Liquid Propane Injection in Flash-Boiling Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Study
2.2. Numerical Modelling
3. Results and Discussion
3.1. Experiments
3.1.1. Ambient Pressure Effect
3.1.2. Injection Pressure Effect
3.2. Numerical Simulations
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Campbell, M.; Wyszyński, Ł.P.; Stone, R. Combustion of LPG in a Spark-Ignition Engine. SAE Trans. 2004, 113, 628–637. [Google Scholar] [CrossRef]
- Zigan, L.; Schmitz, I.; Flügel, A.; Wensing, M.; Leipertz, A. Structure of evaporating single- and multicomponent fuel sprays for 2nd generation gasoline direct injection. Fuel 2011, 90, 348–363. [Google Scholar] [CrossRef]
- Vanderwege, B.A.; Hochgreb, S. The effect of fuel volatility on sprays from high-pressure swirl injectors. Symp. Combust. 1998, 27, 1865–1871. [Google Scholar] [CrossRef]
- Lamanna, G.; Kamoun, H.; Weigand, B.; Steelant, J. Towards a unified treatment of fully flashing sprays. Int. J. Multiph. Flow 2014, 58, 168–184. [Google Scholar] [CrossRef]
- Brown, R.; York, J.L. Sprays formed by flashing liquid jets. AIChE J. 1962, 8, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Y.; Qi, W. Quantitative study on the influence of bubble explosion on evaporation characteristics of flash boiling spray using UV-LAS technique. Exp. Therm. Fluid Sci. 2018, 98, 472–479. [Google Scholar] [CrossRef]
- Araneo, L.; Coghe, A.; Brunello, G.; Dondé, R. Effects of Fuel Temperature and Ambient Pressure on a GDI Swirled Injector Spray. SAE Tech. Pap. 2000, 13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xu, M.; Zhang, Y.; Hung, D.L.S. Characteristics of Flash Boiling Fuel Sprays from Three Types of Injector for Spark Ignition Direct Injection (SIDI) Engines. In Proceedings of the FISITA 2012 World Automotive Congress; Springer: Berlin/Heidelberg, Germany, 2013; pp. 443–454. [Google Scholar]
- Araneo, L.; Donde’, R. Flash boiling in a multihole G-DI injector—Effects of the fuel distillation curve. Fuel 2017, 191, 500–510. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.; Jiang, C.; Xu, H.; Badawy, T. Microscopic characterization of isooctane spray in the near field under flash boiling condition. Appl. Energy 2016, 180, 598–606. [Google Scholar] [CrossRef]
- Weber, D.; Leick, P. Structure and Velocity Field of Individual Plumes of Flashing Gasoline Direct Injection Sprays. In 26th Annual Conference on Liquid Atomization and Spray Systems (ILASS); Spinger: Berlin/Heidelberg, Germany, 2014; pp. 8–10. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, M.; Zhang, G.; Zhang, Y.; Cleary, D.J. Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels. Fuel 2012, 95, 287–297. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Y.; Zeng, W.; Zhang, G.; Zhang, M. Flash Boiling: Easy and Better Way to Generate Ideal Sprays than the High Injection Pressure. SAE Int. J. Fuels Lubr. 2013, 6, 137–148. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Hung, D.L.S.; Xu, M. Characteristics and correlation of nozzle internal flow and jet breakup under flash boiling conditions. Int. J. Heat Mass Transf. 2018, 127, 959–969. [Google Scholar] [CrossRef]
- Lacey, J.; Poursadegh, F.; Brear, M.; Gordon, R.; Petersen, P.; Lakey, C.; Butcher, B.; Ryan, S. Generalizing the behavior of flash-boiling, plume interaction and spray collapse for multi-hole, direct injection. Fuel 2017, 200, 345–356. [Google Scholar] [CrossRef]
- Poursadegh, F.; Lacey, J.S.; Brear, M.; Gordon, R.; Petersen, P.; Lakey, C.; Butcher, B.; Ryan, S.; Kramer, U. On the phase and structural variability of directly injected propane at spark ignition engine conditions. Fuel 2018, 222, 294–306. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Ma, X.; Ding, H.; Xu, H.; Wang, Z.; Shuai, S. Characteristics of trans-critical propane spray discharged from multi-hole GDI injector. Exp. Therm. Fluid Sci. 2018, 99, 446–457. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.; Park, S. Numerical approach to analyze propane flash boiling spray using modified gas-jet model. Appl. Therm. Eng. 2019, 162, 114255. [Google Scholar] [CrossRef]
- Vetrano, M.R.; Simonini, A.; Steelant, J.; Rambaud, P. Thermal characterization of a flashing jet by planar laser-induced fluorescence. Exp. Fluids 2013, 54, 1573. [Google Scholar] [CrossRef]
- Gärtner, J.W.; Feng, Y.; Kronenburg, A.; Stein, O.T. Numerical Investigation of Spray Collapse in GDI with OpenFOAM. Fluids 2021, 6, 104. [Google Scholar] [CrossRef]
- Guo, H.; Nocivelli, L.; Torelli, R. Numerical study on spray collapse process of ECN spray G injector under flash boiling conditions. Fuel 2021, 290, 119961. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010. [CrossRef]
- Guo, H.; Li, Y.; Xu, H.; Shuai, S.; Zhang, H. Interaction between under-expanded flashing jets: A numerical study. Int. J. Heat Mass Transf. 2019, 137, 990–1000. [Google Scholar] [CrossRef]
- Zuo, B.; Gomes, A.M.; Rutland, C.J. Modelling superheated fuel sprays and vaporization. Int. J. Engine Res. 2000, 1, 321–336. [Google Scholar] [CrossRef]
- Adachi, M.; McDonell, V.G.; Tanaka, D.; Senda, J.; Fujimoto, H. Characterization of Fuel Vapor Concentration inside a Flash Boiling Spray. SAE Tech. Pap. 1997, 9. [Google Scholar] [CrossRef]
- Abramzon, B.; Sirignano, W. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 1988, 32, 1605–1618. [Google Scholar] [CrossRef]
- Senda, J.; Nishikori, T.; Hojyo, Y.; Tsukamoto, T.; Fujimoto, H. Modelling of Atomization and Vaporization Process in Flash Boiling Spray. 2nd Report, Model Analysis on Atomization and Vaporization Process. Trans. Jpn. Soc. Mech. Eng. Ser. B 1994, 60, 3556–3562. [Google Scholar] [CrossRef] [Green Version]
- Mikic, B.B.; Rohsenow, W.M.; Griffith, P. On bubble growth rates. Int. J. Heat Mass Transf. 1970, 13, 657–666. [Google Scholar] [CrossRef]
- Hanjalić, K.; Popovac, M.; Hadžiabdić, M. A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 2004, 25, 1047–1051. [Google Scholar] [CrossRef]
- Post, S.L.; Abraham, J. Modeling the outcome of drop-drop collisions in Diesel sprays. Int. J. Multiph. Flow 2002, 28, 997–1019. [Google Scholar] [CrossRef]
- Price, C.; Hamzehloo, A.; Aleiferis, P.; Richardson, D. Numerical modelling of fuel spray formation and collapse from multi-hole injectors under fl ash-boiling conditions. Fuel 2018, 221, 518–541. [Google Scholar] [CrossRef]
- Wakuri, Y.; Fujii, M.; Amitani, T.; Tsuneya, R. Studies on the Penetration of Fuel Spray in a Diesel Engine. Bull. JSME 1960, 3, 123–130. [Google Scholar] [CrossRef]
- Dent, J.C. A Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration. SAE Tech. Pap. 1971, 1, 710571. [Google Scholar] [CrossRef]
- Hiroyasu, H.; Arai, M. Structures of Fuel Sprays in Diesel Engines. SAE Tech. Pap. 1990, 99, 1050–1061. [Google Scholar]
- Schihl, P.; Bryzik, W.; Atreya, A. Analysis of Current Spray Penetration Models and Proposal of a Phenomenological Cone Penetration Model. SAE Tech. Pap. 1996, 12. [Google Scholar]
- Arrègle, J.; Pastor, J.V.; Ruiz, S. The Influence of Injection Parameters on Diesel Spray Characteristics. SAE Tech. Pap. 1999, 10. [Google Scholar]
- Pielecha, I. Modeling of gasoline fuel spray penetration in SIDI engines. Int. J. Automot. Technol. 2014, 15, 47–55. [Google Scholar] [CrossRef]
- Reitz, R.D.; Bracco, F.B. On the Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions. SAE Tech. Pap. 1979, 24. [Google Scholar]
- Siebers, D.L. Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization. SAE Trans. 1999, 108, 703–728. [Google Scholar] [CrossRef]
Case | pinj [MPa] | pamb [MPa] | vspray [m/s] | minjected [mg] |
---|---|---|---|---|
1 | 14 | 0.1 | 118.3 | 138.6 |
2 | 14 | 0.5 | 106.1 | 124.3 |
3 | 14 | 1 | 80.7 | 94.5 |
4 | 14 | 2 | 47.6 | 87.4 |
5 | 2 | 0.1 | 52.7 | 61.7 |
6 | 6 | 0.1 | 89.3 | 104.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapusta, Ł.J.; Bachanek, J.; Jiang, C.; Piaszyk, J.; Xu, H.; Wyszyński, M.L. Liquid Propane Injection in Flash-Boiling Conditions. Energies 2021, 14, 6257. https://doi.org/10.3390/en14196257
Kapusta ŁJ, Bachanek J, Jiang C, Piaszyk J, Xu H, Wyszyński ML. Liquid Propane Injection in Flash-Boiling Conditions. Energies. 2021; 14(19):6257. https://doi.org/10.3390/en14196257
Chicago/Turabian StyleKapusta, Łukasz Jan, Jakub Bachanek, Changzhao Jiang, Jakub Piaszyk, Hongming Xu, and Mirosław Lech Wyszyński. 2021. "Liquid Propane Injection in Flash-Boiling Conditions" Energies 14, no. 19: 6257. https://doi.org/10.3390/en14196257
APA StyleKapusta, Ł. J., Bachanek, J., Jiang, C., Piaszyk, J., Xu, H., & Wyszyński, M. L. (2021). Liquid Propane Injection in Flash-Boiling Conditions. Energies, 14(19), 6257. https://doi.org/10.3390/en14196257