PLL.

Figure 7 shows the maximum transferred power in per unit for two VSC converters
utilising two types of PLLs, IC-PLL with Zv

g = Zg and AIC-PLL, for a range of values of
grid impedance Zg and for the inverter and rectifier operations. It can be observed that the
values of the maximum active power at which the system maintains stable for both types of
the IC-PLL- and AIC-PLL-based converters are equal, and they are approximately equal to
the theoretical maximum power. Therefore, the converter that utilises AIC-PLL is capable
of reaching the maximum theoretical power transfer in the same way that the IC-PLL does,
in spite the fact that the AIC-PLL does not require any information about the value of
the grid impedance. Moreover, it can be concluded from this result that the AIC-PLL is
able to imitate the IC-PLL with Zv

g = Zg in terms of the power transfer capability, as the
converter that utilises AIC-PLL is also synchronised to the infinite bus voltage E. Therefore,
the AIC-PLL possibly replaces the IC-PLL in the case that the maximum power transfer
is demanded, and the estimation of the value of the grid impedance is challenging, in
particular, the grid strength changes.

6. Dynamic Performance Study for AIC-PLL-Based VSC Converter

In this section, the dynamic performance of the AIC-PLL-based converter is inves-
tigated for different points in the grid strength. The performance of the AIC-PLL-based
system is studied by examining the dynamic response of the system to the changing in
the value of the grid impedance and the value of the active power. For each point of
the grid impedance, an experiment is conducted, and two step changes are applied. The
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first step is on the grid impedance, and this is to simulate the variation that may occur
in the grid impedance value in the real system, and how the AIC-PLL has the ability to
recover the changing in this value. The second step change is for the active power, and
this is to examine the effectiveness of the AIC-PLL-based converter in terms of dealing
with variation in active power. In order to demonstrate the effectiveness of the proposed
method, the time-domain response of the active power for the AIC-PLL-based converter is
compared with two cases of the IC-PLL-based converters. The first one is the IC-PLL with
a constant value of the virtual impedance, i.e., the value of Zv

g does not change according
to the changing in the grid impedance. The second case is when the value of the Zv

g is
changing according to the changing in the grid impedance; hence, the relation Zv

g = Zg is
maintained during the operation of the system.

The first experiment is when the value of the grid impedance changes from Zg = 1→ 1.1
p.u. in the inverter operation; then, another step change in active power is applied which is
P∗ = 0.9→ 1 p.u. Figures 8–10 show the responses of active power and θPLL, respectively.

Figure 8. Time-domain response of the active power for different types of PLLs for step change in
Zg = 1→ 1.1 p.u. and for ωFL,PLL = 400 rad/s (inverter operation).

Figure 8 shows the result of the time-domain response of the active power for different
converters utilise different types of PLLs. It is clear from the figure the converter that
utilises the IC-PLL with Zv

g = Zg has the optimal response as it shows less oscillation than
the other two approaches with less settling time. However, for the system that relays on
the IC-PLL without updating the value of the virtual impedance (IC-PLL Zv

g0 = 1 p.u.),
the result shows that the time-domain response exhibits the highest oscillatory response.
In the case that the system uses the proposed method AIC-PLL, the result shows that the
time-domain response of the active power suffers far less oscillation than the IC-PLL with
Zv

g = 1 p.u., and it has slightly more oscillation amplitude than the case of IC-PLL with
Zv

g = Zg. Therefore, from this result, it can be concluded that the proposed AIC-PLL has
the ability to recover the changing that occurs in the grid impedance.

Figure 9 shows the time-domain response of the active power for the applied step
change in the active power for the VSC converters with different types of PLLs for the same
above experiment at a different time where the value of the grid impedance Zg = 1.1 p.u.
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Figure 9. Time-domain response of the active power for different types of PLLs for step change in
active power and for ωFL,PLL = 400 rad/s, Zg = 1.1 p.u. (inverter operation).

It can be seen from Figure 9 that the dynamic response for the case of IC-PLL with
(Zv

g = 1) exhibits higher overshoot than the other two cases. However, for the case of the
converter that utilises AIC-PLL, the results in Figure 9 show that the response exhibits
relatively higher oscillation amplitude than the other two cases. It can be concluded from
the results in Figures 8 and 9 that the proposed AIC-PLL has the ability to deliver the
maximum power with satisfactory dynamic performance.

Figure 10 shows the response of the phase angle θPLL that is generated by different
types of PLLs. In this figure, two y-axes for the phase angle θPLL are included; the left
y-axis is for the IC-PLL (Zv

g = 1 p.u.), as it generates a larger phase angle scale than the
other two cases. For the other two cases of the PLLs, the right y-axis is devoted. It is clear
from the figure that the time-domain response that is generated by IC-PLL (Zv

g = 1 p.u.)
exhibits higher oscillatory with higher settling time than the other two cases. In addition,
the value of θPLL in the case of IC-PLL (Zv

g = 1 p.u.) does not converge to zero. However,
the result shows that the response of the θPLL for the IC-PLL with (Zv

g = Zg) has more
oscillatory than the case of AIC-PLL. This is because in the second case, another closed loop
is involved in the AIC-PLL (Figure 4) where the θPLL is considered as the control signal in
this loop, and this is not the case for IC-PLL.

Figure 10. Time-domain response of the θPLL for different types of PLLs for step change in Zg = 1→
1.1 p.u. and for ωFL,PLL = 400 rad/s (inverter operation).

The experiment is reconducted for the different step change where the value of the
grid impedance change is Zg = 1.7→ 2 p.u., and the results are provided in Figures 11–13.
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Figure 11. Time-domain response of the active power for different types of PLLs for step change in
Zg = 1.7→ 2 p.u. and for ωFL,PLL = 400 rad/s (inverter operation).

Figure 12. Time-domain response of the active power for different types of PLLs for step change in
active power and for ωFL,PLL = 400 rad/s, Zg = 2 p.u. (inverter operation).

Figure 13. Time-domain response of the θPLL for different types of PLLs for step change in
Zg = 1.7→ 2 p.u. and for ωFL,PLL = 400 rad/s (inverter operation).

Figures 11 and 12 show the response of the active power for the step change in the
grid impedance (Zg = 1.7→ 2 p.u.), and the step change in the value of the active power,
respectively. It can be observed that the responses of the active power for the cases of
IC-PLL with (Zv

g = Zg) and the AIC-PLL have far better responses than the case of IC-PLL
with (Zv

g = 1.7 p.u.), as the first two cases provide lower oscillatory and settling time than
the second case. Figures 11 and 12 also show that the response of the active power in the
case of AIC-PLL is slightly better than the case of IC-PLL with (Zv

g = Zg), as the former
case provides less oscillatory and settling time than the latter case. Therefore, it can be
concluded that in the case of the weak grid, the converter that utilises AIC-PLL has the
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ability to replace the ideal IC-PLL in the case of the grid variation where the estimation of
the grid is complicated. Figure 13 is the time domain response for the produced angle of
the three types of PLL.

From the result in Figure 13, it can be concluded that the response of the phase angles
for different types of PLLs have the same indication as for the result in Figure 10. In
addition, By comparing Figures 10 and 13, it is clear that the dynamic response of the angle
in the case of IC-PLL with (Zv

g = Zg) has a higher oscillatory amplitude in the case of the
second experiment than the first experiment. It reaches 2 degrees for the second experiment
while it reaches about 0.5 degree in the first case, which is due to the larger value of the
grid impedance in the second case. The dynamic response of the angle θPLL has an impact
on the dynamic response of the active power, and the larger the value of the angle, the
higher impact on the response of the active power. As a result of this, the response of the
active power in the case of the AIC-PLL is relatively better than the case of the IC-PLL
(Zv

g = Zg) for the larger value of the grid impedance, which is evident in Figures 11 and 12.
For further validation and reliability of the proposed AIC-PLL, experiments for dif-

ferent values of operating points and different values of the changing in the value of the
grid impedance are conducted and the values of the sum of square of error (SSE) for the
active power tracking are calculated. Two different operating points are chosen, 50% and
100% of the maximum transferred power of different values of the grid impedance. A step
change in the active power is applied which is 1% of the selected operating point. Other
experiments are also conducted, where the value of the active power is the maximum and
the step change in the grid impedance is applied. Different step change percentages are
applied and they depend on the value of the grid impedance, the larger the value of the
grid impedance the smaller the value of the step change. The results of this experiment are
presented in Figures 14, 16 and 18 for the inverter operation and Figures 15, 17 and 19 for
the rectifier operation.

In Figures 14–17, bar charts represent the values of the SSE. A line graph represents
the relative errors between the value of SSE of IC-PLL and SSE of AIC-PLL. It is clear from
the results that both methods are approximate equals in terms of the dynamic responses,
which indicates by the inconsiderable value of the relative error. In the case of the inverter
operation, it can be concluded from the results in Figures 14 and 16 that the dynamic
response of the IC-PLL-based converter is better than the AIC-PLL-based one for the strong
grid. This difference in the dynamic response is reduced as the value of the grid impedance
increases to become positive for the value of the Zg ≥ 1.8 p.u. However, in the case of the
rectifier operation, the results in Figures 15 and 17 show that the converter that relies on the
AIC-PLL provides a better dynamic response than the case of the IC-PLL-based converter
for the whole range of the grid impedance. This is indicated by the value of the relative
error, which is positive.

Figure 14. SSE for the active power tracking for the IC-PLL- and AIC-PLL-based system for half
value of the maximum power (inverter operation).
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Figure 15. SSE for the active power tracking for the IC-PLL- and AIC-PLL-based system for half
value of the maximum power (rectifier operation).

Figure 16. SSE for the active power tracking for the IC-PLL- and AIC-PLL-based system for the
maximum power (inverter operation).

Figure 17. SSE for the active power tracking for the IC-PLL- and AIC-PLL-based system for the
maximum power (rectifier operation).

Figures 18 and 19 represent the results of the value of SSE for both types of PLLs-based
converters when the value of the grid impedance is changing for the inverter and rectifier op-
erations,respectively. Thevaluesofthesechangesare ∆Zg = [0.5 0.5 0.3 0.3 0.3 0.3 0.25 0.25 0.2 0.2]·Zg,
where Zg = [0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2] p.u. The value of the relative errors are also
presented as a line graph in order to show the difference between the SSE values of the
IC-PLL and AIC-PLL for the range of the grid impedance.
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Figure 18. SSE for the active power tracking for the IC-PLL- and AIC-PLL-based system for different
change in the values of the grid impedance (inverter operation).

Figure 19. SSE for the active power tracking for the IC-PLL- and AIC-PLL-based system for different
change in the values of the grid impedance (rectifier operation).

In the case of the inverter operation, Figure 18 shows that the values of SSE for the
IC-PLL-based converter is less than the value of SSE for the case of the AIC-PLL-based
converter for Zg ≤ 1.6 p.u., which is indicated by the value of the error. The results also
show that the error is positive for Zg ≥ 1.8 p.u., which indicates that the proposed method
has the ability to provide better dynamic performance as the value of the grid impedance
increases. In the case of the rectifier operation, Figure 19 shows that the converter that
utilises AIC-PLL has the ability to provide better dynamic performance than the case of the
system that uses IC-PLL for the whole range of the grid impedance. This is clear from the
relative error line graph, which is positive for the whole range of the grid impedance value.

7. The Impact of Changing the Value of PLL Bandwidth on the AIC-PLL
Dynamic Performance

In this section, the effect of changing the value of the PLL bandwidth ωFL,PLL, which is
related to the PLL compensator bandwidth, on the dynamic performance of the converter
is considered. The compensator bandwidth is 55% of the bandwidth of the PLL low pass
filter [21]. Therefore, when the value of the ωFL,PLL changes, the controller parameters
change accordingly. In order to understand how the impact of changing the value of
ωFL,PLL on the dynamic performance of the system, the root locus of the closed-loop
system’s poles in the s-domain is examined by sweeping the ωFL,PLL = 50→ 2000 rad/s,
and the results are plotted in Figure 20. The participation matrix are then calculated, and
the states that have the highest participation factors to the plotted eigenvalues are revealed.
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Figure 20. Loci of the closed-loop system poles for the range of ωFL,PLL = 50→ 2000 rad/s.

In Figure 20, the only eigenvalues λ1,20,6 are included, since they have the highest
rates of change in their positions than other eigenvalues. From the participation matrix
(the participation matrix are provided in Appendix D), these eigenvalues have the highest
participation factors to the states that are related to the PLL. These states are the phase
angle θPLL, the augmented state of the PLL’s PI controller γpll and the virtual voltage uv

d,q.
It is clear from the result that all the positions of the eigenvalues are shifted towards the left
as the value of the PLL bandwidth increases. This indicates that for the case of the AIC-PLL
the value of the PLL bandwidth does not have an impact on the stability and the dynamic
performance of the system. This is because the value of θPLL is minimal, which is due to
the including of the estimation closed-loop. Therefore, this will not have an obvious impact
on the dynamic performance of the active power. In order to understand this effect, the
time-domain responses of the active power and the phase angle θPLL for different values of
ωFL,PLL = 100, 2000 rad/s are plotted in Figures 21 and 22,

Figure 21. Time domain response of the active power for AIC-PLL for step change in Zg = 1.7 →
2 p.u. and for different values of the ωFL,PLL.

Figure 22. Time domain response of the θPLL for AIC-PLL for step change in Zg = 1.7→ 2 p.u. and
for different values of the ωFL,PLL.
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It is clear from Figure 21 that the dynamic response of the active power for the
converter that utilises AIC-PLL with different values of ωFL,PLL are approximately identical,
which indicates the fact that changing the value of PLL bandwidth does not have any
impact on the response of the active power. Figure 22 shows the time-domain response
of the phase angle θPLL for different value of ωFL,PLL, and it is clear that as the value of
the bandwidth increases the θPLL has a better response in terms of the oscillatory and the
settling time. This is due to the increase in the value of the PI compensator parameters,
which in turn, increases the speed of the PI controller. In addition, the result in Figure 22
shows that the range of the variation is inconsiderable to have an impact on the response
of the active power.

8. Conclusions

In this paper, an adaptive impedance-conditioned phase-locked loop (AIC-PLL) is
proposed. In the AIC-PLL, another dynamic closed loop is included, in which the generated
phase angle is utilised to generate the estimated values of the grid resistance and inductance.
By this technique, the need for the estimation method in order to estimate the value
of the grid impedance becomes redundant, which is important in the case of the grid
impedance variable. The nonlinear mathematical model of the system is developed and
the model is linearised in order to be used in the analytical study. The steady-state power
transfer capability and the dynamic performance of the AIC-PLL-based converter are also
considered in this paper. The results show that the converter that relies on AIC-PLL is
capable of transferring an amount of power that is approximately equal to the theoretical
maximum power. In terms of the dynamic performance, the results demonstrate that the
AIC-PLL-based VSC converter provides a satisfactory dynamic response for different values
of the grid impedance. Therefore, the AIC-PLL has the ability to replace the traditional
IC-PLL in the case of grid variation.
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Appendix A. The Electrical and Control Parameters of the Studied System

This appendix gives the technical data of the studied VSC-HVDC system,

Appendix A.1. The Electrical System Parameters

Parameter Value

Rated power 1200 MVA
Rated voltage U 220 kV
Grid frequency 50 Hz

Converter inductance Lc 0.08 p.u.
Converter resistance Rc 0.003 p.u.

Filter capacitance c f 0.074 p.u.
Gird voltage E 1 p.u.

Grid impedance angle 80◦
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Appendix A.2. The Control System and PLL Parameters

Parameter Value

Power controller gains KPp, KPi 1, 50
Voltage controller gains KUp, KUi 0.1, 5

Current controller gains kpd = kpq, kid = kiq 1.27, 14.25
Power measurement filter ωP 200 rad/s

AC voltage filter ωU 10 rad/s
The active damping gain KAD 10

The active damping cutoff frequency ωAD 200 rad/s
Rated angular frequency ωb 2π × 50 Hz

Appendix B. Nonlinear Mathematical Model of the Over All System

The overall system represented in Figure 1 can be redemonstrated in terms of a block
diagram shown in Figure A1. The mathematical model of each block is provided below,
and the overall nonlinear mathematical model is finally obtained.

Main Circuit State Space 
Model Inner loop Controller
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Figure A1. Block diagram for the nonlinear mathematical model.

The mathematical model of the main circuit model is

˙̄x = f̄(x̄, ū), ȳ = h̄(x̄) (A1)

where,

f̄(x̄, ū) =




1
Lc

e
V∗d − 1

Lc

e
ud − Rc

Lc

e
icd + ωeicq

1
Lc

e
V∗q − 1

Lc

e
uq − Rc

Lc

e
icq −ωeicd

1
C f

e
icd − 1

C f

e
igd + ωeuq

1
C f

e
icq − 1

C f

e
igq −ωeud

1
Lg

e
ud − 1

Lg
E− Rg

Lg

e
igd + ωeigq

1
Lg

e
uq − Rg

Lg

e
igq −ωeigd




,

h̄(x̄) =
[
P U

]T
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and,

P = eud
eigd +

euq
eigq, U =

√
eu2

d +
eu2

q,

x̄ = [eicd
eicq

eud
euq

eigd
eigq].

Appendix B.1. Outer Loop Controller

The function of the outer loop is to control the active and reactive/ voltage magnitude
at PCC by manipulating the value of the dq components of the converter current ic, where
in this paper the case of controlling voltage magnitude is chosen. As it is shown in Figure 1,
the reference input signals of this controller are the reference active power P∗ and reference
voltage magnitude U∗, and they are fed with the feedback of the active power Pm and
voltage magnitude Um into two PI controllers. These controllers produce two current
reference signals ci∗cd for the active power and ci∗cq for the voltage magnitude, to be fed into
the inner loop controller. Low pass filters are also applied to the signals of the power and
the voltage flow of the feedback. The following set of mathematical equations represent
the model of the outer loop controller [21]; The PI controller of the active power is

ci∗cd = KPp(P∗ − Pm) + KPi · γP (A2)

and,

γP =
∫ t

0
(P∗ − Pm)dτ. (A3)

The model of the low pass filter that is applied to the feedback signal of the active
power is

Pm =
∫ t

0
(ωP · P−ωP · Pm)dτ. (A4)

The PI controller of the voltage amplitude is

ci∗cq = −KUp(U∗ −Um)− KUi · γU (A5)

and

γU =
∫ t

0
(U∗ −Um)dτ. (A6)

The model of the low pass filter that is applied to the feedback signal of the voltage
amplitude is

Um =
∫ t

0
(ωU ·U −ωU ·Um)dτ. (A7)

The produced ci∗dq are the control input signals represent the set-points for the inner
loop controller which is explained in the next subsection.

Appendix B.2. Inner-Loop Controller

The function of the inner loop is to control the value of the converter’s currents by
manipulating the values of the converter voltages cV∗d,q, which are fed into the switching
device, as it is shown in Figure 1. The inner loop controller consists of two PI controllers and
the cross-coupling terms ω · Lc. The function of the cross-coupling terms is to control the
d, q components of the converter current cic independently. An active damping algorithm is



Energies 2021, 14, 6040 19 of 24

also included in the inner loop controller in order to attenuate the oscillation in the voltage
at PCC [28]. The following set of the mathematical equations represent the model of the
inner loop controller [20,28];

The mathematical model of the reference converter voltage Vd is

cV∗d = cud −ω · Lc · cicq + kpd(
ci∗cd − cicd)+

kid · γd − vAD,d,
(A8)

where

γd =
∫ t

0
(ci∗cd − cicd)dτ. (A9)

The mathematical model of the active damping part can be defined as

vAD,d = KAD(
cud − φd), (A10)

where

φd =
∫ t

0
(ωAD · cud −ωAD · φd)dτ. (A11)

The mathematical model of the reference converter voltage Vq is

cV∗q = cuq + ω · Lc · cicd + kpq(
ci∗cq − cicq)+

kiq · γq − vAD,q,
(A12)

where

γq =
∫ t

0
(ci∗cq − cicq)dτ. (A13)

The mathematical model of the active damping part can be defined as

VAD,q = KAD(
cuq − φq), (A14)

where

φq =
∫ t

0
(ωAD · cuq −ωAD · φq)dτ. (A15)

The Park and inverse Park Transformation can be modelled as a rotation matrices
as bellow

e M−1
c = c Me =

[
cos θPLL sin θPLL
− sin θPLL cos θPLL

]
.

Finally, the nonlinear state space model for the overall system can be defined as

ẋ = f(x, u), y = h(x) (A16)
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where

f(x, u) =




f̄(x̄, ū)
ci∗cd − cicd
ci∗cq − cicq

ωb(KpPLLtan−1 uv
q f

uv
d f
+ KiPLLγPLL)

tan−1 uv
q f

uv
d f

−ωFLPLLuv
d f + ωFLPLLuv

d
−ωFLPLLuv

q f + ωFLPLLuv
q

P∗ − Pm
U∗ −Um

ωAD · cud −ωAD · φd
ωAD · cuq −ωAD · φq

ωP · P−ωP · Pm
ωU ·U −ωU ·Um




,

h(x) =
[
P U

]T .

For the case of AIC-PLL, two more terms are included in f(x, u) which are f19,1(x, u) =
KRviθPLL and f20,1(x, u) = KLviθPLL.

Therefore, the state variables of the overall system is

x = [eicd
eicq

eud
euq

eigd
eigq γd γq θPLL

γPLL uv
d f uv

q f γP γU φd φq Pm Um]

For the case of utilising AIC-PLL, x19 = γvd and x20 = γvq, where

γvd =
∫ t

0
(KRviθPLL)dτ,

γvq =
∫ t

0
(KLviθPLL)dτ.

Appendix C. Developing the Small Signal State Space Model

The small signal state space mathematical model of the overall system is developed
by finding the Jacobian matrix J of the function f(x, u), where A = Jx=x0,. The Jacobian
matrix can be defined as

J = [ ∂f
∂x1

. . . ∂f
∂xn

]. (A17)

where n = 18 for the case of the IC-PLL and n = 20 for the case of the AIC-PLL. The small
signal state space model can be given as

∆ẋ = A · ∆x + B · ∆u,

∆y = C · ∆x + D · ∆u.

where

B =

[
1
Lc

kpdKPp cos θPLL0
1
Lc

kpdKPp sin θPLL0 0 0 0 0 KPp 0 0 0 0 0 1 0 0 0 0 0
1
Lc

kpqKUp sin θPLL0 − 1
Lc

kpqKUp cos θPLL0 0 0 0 0 0 −KUp 0 0 0 0 0 1 0 0 0 0

]T

,

C =

[
0 0 igd0 igq0 ud0 uq0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ud0

U0

uq0
U0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

D = D̃.
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A =




a1,1 a1,2 −KAD
Lc

0 0 0 α5−α6 a1,9 0 0 0
kpdKPiα5

kid

kpqKUiα6
Kiq

KADα5
kid

(−KADα6
kiq

) (− kpdKPpα5
kid

) (− kpqKUpα6
kiq

)

a2,1 a2,2 0 −KAD
Lc

0 0 α6 α5 a2,9 0 0 0
kpdKPiα6

kiq
(− kpqKUiα5

kid
) KADα6

kiq

KADα5
kid

(− kpdKPpα6
kiq

) (
kpqKUpα5

kid
)

1
C f

0 0 ω − 1
C f

0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
C f

−ω 0 0 − 1
C f

0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
Lg

0 − Rg
Lg

ω 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
Lg

−ω − Rg
Lg

0 0 0 0 0 0 0 0 0 0 0 0
−α10 −α9 0 0 0 0 0 0 a7,9 0 0 0 KPi 0 0 0 0 0

α9 −α10 0 0 0 0 0 0 a8,9 0 0 0 0 −KUi 0 0 0 0
0 0 0 0 0 0 0 0 0 ωbKiPLL −α14 α15 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 − α14

ωbKpPLL

α15
ωbKpPLL

0 0 0 0 0 0
0 0 ωFLPLLα10 ωFLPLLα9 α18 α19 0 0 α16 0 −ωFLPLL 0 0 0 0 0 0 0
0 0 −ωFLPLLα9 ωFLPLLα10 −α19 α18 0 0 α17 0 0 −ωFLPLL 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 ωADα10 ωADα9 0 0 0 0 α12 0 0 0 0 0 −ωAD 0 0 0
0 0 −ωADα9 ωADα10 0 0 0 0 α13 0 0 0 0 0 0 −ωAD 0 0
0 0 ωP

eigd0 ωP
eigq0 ωP

eud0 ωP
euq0 0 0 0 0 0 0 0 0 0 0 −ωP 0

0 0 ωU
eud0√

eud0
2+euq0

2

ωU
euq0√

eud0
2+euq0

2
0 0 0 0 0 0 0 0 0 0 0 0 0 −ωU




,

and
a1,1 = α1 cos θPLL0 − α2 sin θPLL0 − Rc

Lc
,

a1,2 = α3 cos θPLL0 − α4 sin θPLL0 + ω,
a2,1 = α1 sin θPLL0 + α2 cos θPLL0 − ω,
a2,2 = α3 sin θPLL0 + α4 cos θPLL0 − Rc

Lc
,

a7,9 = eicd0 sin θPLL0 − eicq0 cos θPLL0,
a8,9 = eicq0 sin θPLL0 + eicd0 cos θPLL0,
α1 = ω sin θPLL0 − 1

Lc
kpd cos θPLL0,

α2 = ω cos θPLL0 + 1
Lc

kpq sin θPLL0,
α3 = −ω cos θPLL0 − 1

Lc
kpd sin θPLL0,

α4 = ω sin θPLL0 − 1
Lc

kpq cos θPLL0,
α5 = kid

1
Lc

cos θPLL0,
α6 = kiq

1
Lc

sin θPLL0,
a1,9 = 1

Lc
(cos θPLL0(∂

cV∗d /∂θ |x=x0) − (cV∗d |x=x0) sin θPLL0 − sin θPLL0(∂
cV∗q /∂θ |x=x0)

− (cV∗q |x=x0) cos θPLL0),
a2,9 = 1

Lc
(sin θPLL0(∂

cV∗d /∂θ |x=x0) + (cV∗d |x=x0) cos θPLL0 + cos θPLL0(∂
cV∗q /∂θ |x=x0)

− (cV∗q |x=x0) sin θPLL0),
α9 = sin θPLL0,
α10 = cos θPLL0,
α12 = ωAD(−eud0 sin θPLL0 + euq0 cos θPLL0),
α13 = ωAD(−euq0 sin θPLL0 − eud0 cos θPLL0),

α14 = KpPLLωb
uv

q f 0

uv2
d f 0(

uv2
q f 0

uv2
d f 0

+1)
,

α15 = KpPLLωb
1

uv
d f 0(

uv2
q f 0

uv2
d f 0

+1)
,

α16 = ωFLPLL(
cuq0 − Rv

g
cigq0 − ωPLL0Lv

g
cigd0),

α17 = ωFLPLL(−cud0 + Rv
g

cigd0 − ωPLL0Lv
g

cigq0),
α18 = ωFLPLL(−Rv

g cos θPLL0 − ωPLL0Lv
g sin θPLL0),

α19 = ωFLPLL(−Rv
g sin θPLL0 + ωPLL0Lv

g cos θPLL0).

For the case of the AIC-PLL, the matrices of the state space model are given as the
same as for the case of IC-PLL with considering the following:
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AAIC−PLL =


A

010×2
−ωFLPLL

cigd0 ωPLL0ωFLPLL
cigq0

−ωFLPLL
cigq0 −ωPLL0ωFLPLL

cigd0
06×2

02×8
KRvi
KLvi

02×11




α18 = ωFLPLL(−R̂v0 cos θPLL0 − ωPLL0 L̂v0 sin θPLL0),

α19 = ωFLPLL(−R̂v0 sin θPLL0 + ωPLL0 L̂v0 cos θPLL0),

α16 = ωFLPLL(
cuq0 − R̂v0

cigq0 − KRvp
cigd0+

ωPLL0(KLvp
cigq0 − L̂v0

cigd0)),

α17 = ωFLPLL(−cud0 + R̂v0
cigd0 − KRvp

cigq0+

ωPLL0(KLvp
cigd0 + L̂v0

cigq0)).

In addition, the C and D matrices, adding other 02×2 to the ends of the two matrices.

Appendix D. Participation Matrix for the AIC-PLL-Based System, ωFL,PLL = 400 rad/s
and Zg = 2 p.u.

The contribution of each eigenvalue on each state of the closed loop system can be
demonstrated by calculating the participation matrix, which can be given by [15]

P = [p1p2 . . . pn], (A18)

with

pi =




p1i
p2i
...

pni


 =




φ1iψi1
φ2iψi2

...
φniψin


 (A19)

and

Φ =
[
φ1 φ2 . . . φn

]
, (A20)

Ψ =
[
ψ1 ψ2 . . . ψn

]
(A21)

where φi 3 Rn×1 and ψi 3 Rn×1 are the right and left eigenvector for the matrix A. The
element pki = φkiψik is called the participation factor; it shows how the kth state variable is
related to the ith eigenvalue, and vice versa. The participation matrix for the overall closed
loop systems that use AIC-PLL are provided in Table A1.
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Table A1. Participation matrix for the AIC-PLL.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13 λ14 λ15 λ16 λ17 λ18 λ19 λ20

eicd 0 0.0005 0.0001 0 0.5424 0 0.0003 0 0 0 0 0 0 0 0 0.5424 0 0.0001 0.0005 0
eicq 0 0.0002 0.0003 0 0.5424 0 0.0002 0.0001 0 0 0 0 0 0 0 0.5424 0 0.0003 0.0002 0
eud 0.0002 0.3029 0.1971 0.0003 0.0006 0 0.027 0.0078 0 0 0.0001 0.0009 0 0 0 0.0006 0.0003 0.1971 0.3029 0.0002
euq 0.0006 0.2161 0.2766 0.0008 0.0006 0 0.068 0.0063 0 0 0 0.0001 0 0 0 0.0006 0.0008 0.2766 0.2161 0.0006
eigd 0.0001 0.2622 0.1789 0.009 0 0 0.1334 0.0019 0 0 0.005 0.0125 0.0062 0 0 0 0.009 0.1789 0.2622 0.0001
eigq 0 0.2277 0.3655 0.0035 0 0 0.2297 0.1072 0 0 0 0.0068 0.0001 0 0 0 0.0035 0.3655 0.2277 0
γd 0 0.0016 0.0017 0.8482 0 0 0.0123 0.0008 0 0 0.2016 0.1421 0 0 0 0 0.8482 0.0017 0.0016 0
γq 0 0.0008 0.006 0.0413 0 0 0.0077 0.0057 0 0 0.7034 0.2134 0 0 0 0 0.0413 0.006 0.0008 0

θPLL 0.5008 0.0003 0.0001 0 0 0 0 0 0 0.001 0 0 0 0 0 0 0 0.0001 0.0003 0.5008
γPLL 0.0056 0 0 0 0 0 0 0 0 1.0009 0 0 0 0 0 0 0 0 0 0.0056
uv

d f 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
uv

q f 0.5005 0.0003 0.0001 0 0 0 0 0 0 0.0001 0 0 0 0 0 0 0 0.0001 0.0003 0.5005
γP 0 0.0036 0.026 0.833 0 0 0.0385 0.0315 0 0 0.0005 0.0435 0.0636 0 0 0 0.833 0.026 0.0036 0
γQ 0 0 0.0003 0.0411 0 0 0.0002 0 0 0 0.0011 0.0476 1.0738 0 0 0 0.0411 0.0003 0 0
Φd 0 0.0199 0.0736 0.0016 0 0 0.1284 1.0282 0.0143 0 0.01 0.0092 0 0 0 0 0.0016 0.0736 0.0199 0
Φq 0 0.0142 0.1034 0.0041 0 0 0.3244 0.8358 0 0 0.002 0.0011 0 0 0 0 0.0041 0.1034 0.0142 0
Pm 0 0.0879 0.2398 0.0259 0 0 0.5663 1.0237 1.0143 0 0.0003 0.0038 0 0 0 0 0.0259 0.2398 0.0879 0
Qm 0 0.0004 0.0031 0.0282 0 0 0.0014 0.0002 0 0 0.1085 0.9215 0.0039 0 0 0 0.0282 0.0031 0.0004 0
γvd 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2149 0.7851 0 0 0 0 0
γvq 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7851 0.2149 0 0 0 0 0
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