Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019
Abstract
:1. Introduction
- Activities related to energy policy reduce the concentration of the use of renewable sources for electricity production.
- There is a large diversity between EU countries in the use of renewable sources for the production of electricity, while the development of individual energy sources in specific countries is to a large extent supported by government bodies.
2. Renewable Energy Sources in Literature and EU Directives
3. Data and Methodology
4. Use of Renewable Energy Sources and Biofuels in the Electricity Production in the European Union
4.1. Renewable Energy in the Electricity Production in the EU
4.2. Types of Renewable Energy Sources Used for Electricity Production in the EU
4.3. Concentration of Renewable Sources in Electricity Production
5. Classification of the EU Countries by the Usage of Renewable Sources for Electricity Production
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EIA—U.S. Energy Information Administration. International Energy Outlook 2019 with Projections to 2050, #IEO2019, U.S. Energy Information Administration Office of Energy Analysis. September 2019. Available online: https://www.eia.gov/outlooks/ieo/ (accessed on 7 August 2021).
- Aklin, M.; Urpelainen, J. Renewables: The politics of a global Energy Transition; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Child, M.; Koskinen, O.; Linnanen, L.; Breyer, C. Sustainability guardrails for energy scenarios of the global energy transition. Renew. Sustain. Energy Rev. 2018, 91, 321–334. [Google Scholar] [CrossRef]
- Davidson, D.J. Exnovating for a renewable energy transition. Nat. Energy 2019, 4, 254–256. [Google Scholar] [CrossRef]
- Watari, T.; McLellan, B.C.; Giurco, D.; Dominish, E.; Yamasue, E.; Nansai, K. Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl. 2019, 148, 91–103. [Google Scholar] [CrossRef]
- Pietrzak, M.B.; Igliński, B.; Kujawski, W.; Iwański, P. Energy Transition in Poland—Assessment of the Renewable Energy Sector. Energies 2021, 14, 2046. [Google Scholar] [CrossRef]
- Kuc-Czarnecka, M.E.; Olczyk, M.; Zinecker, M. Improvements and Spatial Dependencies in Energy Transition Measures. Energies 2021, 14, 3802. [Google Scholar] [CrossRef]
- UNFCCC. United Nations Framework Convention on Climate Change. 1992. Available online: https://unfccc.int/resource/docs/convkp/conveng.pdf (accessed on 7 August 2021).
- Kyoto Protocol. 1997. Available online: https://www.eea.europa.eu/policy-documents/kyoto-protocol-to-the-un (accessed on 3 June 2021).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Next Steps for a Sustainable European Future European action for Sustainability, COM/2016/0739 Final, Strasbourg, 22.11.2016. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2016%3A739%3AFIN (accessed on 5 August 2021).
- European Commission. Clean Energy for All Europeans; European Commission: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, An EU Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future {SWD(2020) 273 Final, Brussels, 19.11.2020 COM(2020) 741 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2020:741:FIN (accessed on 30 July 2021).
- Kapitonov, I.A.; Voloshin, V.I. International Journal of Energy Economics and Policy Strategic Directions for Increasing the Share of Renewable Energy Sources in the Structure of Energy Consumption. Int. J. Energy Econ. Policy 2017, 7, 90–98. [Google Scholar]
- WCED (World Commission on Environment and Development). Our Common Future Report of the World Commission on Environment and Development. 1987. Available online: https://digitallibrary.un.org/record/139811 (accessed on 29 July 2021).
- The Treaty on European Union. 2007. Available online: http://data.europa.eu/eli/treaty/teu_2012/oj (accessed on 29 July 2021).
- Balcerzak, A.P.; Pietrzak, M.B. Application of TOPSIS Method for Analysis of Sustainable Development in European Union Countries. In Proceedings of the 10th International Days of Statistics and Economics: Conference Proceedings, Prague, Czech Republic, 8–10 September 2016. [Google Scholar]
- Communication from the Commission Energy for the Future: Renewable Sources of Energy. White Paper for a Community Strategy and Action Plan. 1997. Available online: https://europa.eu/documents/comm/white_papers/pdf/com97_599_en.pdf (accessed on 29 July 2021).
- Directive 2001/77/EC of the European Parlament and of the Council. September 2001. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001L0077&from=en (accessed on 29 July 2021).
- Communication from the Commission to the Council and the European Parliament—Renewable energy road map—Renewable Energies in the 21st Century: Building a More Sustainable, COM(2006)848. 2007. Available online: https://www.eumonitor.eu/9353000/1/j4nvke1fm2yd1u0_j9vvik7m1c3gyxp/vkcweehp63z8/v=s7z/f=/com(2006)848_en.pdf (accessed on 29 July 2021).
- Directives 2009/28/EC of the European Parlament and of the council. April 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028&from=PL (accessed on 29 July 2021).
- Europe June 2020. Available online: https://ec.europa.eu/eu2020/pdf/COMPLETENBARROSO007-Europe2020-ENversion.pdf (accessed on 3 June 2021).
- Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the use of Energy from Renewable Sources. December 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=PL (accessed on 29 July 2021).
- Bojnec, Š.; Križaj, A. Electricity Markets during the Liberalization: The Case of a European Union Country. Energies 2021, 14, 4317. [Google Scholar] [CrossRef]
- Swain, R.B.; Karimu, A. Renewable electricity and sustainable development goals in the EU. World Dev. 2020, 125, 104693. [Google Scholar] [CrossRef]
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Streimikiene, D.; Šivickas, G. The EU sustainable energy policy indicators framework. Environ. Int. 2008, 34, 1227–1240. [Google Scholar] [CrossRef]
- Bohringer, C.; Loschel, A. Promoting Renewable Energy in Europe: A Hybrid Computable General Equilibrium Approach. Energy J. 2006, SI2006. [Google Scholar] [CrossRef]
- Özdemir, Ö.; Hobbs, B.F.; van Hout, M.; Koutstaal, P.R. Capacity vs energy subsidies for promoting renewable investment: Benefits and costs for the EU power market. Energy Policy 2020, 137, 111166. [Google Scholar] [CrossRef]
- Radović, U. Support of the electricity generation from renewable energy sources in Poland: Is the additional system cost justified? Polityka Energ. Energy Policy J. 2005, 8, 469–482. [Google Scholar]
- Reiche, D.; Bechberger, M. Policy differences in the promotion of renewable energies in the EU member states. Energy Policy 2004, 32, 843–849. [Google Scholar] [CrossRef]
- Poullikkas, A.; Kourtis, G.; Hadjipaschalis, I. An overview of the EU Member States support schemes for the promotion of renewable energy sources. Int. J. Energy Environ. 2012, 3, 553–566. [Google Scholar]
- Haas, R.; Panzer, C.; Resch, G.; Ragwitz, M.; Reece, G.; Held, A. A historical review of promotion strategies for electricity from renewable energy sources in EU countries. Renew. Sustain. Energy Rev. 2011, 15, 1003–1034. [Google Scholar] [CrossRef]
- Nicolini, M.; Tavoni, M. Are renewable energy subsidies effective? Evidence from Europe. Renew. Sustain. Energy Rev. 2017, 74, 412–423. [Google Scholar] [CrossRef]
- Kilinc-Ata, N. The evaluation of renewable energy policies across EU countries and US states: An econometric approach. Energy Sustain. Dev. 2016, 31, 83–90. [Google Scholar] [CrossRef]
- Liobikienė, G.; Dagiliūtė, R. Do positive aspects of renewable energy contribute to the willingness to pay more for green energy? Energy 2021, 231, 120817. [Google Scholar] [CrossRef]
- Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef] [Green Version]
- EU ETS. EU ETS Handbook. 2015. Available online: https://ec.europa.eu/clima/policies/ets_en#tab-0-0 (accessed on 7 August 2021).
- Chovancová, J.; Tej, J. Decoupling economic growth from greenhouse gas emissions: The case of the energy sector in V4 countries. Equilibrium. Q. J. Econ. Econ. Policy 2020, 15, 235–251. [Google Scholar] [CrossRef]
- Akadiri, S.S.; Alola, A.A.; Akadiri, A.C.; Alola, U.V. Renewable energy consumption in EU-28 countries: Policy toward pollution mitigation and economic sustainability. Energy Policy 2019, 132, 803–810. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Manso, J.R.P. Motivations driving renewable energy in European countries: A panel data approach. Energy Policy 2010, 38, 6877–6885. [Google Scholar] [CrossRef]
- Gökgöz, F.; Güvercin, M.T. Energy security and renewable energy efficiency in EU. Renew. Sustain. Energy Rev. 2018, 96, 226–239. [Google Scholar] [CrossRef]
- Blum, H.; Legey, L.F.L. The challenging economics of energy security: Ensuring energy benefits in support to sustainable development. Energy Econ. 2012, 34, 1982–1989. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I. Transformation of energy balances with dominant coal consumption in European economies and Turkey in the years 1990–2017. Oeconomia Copernic. 2019, 10, 627–647. [Google Scholar] [CrossRef] [Green Version]
- Filimonova, I.; Komarova, A.; Mishenin, M. Impact of the global green factor on the capitalization of oil companies in Russia. Oeconomia Copernic. 2020, 11, 309–324. [Google Scholar] [CrossRef]
- Saad, W.; Taleb, A. The causal relationship between renewable energy consumption and economic growth: Evidence from Europe. Clean Technol. Environ. Policy 2018, 20, 127–136. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Ozturk, I.; Lean, H.H. The influence of economic growth, urbanization, trade openness, financial development, and renewable energy on pollution in Europe. Nat. Hazards 2015, 79, 621–644. [Google Scholar] [CrossRef]
- Shahnazi, R.; Shabani, Z.D. Do renewable energy production spillovers matter in the EU? Renew. Energy 2020, 150, 786–796. [Google Scholar] [CrossRef]
- Kiseľáková, D.; Šofranková, B.; Onuferová, E.; Čabinová, V. The evaluation of competitive position of EU-28 economies with using global multi-criteria indices. Equilibrium. Q. J. Econ. Econ. Policy 2019, 14, 441–462. [Google Scholar] [CrossRef]
- Kothari, R.; Tyagi, V.V.; Pathak, A. Waste-to-energy: A way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev. 2010, 14, 3164–3170. [Google Scholar] [CrossRef]
- Benedek, J.; Sebestyén, T.T.; Bartók, B. Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renew. Sustain. Energy Rev. 2018, 90, 516–535. [Google Scholar] [CrossRef]
- Johansson, T.B.; Kelly, H.; Reddy, A.K.N.; Williams, R.H. Renewable Energy: Sources for Fuels and Electricity; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Amin, A.; Altinoz, B.; Dogan, E. Analyzing the determinants of carbon emissions from transportation in European countries: The role of renewable energy and urbanization. Clean Technol. Environ. Policy 2020, 22, 1725–1734. [Google Scholar] [CrossRef]
- Jäger-Waldau, A.; Szabó, M.; Scarlat, N.; Monforti-Ferrario, F. Renewable electricity in Europe. Renew. Sustain. Energy Rev. 2011, 15, 3703–3716. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Nørgaard, P. Integrated transport and renewable energy systems. Util. Policy 2008, 16, 107–116. [Google Scholar] [CrossRef]
- Cansino, J.M.; Pablo-Romero, M.d.; Román, R.; Yñiguez, R. Promoting renewable energy sources for heating and cooling in EU-27 countries. Energy Policy 2011, 39, 3803–3812. [Google Scholar] [CrossRef]
- Lund, H. Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach. Energy 2018, 151, 94–102. [Google Scholar] [CrossRef]
- Boesten, S.; Ivens, W.; Dekker, S.C.; Eijdems, H. 5th generation district heating and cooling systems as a solution for renewable urban thermal energy supply. Adv. Geosci. 2019, 49, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Braungardt, S.; Bürger, V.; Zieger, J.; Bosselaar, L. How to include cooling in the EU Renewable Energy Directive? Strategies and policy implications. Energy Policy 2019, 129, 260–267. [Google Scholar] [CrossRef]
- Inayat, A.; Raza, M. District cooling system via renewable energy sources: A review. Renew. Sustain. Energy Rev. 2019, 107, 360–373. [Google Scholar] [CrossRef]
- Scholz, Y. Renewable Energy Based Electricity Supply at Low Costs: Development of the REMix Model and Application for Europe. 2012. Available online: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-76350 (accessed on 17 July 2021).
- The International Renewable Energy Agency (IRENA). Renewable Power: Sharply Falling Generation Costs. 2017. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Nov/IRENA_Sharply_falling_costs_2017.pdf (accessed on 23 September 2021).
- Rubene, I.; Koester, G. Recent dynamics in Energy Inflation: The Role of Base Effects and Taxes. ECB Economic Bulletin. 2021. Available online: https://www.ecb.europa.eu/pub/economic-bulletin/focus/2021/html/ecb.ebbox202103_04~0a0c8f0814.en.html (accessed on 23 September 2021).
- Galchynskyi, L. Estimation of the price elasticity of petroleum products’ consumption in Ukraine. Equilibrium. Q. J. Econ. Econ. Policy 2020, 15, 315–339. [Google Scholar] [CrossRef]
- Aune, F.R.; Dalen, H.M.; Hagem, C. Implementing the EU renewable target through green certificate markets. Energy Econ. 2012, 34, 992–1000. [Google Scholar] [CrossRef]
- Ringel, M. Fostering the use of renewable energies in the European Union: The race between feed-in tariffs and green certificates. Renew. Energy 2006, 31, 1–17. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Lund, H.; Mathiesen, B.V. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050. Energy 2009, 34, 524–531. [Google Scholar] [CrossRef]
- Hansen, K.; Mathiesen, B.V.; Skov, I.R. Full energy system transition towards 100% renewable energy in Germany in 2050. Renew. Sustain. Energy Rev. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Ridjan, I.; Mathiesen, B.V.; Hvelplund, F.; Thellufsen, J.Z.; Sorknæs, P. Energy Storage and Smart Energy Systems. Int. J. Sustain. Energy Plan. Manag. 2016, 11, 3–14. [Google Scholar]
- Baños, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Ionescu, G.H.; Firoiu, D.; Pîrvu, R.; Enescu, M.; Rădoi, M.-I.; Cojocaru, T.M. The Potential for Innovation and Entrepreneurship in EU Countries in the Context of Sustainable Development. Sustainability 2020, 12, 7250. [Google Scholar] [CrossRef]
- European Environmental Agency. Renewable Energy in Europe—Recent Growth and Knock-on Effects. pp. 1–65. 2016. Available online: http://www.eea.europa.eu/publications/renewable-energy-in-europe-2016/download (accessed on 29 July 2021).
- Włodarczyk, B.; Firoiu, D.; Ionescu, G.H.; Ghiocel, F.; Szturo, M.; Markowski, L. Assessing the Sustainable Development and Renewable Energy Sources Relationship in EU Countries. Energies 2021, 14, 2323. [Google Scholar] [CrossRef]
- Pacesila, M.; Burcea, S.G.; Colesca, S.E. Analysis of renewable energies in European Union. Renew. Sustain. Energy Rev. 2016, 56, 156–170. [Google Scholar] [CrossRef]
- Gromada, A.; Trebska, P.; Wysokinski, M. Use of renewable energy in the European Union—Trends of change. In Proceedings of the Economic Science for Rural Development Conference, Jelgava, Latvia, 9–10 May 2019. [Google Scholar] [CrossRef]
- Rokicki, T.; Michalski, K.; Ratajczak, M.; Szczepaniuk, H.; Golonko, M. Use of Renewable Energy Sources in European Union Countries. Annu. Set Environ. Prot. 2018, 20, 1318–1334. [Google Scholar]
- Rokicki, T.; Perkowska, A. Diversity and Changes in the Energy Balance in EU Countries. Energies 2021, 14, 1098. [Google Scholar] [CrossRef]
- Eurostat. Production of Electricity and Derived Heat by Type of Fuel[nrg_bal_peh]. 2021. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_bal_peh&lang=en (accessed on 6 June 2021).
- McQueen, J.B. Some methods of classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Los Angeles, CA, USA, 21 June–18 July 1967; pp. 181–197. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data Mining Concepts and Techniques, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Yadav, J.; Sharma, M. A Review of K-mean Algorithm. Int. J. Eng. Trends Technol. 2013, 4, 2972–2976. [Google Scholar]
- Bieszk-Stolorz, B.; Dmytrów, K. Spatial diversity of effectiveness of forms of professional activisation in Poland in years 2008–2014 by poviats. Oeconomia Copernic. 2019, 10, 113–130. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data-An Introduction to Cluster Analysis; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Dudek, A. Silhouette Index as Clustering Evaluation Tool. In Classification and Data Analysis. SKAD 2019. Studies in Classification, Data Analysis, and Knowledge Organization; Jajuga, K., Batóg, J., Walesiak, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Roszko-Wójtowicz, E.; Grzelak, M.M. Multi-dimensional analysis of regional investment attractiveness in Poland. Equilibrium. Q. J. Econ. Econ. Policy 2021, 16, 103–138. [Google Scholar] [CrossRef]
- Walesiak, M. Rekomendacje w zakresie strategii postępowania w procesie klasyfikacji zbioru obiektów (ang. Recommendations for strategies to deal with the classification process of a set of objects). In Przestrzenno-Czasowe Modelowanie i Prognozowanie Zjawisk Gospodarczych (Spatial-Temporal Modelling and Forecasting of Economic Phenomena); Zeliaś, A., Ed.; CeON Repository: Unspecified, Poland, 2006; pp. 185–203. [Google Scholar]
- Eurostat. Simplified Energy Balances [nrg_bal_s]. Final Consumption—Energy Use. 2021. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_bal_s (accessed on 29 July 2021).
- Eurostat. Access to Methodology Information on Energy data. 2021. Available online: https://ec.europa.eu/eurostat/web/energy/methodology (accessed on 29 July 2021).
- Eurostat. RAMON—Concepts and Definitions, Eurostat’s Concepts and Definitions Database—Term Hydro (Code RA100). 2021. Available online: https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GLOSSARY_NOM_DTL_VIEW&StrNom=CODED2&StrLanguageCode=EN&IntKey=16493335&RdoSearch=&TxtSearch=&CboTheme=&IsTer=&ter_valid=0&IntCurrentPage=1 (accessed on 29 July 2021).
- Eurostat. RAMON—Concepts and Definitions, Eurostat’s Concepts and Definitions Database—Term Wind (Code RA300). 2021. Available online: https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GLOSSARY_NOM_DTL_VIEW&StrNom=CODED2&StrLanguageCode=EN&IntKey=16623435&RdoSearch=&TxtSearch=&CboTheme=&IsTer=&ter_valid=0&IntCurrentPage=121 (accessed on 29 July 2021).
- Eurostat. RAMON—Concepts and definitions, Eurostat’s Concepts and Definitions Database—Term Solar Photovoltaic (code RA420). 2021. Available online: https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GLOSSARY_NOM_DTL_VIEW&StrNom=CODED2&StrLanguageCode=EN&IntKey=22543617&RdoSearch=BEGIN&TxtSearch=solar&CboTheme=&IsTer=&IntCurrentPage=1&ter_valid=0 (accessed on 29 July 2021).
- Eurostat. RAMON—Concepts and Definitions, Eurostat’s Concepts and Definitions Database—Term Solar Thermal (Code RA410). 2021. Available online: https://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=DSP_GLOSSARY_NOM_DTL_VIEW&StrNom=CODED2&StrLanguageCode=EN&IntKey=22543667&RdoSearch=BEGIN&TxtSearch=solar&CboTheme=&IsTer=&IntCurrentPage=1&ter_valid=0 (accessed on 29 July 2021).
- Balat, M. Hydropower Systems and Hydropower Potential in the European Union Countries. Energy Sources Part A Recover. Util. Environ. Eff. 2006, 28, 965–978. [Google Scholar] [CrossRef]
- Sternberg, R. Hydropower’s future, the environment, and global electricity systems. Renew. Sustain. Energy Rev. 2010, 14, 713–723. [Google Scholar] [CrossRef]
- Renöfält, B.M.; Jansson, R.; Nilsson, C. Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshw. Biol. 2010, 55, 49–67. [Google Scholar] [CrossRef]
- Botelho, A.; Ferreira, P.; Lima, F.; Pinto, L.M.C.; Sousa, S. Assessment of the environmental impacts associated with hydropower. Renew. Sustain. Energy Rev. 2017, 70, 896–904. [Google Scholar] [CrossRef]
- European Commission. Hydropower, Why the EU Supports Hydropower Research and Innovation. 2021. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/energy-research-and-innovation/hydropower_en (accessed on 5 August 2021).
- Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy. 2000. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32000L0060 (accessed on 5 August 2021).
- Fruhmann, C.; Tuerk, A.; Kulmer, V.; Gubina, A.F. Balancing environmental benefits and damages of small hydropower generation in policy-making: Assessing the implementation of a contradicting EU policy framework in Austria and Slovenia. Int. J. Sustain. Energy 2019, 38, 37–49. [Google Scholar] [CrossRef]
- International Water Power & Dam Construction. EIB Funds New Dams in Portugal, 23 July 2018. Available online: https://www.waterpowermagazine.com/news/newseib-funds-new-dams-in-portugal-6261561 (accessed on 29 July 2021).
- Bohanec, M.; Trdin, N.; Kontić, B. A qualitative multi-criteria modelling approach to the assessment of electric energy production technologies in Slovenia. Cent. Eur. J. Oper. Res. 2017, 25, 611–625. [Google Scholar] [CrossRef]
- Štreimikiene, D.; Šliogeriene, J.; Turskis, Z. Multi-criteria analysis of electricity generation technologies in Lithuania. Renew. Energy 2016, 85, 148–156. [Google Scholar] [CrossRef]
- Jatautas, J.; Kasiulis, E. The effect of legislation on hydropower development: Case study of Lithuania. Investig. Manag. Financ. Innov. 2016, 13, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, S. Impacts of wind energy on environment: A review. Renew. Sustain. Energy Rev. 2015, 49, 437–443. [Google Scholar] [CrossRef]
- Dragomir, G.; Şerban, A.; NǍstase, G.; Brezeanu, A.I. Wind energy in Romania: A review from 2009 to 2016. Renew. Sustain. Energy Rev. 2016, 64, 129–143. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank: A Clean Planet for All. A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy COM/2018/773 Final, Brussels. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0773 (accessed on 30 July 2021).
- European Commission. 2050 Long-Term Strategy. 2021. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en#tab-0-0 (accessed on 30 July 2021).
- European Commission. Why the EU Supports Wind Energy Research and Innovation. 2021. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/energy-research-and-innovation/wind-energy_en (accessed on 30 July 2021).
- Papież, M.; Śmiech, S.; Frodyma, K. Factors affecting the efficiency of wind power in the European Union countries. Energy Policy 2019, 132, 965–977. [Google Scholar] [CrossRef]
- Renewable Energy Association. The European Commission Has Approved the Polish Offshore Wind Farm Support Program. 2021. Available online: http://seo.org.pl/en/ke-zatwierdzila-polski-program-wsparcia-morskich-farm-wiatrowych (accessed on 30 July 2021).
- Higgins, P.; Foley, A. The evolution of offshore wind power in the United Kingdom. Renew. Sustain. Energy Rev. 2014, 37, 599–612. [Google Scholar] [CrossRef]
- Kandrot, S.; Cummins, V.; Jordan, D.; Murphy, J. Economic and employment impacts of offshore wind for Ireland: A value chain analysis. Int. J. Green Energy 2020, 17, 687–696. [Google Scholar] [CrossRef]
- O’Hanlon, Z.; Cummins, V. A comparative insight of Irish and Scottish regulatory frameworks for offshore wind energy—An expert perspective. Mar. Policy 2020, 117, 103934. [Google Scholar] [CrossRef]
- Johansen, K. Wind Energy in Denmark: A Short History [History]. IEEE Power Energy Mag. 2021, 19, 94–102. [Google Scholar] [CrossRef]
- Chu, Y.; Meisen, P. Review and Comparison of Different Solar Energy Technologies; Global Energy Network Institute (GENI): San Diego, CA, USA, 2011. [Google Scholar]
- Šúri, M.; Huld, T.A.; Dunlop, E.D.; Ossenbrink, H.A. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 2007, 81, 1295–1305. [Google Scholar] [CrossRef]
- Hofierka, J.; Kaòuk, J.; Gallay, M. The Spatial Distribution of Photovoltaic Power Plants in Relation to Solar Resource Potential: The Case of the Czech Republic and Slovakia. 2014. Available online: http://sunbird.jrc.it/pvgis/ (accessed on 30 July 2021).
- Timilsina, G.R.; Kurdgelashvili, L.; Narbel, P.A. Solar energy: Markets, economics and policies. Renew. Sustain. Energy Rev. 2012, 16, 449–465. [Google Scholar] [CrossRef]
- European Commission. Why the EU Supports Bioenergy Research and Innovation. 2021. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/energy-research-and-innovation/bioenergy_en (accessed on 30 July 2021).
Country | Share of RES_GEP in GEP (%) | Change 2019–2005 (pp) | Country | Share of RES_GEP in GEP (%) | Change 2019–2005 (pp) | ||
---|---|---|---|---|---|---|---|
2005 | 2019 | 2005 | 2019 | ||||
BE—Belgium | 3.9 | 21.9 | 17.9 | LT—Lithuania | 5.7 | 81.9 | 76.3 |
BG—Bulgaria | 10.7 | 18.0 | 7.3 | LU—Luxembourg | 24.1 | 85.9 | 61.8 |
CZ—Czech Republic | 4.6 | 12.9 | 8.3 | HU—Hungary | 5.2 | 13.8 | 8.5 |
DK—Denmark | 27.1 | 78.2 | 51.1 | MT—Malta | 0.0 | 10.5 | 10.5 |
DE—Germany | 11.3 | 40.9 | 29.6 | Netherlands | 7.5 | 18.9 | 11.4 |
EE—Estonia | 1.1 | 28.1 | 27.0 | AT—Austria | 64.7 | 77.8 | 13.1 |
IE—Ireland | 8.5 | 38.9 | 30.3 | PL—Poland | 3.5 | 16.0 | 12.5 |
EL—Greece | 11.7 | 33.2 | 21.5 | PT—Portugal | 18.6 | 54.2 | 35.7 |
ES—Spain | 16.2 | 37.8 | 21.6 | RO—Romania | 34.0 | 42.0 | 8.0 |
FR—France | 10.6 | 20.7 | 10.0 | SI—Slovenia | 23.6 | 32.6 | 8.9 |
HR—Croatia | 54.4 | 66.2 | 11.8 | SK—Slovakia | 15.2 | 24.2 | 8.9 |
IT—Italy | 18.3 | 40.1 | 21.9 | FI—Finland | 33.4 | 46.6 | 13.3 |
CY—Cyprus | 0.0 | 10.0 | 10.0 | SE—Sweden | 51.3 | 58.7 | 7.4 |
LT—Latvia | 69.6 | 49.6 | −20.0 | UK—United Kingdom | 5.0 | 37.8 | 32.8 |
EU27 | 16.3 | 34.6 | 18.3 |
Energy Product-Source (Eurostat’s Codes Included) | 2005 | 2019 | 2019/2005 | ||
---|---|---|---|---|---|
GWh | GWh | ||||
(1) | (2) | (3) | (4) | (5) | (6) |
RA000—Renewables and biofuels | 476,989.593 | 100 | 1,005,271.556 | 100 | 110.8% |
RA100—Hydro | 340,546.184 | 71.4 | 345,264.887 | 34.3 | 1.4% |
RA200—Geothermal | 5397.673 | 1.1 | 6725.806 | 0.7 | 24.6% |
RA300—Wind | 68,094.587 | 14.3 | 367,115.301 | 36.5 | 439.1% |
RA410—Solar thermal | 0.000 | 0.0 | 5683.000 | 0.6 | x |
RA420—Solar photovoltaic | 1458.688 | 0.3 | 120,034.721 | 11.9 | 8129.0% |
RA500—Tide, wave, ocean | 480.895 | 0.1 | 498.964 | 0.0 | 3.8% |
R5110-5150_W6000RI—Primary solid biofuels | 40,583.528 | 8.5 | 80,720.546 | 8.0 | 98.9% |
R5220P—Pure biodiesels | 0.000 | 0.0 | 29.541 | 0.0 | x |
R5290—Other liquid biofuels | 1767.730 | 0.4 | 5170.842 | 0.5 | 192.51% |
R5300—Biogases | 8063.642 | 1.7 | 54,951.305 | 5.5 | 581.47% |
W6210—Renewable municipal waste | 10,596.666 | 2.2 | 19,076.643 | 1.9 | 80.02% |
TOTAL—Total | 2,917,663.780 | x | 2,904,012.166 | x | −0.5% |
2005 | 2019 | 2005 | 2019 | ||||
---|---|---|---|---|---|---|---|
Country | Country | ||||||
Belgium | 0.584 | 0.536 | −0.048 | Lithuania | 0.852 | 0.608 | −0.244 |
Bulgaria | 0.857 | 0.515 | −0.342 | Luxembourg | 0.790 | 0.594 | −0.196 |
Czech Republic | 0.782 | 0.409 | −0.373 | Hungary | 0.791 | 0.517 | −0.274 |
Denmark | 0.716 | 0.711 | −0.005 | Malta | x | 0.849 | x |
Germany | 0.562 | 0.552 | −0.01 | Netherlands | 0.626 | 0.591 | −0.035 |
Estonia | 0.583 | 0.687 | 0.104 | Austria | 0.816 | 0.737 | −0.079 |
Ireland | 0.697 | 0.771 | 0.074 | Poland | 0.752 | 0.655 | −0.097 |
Greece | 0.795 | 0.614 | −0.181 | Portugal | 0.664 | 0.621 | −0.043 |
Spain | 0.685 | 0.646 | −0.039 | Romania | 0.857 | 0.722 | −0.135 |
France | 0.804 | 0.625 | −0.179 | Slovenia | 0.845 | 0.807 | −0.038 |
Croatia | 0.856 | 0.708 | −0.148 | Slovakia | 0.853 | 0.688 | −0.165 |
Italy | 0.713 | 0.448 | −0.265 | Finland | 0.731 | 0.603 | −0.128 |
Cyprus | 0.747 | 0.672 | −0.075 | Sweden | 0.820 | 0.711 | −0.109 |
Latvia | 0.846 | 0.700 | −0.146 | UK | 0.510 | 0.567 | 0.057 |
EU27 | 0.704 | 0.512 | −0.192 |
Number of Clusters | Silhouette Coefficient | ||
---|---|---|---|
2005 | 2011 | 2019 | |
8 | 0.713 | 0.598 | 0.519 |
9 | 0.790 | 0.480 | 0.590 |
10 | 0.810 | 0.554 | 0.603 |
11 | 0.830 | 0.649 | 0.545 |
12 | 0.852 | 0.832 | 0.537 |
# | Country | Hydro | Wind | Solar | Biofuels | Biogases | Waste | Other |
---|---|---|---|---|---|---|---|---|
1 | UK | 39.52 | 14.62 | 0.04 | 16.98 | 23.99 | 4.85 | 0.00 |
2 | BG, CZ, EL, FR, HR, LV, LT, LU, AT, RO, SI SK, SE | 93.34 | 2.44 | 0.14 | 2.53 | 1.00 | 0.49 | 0.06 |
3 | HU | 10.81 | 0.54 | 0.00 | 84.18 | 1.31 | 3.15 | 0.00 |
4 | DK | 0.23 | 67.41 | 0.02 | 19.30 | 2.86 | 10.17 | 0.00 |
5 | NL | 1.18 | 27.75 | 0.48 | 49.63 | 3.96 | 17.00 | 0.00 |
6 | DE, EE, IE, ES | 37.62 | 45.84 | 0.48 | 8.35 | 6.30 | 1.40 | 0.00 |
7 | BE, PL, PT, FI | 58.61 | 7.59 | 0.02 | 27.77 | 2.28 | 3.52 | 0.20 |
8 | MT | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
9 | CY | 0.00 | 38.54 | 61.45 | 0.00 | 0.00 | 0.00 | 0.00 |
10 | IT | 77.62 | 4.24 | 0.06 | 3.92 | 2.17 | 2.37 | 9.63 |
# | Country | Hydro | Wind | Solar | Biofuels | Biogases | Waste | Other |
---|---|---|---|---|---|---|---|---|
1 | FI | 51.48 | 1.99 | 0.02 | 44.75 | 0.66 | 1.11 | 0.00 |
2 | DE, CY, UK | 13.55 | 48.20 | 7.48 | 7.59 | 20.64 | 2.54 | 0.01 |
3 | BE, CZ | 24.20 | 14.59 | 19.84 | 28.16 | 8.79 | 4.41 | 0.00 |
4 | DK, IE | 6.57 | 74.84 | 0.06 | 12.11 | 3.06 | 3.35 | 0.00 |
5 | MT | 0.00 | 0.00 | 50.40 | 0.00 | 49.60 | 0.00 | 0.00 |
6 | EE, HU, PL | 10.37 | 25.99 | 0.02 | 58.00 | 4.16 | 1.47 | 0.00 |
7 | EL, ES, LT, PT | 49.78 | 38.11 | 4.71 | 5.13 | 1.53 | 0.52 | 0.21 |
8 | BG, FR, HR, LV, LU, AT, RO, SI, SK, SE | 84.89 | 6.67 | 1.68 | 4.09 | 1.71 | 0.89 | 0.08 |
9 | NL | 0.46 | 41.40 | 0.85 | 32.38 | 8.40 | 16.51 | 0.00 |
10 | IT | 56.25 | 11.61 | 12.72 | 6.15 | 4.01 | 2.60 | 6.66 |
# | Countries | Hydro | Wind | Solar | Biofuels | Biogases | Waste | Other |
---|---|---|---|---|---|---|---|---|
1 | IT | 40.92 | 17.17 | 20.13 | 7.58 | 7.03 | 2.01 | 5.16 |
2 | BG, FR, LV, LU, SK, FI, SE | 55.77 | 15.29 | 6.61 | 16.70 | 4.20 | 1.34 | 0.07 |
3 | CZ | 28.30 | 6.24 | 20.61 | 21.38 | 22.54 | 0.93 | 0.00 |
4 | HR, AT, RO, SI | 74.81 | 14.36 | 4.20 | 4.24 | 1.95 | 0.15 | 0.27 |
5 | HU | 4.67 | 15.55 | 31.94 | 37.74 | 6.78 | 2.92 | 0.38 |
6 | EE | 0.89 | 32.07 | 3.43 | 58.81 | 1.81 | 2.99 | 0.00 |
7 | BE, NL | 3.06 | 49.16 | 22.15 | 14.49 | 4.29 | 6.86 | 0.00 |
8 | MT | 0.00 | 0.03 | 97.04 | 0.00 | 2.93 | 0.00 | 0.00 |
9 | DK, IE, EL, ES LT, PL, PT, UK | 17.93 | 57.35 | 8.41 | 11.48 | 2.10 | 1.73 | 0.10 |
10 | DE, CY | 5.17 | 48.52 | 30.54 | 2.32 | 12.25 | 1.17 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuszewska-Janica, A.; Żebrowska-Suchodolska, D.; Ala-Karvia, U.; Hozer-Koćmiel, M. Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019. Energies 2021, 14, 6276. https://doi.org/10.3390/en14196276
Matuszewska-Janica A, Żebrowska-Suchodolska D, Ala-Karvia U, Hozer-Koćmiel M. Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019. Energies. 2021; 14(19):6276. https://doi.org/10.3390/en14196276
Chicago/Turabian StyleMatuszewska-Janica, Aleksandra, Dorota Żebrowska-Suchodolska, Urszula Ala-Karvia, and Marta Hozer-Koćmiel. 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019" Energies 14, no. 19: 6276. https://doi.org/10.3390/en14196276
APA StyleMatuszewska-Janica, A., Żebrowska-Suchodolska, D., Ala-Karvia, U., & Hozer-Koćmiel, M. (2021). Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019. Energies, 14(19), 6276. https://doi.org/10.3390/en14196276