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Abstract: Hybrid electric ships powered by diesel generators and batteries are the main configuration
for shipboard microgrids (SMGs) in the current maritime industry. Extensive studies have been
conducted for the hybrid operation mode, whereas the all-electric operation mode and the switching
between the aforementioned two modes in a system with multiple generators and batteries have not
been tested. In this paper, a coordinated approach for a hybrid electric ship is proposed, where two
operation modes have been simultaneously considered. More specifically, for achieving an efficient
operation with reduced generator wear losses, the governor-less diesel-engine-driven generators have
been adopted in the study. According to the practical operation conditions, two operation modes, the
all-electric and hybrid modes, are preset. Based on these, the coordination of the generators acting
as the main power sources and batteries regulating the power flow and improving the generator
efficiency is studied. The governor-less diesel generators are regulated to inject the rated power
in order to maximize the generator efficiency, while the DC bus voltage is regulated by DC/DC
converters. For the benefit of the overall lifespan of battery banks, power sharing during charging
and discharging states have been realized by the state of charge (SoC)-based adaptive droop regulator.
For the test of two operation modes, as well as the mode switching, a simulation assessment in a 1 kV
DC SMG has been conducted. The simulation results show that the DC bus voltage can be controlled
well, and that the power sharing among batteries follows the design. Additionally, smooth transients
can be observed during mode switching when the proposed control scheme is applied.

Keywords: hybrid electric ship; DC shipboard microgrid; coordinated control; battery energy storage
system; diesel generator; state of charge

1. Introduction

The maritime industry is developing an integrated power system (IPS) for hybrid
and all-electric ships [1]. The IPS allows for the electrification of the propulsion system,
therefore enabling a more flexible operation [2]. Among the IPSs, the DC distribution
networks attract more attention compared with the AC networks, for various benefits pro-
vided from the aspects of manipulability, flexibility, energy efficiency, and environmental
impacts [3]. On the other hand, the electric propulsion motors, high power radar, and
even the electromagnetic guns in naval ships introduce many challenges in the shipboard
microgrid (SMG) design. The propulsion motors consume approximately 80% of the total
generation capacity [4], and pulsed loads require a high transient power, which may affect
the system stability [5]. To achieve a supply–demand balance, power sources with a large
energy capacity and high power density are required in a DC SMG. Diesel generators are
common energy sources, not only in conventional configured ships but also in advanced
hybrid electric ships, providing high energy [6,7]. Considering the shipboard load demands
with fast dynamics, the energy storage system (ESS) is usually integrated into a DC SMG
to compensate for the transient power. Currently, there are several types of ESSs poten-
tially suitable for DC SMGs, mainly including the Li-ion batteries [7,8], ultra-capacitors
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(UCs) [9,10], and flywheels [11,12]. Among them, batteries have the merits of a relatively
high energy density, whereas UCs and flywheel ESSs can discharge with a high transient
power. Therefore, hybrid ESSs (HESSs) consisting of more than two different types of
energy storage units attract much attention [13]. A comparison of different HESSs is pre-
sented in [14], studying the optimal combination of energy storage units for minimizing the
voltage fluctuations caused by pulsed loads. The results show that a HESS consisting of a
battery and flywheel has a better performance, whereas the effect of UC is not so significant
in mitigating the voltage fluctuation.

In order to coordinate different power sources in the DC SMG, numerous studies
and approaches are taken in the literature. The coordinated control objectives include
mitigating the transient voltage fluctuation when the load changes, achieving the economic
dispatch of power sources, and improving the fuel efficiency [15–19]. Depending on the
system configuration and control objectives, different coordinated control approaches can
be implemented. Since the generators are connected to the DC bus through controllable
rectifiers, it is possible to regulate the generator speed without affecting the DC-link
voltage. This configuration enables the generator to minimize the fuel consumption by
varying the rotation speed according to the load profile [20,21]. Therefore, one approach to
managing the power is to predesign the generator power according to the load profile and
battery states. A coordinated control strategy for fuel saving in a hybrid electric tugboat
is presented in [19], in which the diesel generator provides the majority of loads, and the
battery takes the responsibility of compensating the power mismatch between the loads
and generator power. The bus voltage is regulated by the battery controller. Similarly,
another study case based on a hybrid electric boat with two diesel generators and one
battery is studied in [7], and the DC bus voltage is managed by the rectifier controller on the
generator side. Besides the generators and ESS, fuel cells are studied to fit the application
of DC SMGs. In [22], a medium-voltage DC SMG in which the power sources consist of
two generators, one battery and one fuel cell, is studied. In this system, the DC bus voltage
is controlled by the DC/DC converters in the battery and fuel cell sides, and the generators
regulate the output power by regulating the speed and excitation current. However, these
approaches require regulating the engine speed and, therefore, the generator power is
lower than the rated value during much of the operation time, resulting in a reduced
efficiency. In addition, for naval ships equipped with high power pulsed loads, the power
system control is more complicated with HESS. Since UC and flywheel ESS could generally
discharge with a higher power ramp rate than the battery, power sharing for a HESS
consisting of a battery and UC or flywheel can be achieved by allocating the high-frequency
load demand to the UC or flywheel ESS, while allocating the low-frequency load demand
to the battery [23,24].

However, in the aforementioned literatures, the all-electric operation mode, which
is the trend of future electric ships, is not included in the studies. The all-electric mode
can be activated when the ESS can meet the shipboard load demand, or when the ship
berth is at the shore and the engines are turned off for fuel saving and reducing the
noise while lacking a charger to supply the shipboard loads. In addition, the switching
between all-electric mode and hybrid mode has not been tested in the DC SMG, and the
corresponding transients during mode switching lack investigation. In order to satisfy the
potential requirements in different operation modes of DC SMG and to study the system
responses during the operation mode switching, this paper fully considers the practical
operation conditions and studies the coordinated control strategy for a hybrid electric
ship with two governor-less diesel generators and two battery packs as the shipboard
power sources. The effectiveness of the corresponding control strategy in ensuring the
efficiency of diesel generators and balancing the SoC of the batteries and smooth transients
has been demonstrated in the simulation studies, where different operation modes and
mode switching have been simultaneously included.

This paper is organized as follows: an overview of the DC SMG architecture and the
operation principle is introduced in Section 2. In Section 3, the coordinated control strategy,
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including the controller design in the generator side and battery side, is presented. Section 4
shows the simulation results of the proposed coordinated control strategy. Section 5 gives
the conclusions of this work.

2. System Configuration
2.1. Architecture of DC SMG

The DC SMG architecture is designed as a zonal configuration according to the
recommendation of IEEE Std. 1709–2010 [25]. Compared with the conventional radial
configuration, the zonal design provides a higher reliability and survivability by connecting
the load centers with two interfaces. In this paper, the DC SMG consists of two diesel
generator sets, two battery ESSs (BESSs), and several electric propulsion systems, and
the shipboard loads are studied. The system configuration is shown in Figure 1a. The
governor-less diesel-engine-driven synchronous generators (SGs) are connected to the
DC bus through active rectifiers, and the lithium batteries are connected through the
bidirectional DC/DC converters. Though the rectifier on the generator side is assumed to
be unidirectional, the active rectifier is used in many cases for the benefits provided from
the aspects of voltage control, power quality regulation, and fault management [9,21,26].
In the zonal DC SMG, the shipboard loads are allocated as several zonal load centers
longitudinally, along with the hull, and each load center has two interfaces to the 1 kV
DC bus, therefore enhancing the power supply continuity. Since this paper focuses on the
coordination of the generation side, it is acceptable to use the simplified architecture shown
in Figure 1b.
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Figure 1. Configuration of a DC SMG: (a) typical configuration recommended by IEEE Std. 1709–2010; (b) simplified
architecture of a DC SMG (Pg, Pb, and PL are the output power from generators, charge/discharge power from BESS, and
load power, respectively).

In the simulation model, the governor-less diesel-engine-driven SGs are represented
by SGs with a constant excitation current reference and constant torque reference, both
of which are 1 p.u. in order to generate the rated power. The rated generator power is
75 kW, the maximum discharging power of the battery Pb_d is 60 kW, and the maximum
charging power of the battery Pb_c is 30 kW. The maximum generation power of the system
is 270 kW. Due to the presence of pulsed loads with a high power ramp rate, the ESS
becomes the main power supply. Therefore, the rated power of the ESS is designed to be
close to that of the generator in this study.



Energies 2021, 14, 6246 4 of 17

2.2. Operation Principle

The main objective of the presented operation principle is to maximize the generator
efficiency and extend the lifetime with the coordination of the BESS. Normally, the diesel
engines have a maximum efficiency at the rated power. Thus, the diesel generators are
designed to operate at the maximum efficiency point and generate a constant electric
power [27]. The benefit of integrating the BESS is allowing for the generator to operate at
the maximum efficiency point. Even though the variable-speed generator under energy
management system control provides a good performance in fuel saving, the generator
wear is ignored, especially in cases of dramatic fluctuating loads, which may consequently
require the generator speed to change frequently. However, frequent speed changes result
in excessive mechanical wear and tear in the generator set, reducing the system’s lifetime.

Therefore, the proposed operation principle simplifies the generator speed regulation
by adopting a governor-less engine to drive the SG instead, and regulates the charging and
discharging of the BESS according to the load profile and battery SoC. The mode switching
criteria are presented in Figure 2. Note that, in this paper, the positive direction is defined
as the battery current/power flow out of the BESS.
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The operation modes are clarified as follows:

(1) All-electric mode. In this operation mode, the diesel generators are turned off, and
the BESSs are the only power sources for the shipboard loads. This operation mode
applies to a short-distance voyage, and the light load conditions dictate that the load



Energies 2021, 14, 6246 5 of 17

demand is less than the BESS output power when the battery SoC is higher than the
minimum value SoCmin. In addition, the all-electric mode can be activated and the
batteries are charged when the ship is docked at harbor, which is also called ‘cold
ironing’;

(2) Hybrid mode. In this operation mode, both diesel generators and BESSs are connected
to the DC SMG. The generators are designed to both operate at a rated speed and
output the rated power so that the efficiency can reach the maximum, as the man-
ufacturer desired. When the load power is lower than the rated power of multiple
generators and the battery SoC is lower than its maximum value SoCmax, the surplus
power can be charged into the BESS, whereas, when the load demand exceeds the
rated generator power, the BESS discharges the mismatch between the load demand
and generator power until the battery SoC reaches SoCmin. Besides, load shedding is
required when the system is overloaded. This operation mode can be activated when
the ship sails over long distances and the ESS cannot fully support the load demand.
Besides, the hybrid mode is required when the shipboard ESS is fully discharged.

3. Coordinated Control Strategy

The energy flow in the DC SMG is managed by the coordination method of converters.
In the islanded DC SMG, the change in the DC-link voltage of the power converters reflects
the unbalance between the generation side and the load side. Therefore, the DC bus voltage
is a trigger of power changes. This section focuses on the converter-level control, in which
the coordinated control objects ensure that the DC bus voltage is within an acceptable
range and shares the load as designed, while the system-level control, known as the
energy management system (EMS), regulates the power of each converter with specific
optimization objectives.

There are two main control objectives in the coordinated control of DC SMG: (1) regu-
lating the DC bus voltage; (2) sharing the load among the power sources properly. For the
normal operation of a DC SMG, the DC bus voltage has to be maintained around the rated
value, with a limited variation under both operation modes. As the two generation sets
and two BESSs share the same parameters, respectively, they are desired to share the loads
equally. In this section, the control scheme for achieving these two control objectives in
all-electric and hybrid modes is presented.

3.1. BESS and DC/DC Converter Control

The BESSs are integrated into the system through the bidirectional DC/DC converters.
In order to prolong the lifetime of BESSs and avoid the overuse of one certain unit, it is
necessary to balance the state of charge (SoC) of two batteries. The battery SoC can be
estimated through the coulomb counting method, as shown in Equation (1):

SoCi = SoCi(t0)−
1

Cratedi

∫
(ibi + Isi)dt (1)

where SoCi(t0) is the initial SoC of battery #i, Cratedi is the nominal capacity of the battery
(Unit: As), ibi is the battery output current, and Isi is the self-discharging rate. In this paper,
the positive battery current means the battery is discharging, and the negative battery
current means the battery is charging.

As the BESSs are connected to the DC bus in both the all-electric mode and hybrid
mode, it is reasonable to control the DC bus voltage through DC/DC converters. To avoid
the over-charge and over-discharge of two batteries, it is vital to balance their SoCs. A
SoC-based adaptive droop control is used in DC/DC controller. The general droop control
in DC microgrids is shown in Equation (2):

ure f
dci = U∗

dc − Rdi·ibi (2)
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in which udci
ref, Rdi, and ibi are the output voltage reference of DC/DC converter #i, the

droop coefficient, and the battery output current. Udc
* is the nominal DC bus voltage.

In the DC SMGs, the cable length is limited, and the line impedance can be neglected.
Therefore, the output voltage of the paralleled connected DC/DC converters are equal,
making the output current inversely proportional to the droop coefficient, as shown in
Equation (3):

ib1 : ib2 =
1

Rd1
:

1
Rd2

(3)

In order to balance the SoC, the droop coefficient is determined by the battery SoC and
the charging/discharging state. The basic principle is that making the battery with a higher
SoC injects a lower current when in charging mode and an output with a higher current in
discharging mode. A SoC-based droop coefficient adjusting method is implemented in this
paper. When the BESS is charged, ib < 0, the charging current is designed to be inversely
proportional to the SoC; whereas when the BESS discharges, ib > 0, the discharging current
is designed to be proportional to the SoC. Thus, Rdi can be expressed as Equation (4) [28].
The SoC-based droop control is demonstrated in Figure 3.

Rdi =

{ mdisc
SoCi

n , ib > 0
mch·SoCi

n , ib < 0
(4)

in which mdisc and mch are constants for the cases of discharging and charging, respectively,
and n is the exponent of SoC, regulating the SoC balancing speed. The restriction of
selecting n is n > 0. However, considering the tolerance of the voltage drop in certain
conditions, the selection of n is further limited [28]. In this paper, n is selected to be 6 [28].
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For the better understanding of the SoC balancing of applying the SoC-based adaptive
droop control, the numeric solution of SoC is depicted in Figure 4, where the SoC is
calculated by the coulomb counting method, i.e., Equation (1).
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The parameters used for drawing Figure 4 are shown in Table 1. The operation
condition of Figure 4a is battery discharging, which means ibi > 0 (i = 1, 2), whereas the
operation condition of Figure 4b is battery charging, which means ibi < 0 (i = 1, 2).

Table 1. Battery parameters for SoC estimation.

SoC1(t0) 40% Crated1 50 Ah Is1 0 A

SoC2(t0) 60% Crated2 50 Ah Is2 0 A

For the droop-controlled DC SMG, the primary control is not able to restore the voltage
after the load variation [29]. Thus, in order to eliminate the voltage mismatch, a second
control can be applied for the voltage restoration, and Equation (2) becomes

ure f
dci = U∗

dc − Rdi·ibi + ∆δi (5)

where ∆δi (unit: V) is the correction term generated by the secondary controller, Udc
* is the

rated DC bus voltage. In this paper, the secondary controller consists of a PI controller,
which can be expressed as:

∆δi = Ksp·(U∗
dc − udci) + Ksi

∫
(U∗

dc − udci)dt (6)

The control scheme diagram is presented in Figure 5. The bidirectional DC/DC
converter controller consists of the primary and secondary control. The primary controller
consists of dual control loops. The outer loop is the voltage control loop, of which, the
voltage reference is generated by Equations (4) and (6). The error between the voltage
reference and measured voltage is the input of the PI controller. The generated current
reference goes to the inner current control loop in order to generate the duty cycle Di of the
DC/DC converter. The secondary controller employs the DC bus voltage as the feedback
to compensate for the voltage deviation.
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For control parameter tuning, the overall control scheme can be simplified as shown
in Figure 6, where the inner current control loop is represented by a first-order system
( 1

1+sTd
) due to the high bandwidth [30]. In this way, the analysis can be applied for the

tuning voltage and power control loops with slow dynamics. The inner current loop delay
is taken as Td = 0.002 s.
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Firstly, the voltage loop need to be stable, and the open-loop small-signal transfer
function can be derived as [31]:

Gv(s) =
(

Kdpv +
Kdiv

s

)
· 1
1 + sTd

·ubati
udci

· 1
sC

(7)

The dynamic dependence of the output voltage on the ∆ibi signal change is ob-
tained [31]:

∆udci(s)
∆ibi(s)

=
ubati
udci

· 1
sC

=
K1

1 + sT1
(8)

where K1 and T1 are the coefficients of the averaged DC/DC converter model, and Kdpv
and Kdiv are PI controller coefficients. The corresponding bode plot is shown in Figure 7a.
As indicated, there is enough of a phase margin to ensure the stability of the voltage loop.
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Then, the stability of the SoC-based droop control loop is checked based on the most
critical SoC-based droop coefficient, since the voltage control parameters must ensure the
stability of this loop in the case of any SoC value. The open-loop small-signal transfer
function represents this control loop and can be obtained from Figure 6 as Equation (9),
and the corresponding bode plot is shown in Figure 7b. As can be observed, the stability of
this SoC-based droop control loop can also be stable.

Gdroop(s) = Rdi·
(

Kdpv +
Kdiv

s

)
· 1
1 + sTd

(9)
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Regarding the stability of the power control loop, once the inner loops can be stable,
the bandwidth of the power control loop can be set to between 50% and 10% of the voltage
loop’s bandwidth in order to achieve acceptable stability and dynamics.

3.2. Diesel Generator and Rectifier Control

The governor-less diesel-engine-driven SGs connect to the DC bus through active
rectifiers. In the case of the hybrid mode, the diesel generators are desired to operate at a
rated speed, and the generators output the rated power so that the maximum efficiency is
achieved.

In hybrid mode, the diesel generators are the main power sources, and the active
power reference is dedicated to the rated power, whereas the BESSs are responsible for
controlling the DC bus voltage and balancing the supply–demand by charging and dis-
charging.

Neglecting the power losses of the rectifier, the power balance of the DC and AC sides
of rectifier is expressed as [32]:

udcig =
3
2

(
ugdid + ugqiq

)
(10)

where ugd, ugq, id, and iq are the generator terminal voltage and current in the d-q reference
frame, udc is the DC-link voltage of rectifier, and ig is the output current of rectifier. Accord-
ing to the synchronous generator model in the stator flux reference frame, which is shown
as follows:

ugd = Rsid +
dψd
dt

− ωsψq (11)

ugq = Rsiq +
dψq

dt
+ ωsψd (12)

where Rs is the stator resistance, ψd and ψq are d-q axes stator flux linkages, and ωs is the
electrical speed.

The electromagnetic torque and speed of the synchronous generator are expressed as:

Te =
3
2

p
(
ψdiq − ψqid

)
(13)

J
dωr

dt
= Tsh − Bωr − Te (14)

where J is the inertia value, p is the generator pole pairs, ωr is the generator speed, Tsh is
the shaft torque, B is the material damping, and Te is the generator torque.

With the generator model, Equation (10) can be derived as

udcig +
1
2

C
d2udc

dt2 =
3
2

(
i2d + i2q

)
·
(

Rs + R f

)
+ Teωr (15)

dEcap

dt
= Pem − Pload − Ploss (16)

where Ecap is the stored energy in the DC-link capacitor, and Pem, Pload, and Ploss are the
electromagnetic power, load power, and power losses, respectively. Here, Pem is equal to
the active power reference for the rectifier controller.

The rectifier and its controller scheme are shown in Figure 8. The controller is enabled
when the SMG operates in hybrid mode. A dual-loop control scheme is implemented,
which consists of the outer power loop and inner current loop. In hybrid mode, the active
power is dedicated to the rated power, and the reactive power is fixed to zero in order to
achieve the unitary power factor. The parameters can be adjusted according to conventional
linear control theory, where the open-loop bandwidth of the current control is firstly set to
around 1160 rad/s for fast current regulation. For the power control, the bandwidth is set
to around 35% of the inner current control loop for acceptable dynamics.
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4. Simulation Results

In order to demonstrate the effectiveness of the proposed operation principle and
coordinated control strategy, a 1 kV/270 kW DC SMG is simulated in Matlab/Simulink.
The power component parameters and the parameters of the corresponding controllers are
presented in Table 2. Two operation modes and the transition performances are studied in
this section.

Table 2. Parameters of the studied DC SMG.

Categories Parameters Values

DC bus nominal voltage 1 kV (±10%)

diesel generator

rated power 75 kW
nominal line-to-line voltage (RMS) 440 V

nominal frequency 50 Hz
d-axis synchronous reactance (Xd) 0.875 p.u.

d-axis transient reactance (Xd’) 0.19 p.u.
d-axis subtransient reactance (Xd”) 0.136 p.u.
q-axis synchronous reactance (Xq) 0.1625 p.u.
q-axis subtransient reactance (Xq”) 0.135 p.u.

Stator leakage reactance (Xl) 0.0163 p.u.
d-axis transient time constant (Tdo’) 0.31 s

d-axis subtransient time constant (Tdo”) 0.027 s
q-axis subtransient time constant (Tq”) 0.01 s

rectifier and its controller

DC-link capacitance 3 mF
synchronous inductance 1.7 mH

inductor resistance 0.07 Ω
switching frequency 20 kHz

inner current loop PI controller Krpi, Krii 2 V/A, 200 V/As
outer power loop PI controller Krpp, Krip 1 A/W, 100 A/Ws
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Table 2. Cont.

Categories Parameters Values

BESS

nominal voltage 600 V
rated capacity 50 Ah

maximum discharging current 100 A
maximum charging current 50 A

bidirectional DC/DC
converter and its

controller

inductance 1 mH
DC-link capacitance 2 mF
switching frequency 20 kHz

inner current loop PI controller Kdpi, Kdii 0.6 V/A, 20 V/As
outer voltage loop PI controller Kdpv, Kdiv 0.78 A/V, 300 A/Vs

secondary controller Ksp, Ksi 0.01, 30 s−1

coefficient mdisc 0.05
coefficient mch 0.2

4.1. All-Electric Mode

In the all-electric mode, two diesel generators and rectifiers are disconnected from
the system. This scenario is simulated to test the SoC-based droop control for the DC/DC
converters. The total maximum output power of the two batteries is 120 kW. Both batteries
discharge to supply the load. The load demand is initially 100 kW, increases to 120 kW at
t = 20 s, and decreases to 80 kW at t = 40 s. The initial SoCs of the two batteries are 40%
and 60%, respectively.

The DC bus voltage and load current are shown in Figure 9. The DC bus voltage
fluctuates when the load demand changes, and recovers to the nominal value within 0.015 s.
The discharging current of the two batteries is shown in Figure 10, and their ratio ib1:ib2
follows the ratio between the SoC of the two batteries, which is around 2:3. Note that,
during t = 20–40 s, the load demand is slightly smaller than the maximum battery output
power. Since the two batteries have a different initial SoC and are not fully discharged, the
battery voltage is higher than the nominal value, which is the voltage when the battery
reaches the minimum allowed SoC. Therefore, there are still differences between the two
battery voltages. As battery 2 is forced to discharge at a maximum current, the difference
in the battery voltage leads to a different battery current to satisfy the load demand. In this
manner, the battery current does not follow the power sharing ratio. The SoC of the two
batteries and SoC changing rate are shown in Figure 11. It is clear that battery 2 with a high
SoC discharges faster than battery 1 with a low SoC, and the discharging speed follows the
design.
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Figure 10. Battery current and voltage in all-electric mode.
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Figure 11. SoC of battery 1 and battery 2 in all-electric mode.

4.2. Hybrid Mode

In hybrid mode, both diesel generators and batteries are connected to the DC bus. Two
scenarios, a light load with battery charging and a heavy load with battery discharging, are
simulated to test the DC bus voltage control for rectifiers and the current control for DC/DC
converters. The generators are designed to rotate at the nominal speed and produce the
rated power. At t = 0 s, the load demand is 100 kW, and the batteries are charged. At
t = 20 s, the load demand increases to 200 kW, and the batteries switch from charging to
discharging. The initial SoCs of the two batteries are 40% and 60%, respectively. According
to the power sharing ratio in the DC/DC controllers, the charging power ratio during
0–20 s should be 3 to 2, whereas the discharging power ratio during 20–40 s should be 2 to
3.

The simulation results are shown as follows. Figure 12 presents the DC bus voltage
and load current. The DC bus voltage can be kept stable, and the voltage fluctuation when
the load changes is within the acceptable range of ±10% rated value. Figure 13 shows the
rectifier current (ig1, ig2) and battery current (ib1, ib2). During the steady state, the rectifier
current from the two generators are equal and constantly output the rated current of 75 A;
at t = 0–20 s, the two battery charging currents are 41.5 A and 27.5 A, respectively, whereas
at t = 20–40 s, the discharging currents are 34 A and 51 A, respectively. The SoC of the two
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batteries are shown in Figure 14. The battery with a lower initial SoC charges faster and
discharges slower than the battery with a higher initial SoC, making it faster to reach the
SoC balance between the two batteries.
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4.3. Mode Switching

The switching between the all-electric mode and hybrid mode is simulated to test the
transient states during mode switching. Four scenarios are simulated: (1) t = 0 s, where
the load demand is 100 kW, which is lower than the power capacity of BESSs, therefore
allowing for the system to operate in all-electric mode; (2) t = 20 s, where the load increases
to 125 kW and the system switches to hybrid mode; (3) t = 40 s, where the load further
increases to 175 kW and is supplied by both generators and BESSs; (4) t = 60 s, where the
load decreases back to 100 kW, and the system switches to all-electric mode. The initial
SoCs of the two BESSs are 40% and 60%, respectively.
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The simulation results are presented as follows. Figure 15 shows the DC bus voltage
and the load current. The DC bus voltage is controlled at the rated value during the load
change and mode switching. The output current of the rectifiers and DC/DC converters are
shown in Figure 16. In scenario 1, two diesel generators are disconnected, and the rectifier
currents in the generator side, ig1 and ig2, are zero. Two BESSs share the load, with the
battery current of ib1 = 63 A, and ib2 = 94.5 A. At t = 20 s, the generators are connected and
provide 150 kW during the steady state, exceeding the load demand. The surplus power
is restored into the BESSs. The steady charging current of the two batteries are 18.5 A
and 12.3 A, respectively. Battery 1 with a lower SoC charges at a higher current. It takes
approximately 2 s to reach the steady state, due to the relatively slow startup of synchronous
generators. At t = 40 s, as the load demand increase, the BESSs switch from charging to
discharging, and the battery 2 with a higher SoC provides more power than battery 1.
The discharging current of battery 1 and battery 2 are 18.5 A and 27.8 A, respectively. At
t = 60 s, the load demand decreases, and the two generators are disconnected, so the system
switches back to all-electric mode. The two battery currents in this scenario are 63 A and
94.5 A, which is the same as the first scenario. The change in SoC is shown in Figure 17.
The ratios of the charging and discharging speed between the two batteries in different
load conditions follow the designed value.
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5. Conclusions

This paper presents a coordinated control scheme for a hybrid electric ship with
both all-electric and hybrid operation modes. In the studied DC SMG, two governor-less
diesel-engine-driven SGs and two BESSs are used as the power supply. Aiming at reaching
the highest efficiency, the diesel generators are regulated by a constant power controller to
provide the rated power. The BESSs are responsible for controlling the DC bus voltage by
using a SoC-based adaptive droop control, where the power sharing ratio is continuously
updated by the battery SoC and the charging/discharging states. In this manner, the power
sharing ratio is proportional and inversely proportional to the SoC, respectively, and the
overuse of batteries in the DC SMG can be avoided. For a comprehensive assessment,
two operation modes of the investigated DC SMG, namely, all-electric and hybrid modes,
and the mode switching between them, have been tested in the simulation studies, where
several load conditions have been included. The simulation results show that the presented
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coordinated control enables the BESSs’ charging and discharging according to the SoC ratio
under all tested conditions, and that smooth mode switching can be achieved as well.
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