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Abstract: In today’s power systems, the widespread adoption of smart grid applications requires
sophisticated control of load variability for effective demand-side management (DSM). Conventional
Energy Storage System (ESS)-based DSM methods in South Korea are limited to real-time variability
control owing to difficulties with model development using customers’ load profiles from sampling
with higher temporal resolution. Herein, this study thus proposes a method of controlling the
variability of customers’ load profiles for real-time DSM using customer-installed ESSs. To optimize
the reserved capacity for the proposed maximum demand control within ESSs, this study also
proposes a hybrid method of load generation, which synthesizes approaches based on Markov
Transition Matrix (MTM) and Artificial Neuron Network (ANN) to estimate load variations every
15 min and, in turn reserve capacity in ESSs. The proposed ESS-based DSM strategy primarily
reserves capacity in ESSs based on estimated variation in load, and performs real-time maximum
demand control with the reserved capacity during scheduled peak shaving operations. To validate
the proposed methods, this study used load profiles accumulated from industrial and general
(i.e., commercial) customers under the time-of-use (TOU) rate. Simulation verified the improved
performance of the proposed ESS-based DSM method for all customers, and results of Kolmogorov-
Smirnov (K–S) testing indicate advances in the proposed hybrid estimation beyond the stand-alone
estimation using the MTM- or ANN-based approach.

Keywords: demand-side management (DSM); energy storage system (ESS); maximum demand
control; synthetic load generation; peak shaving

1. Introduction

Around the world, smart grids have been widely adopted to respond to environmental
problems, enhance energy efficiency, and improve electric services [1]. Smart grids are
also considered to improve stability in power systems amid the expansion of small-scale
renewable energy resources (RES) and the increase of unpredictable power demand such
as charging electric vehicles [2,3]. Using various smart grid applications, system operators
have begun replacing supplier-centered demand-side management (DSM) with customer-
centered DSM [4], which the operators have encouraged by providing specialized devices
capable of load management and incentivizing participation via electricity tariff structures
developed for DSM [5].

DSM is typically applied in three ways: peak shaving, peak shifting, and valley fill-
ing [6,7]. For one, peak shaving decreases seasonal and hourly peak demand for electricity
according to the use of maximum demand controllers, emergency blackout, the remote
control of heating and cooling in buildings, and other conditions. Peak shifting reduces
peak demand by shifting demand during on-peak times to off-peak times, a thermal stor-
age heating and cooling system using midnight power service is a good example. Last,
valley filling increases demand during off-peak times as a means to improve the system’s
utilization. Using those applications, DSM has improved the stability and reliability of

Energies 2021, 14, 6292. https://doi.org/10.3390/en14196292 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8762-637X
https://doi.org/10.3390/en14196292
https://doi.org/10.3390/en14196292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14196292
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14196292?type=check_update&version=2


Energies 2021, 14, 6292 2 of 17

power systems in North America and the Persian Gulf, as well as reduced carbon emissions
in China [8]. Policies for DSM have also been established to reduce carbon emissions,
improve energy efficiency, and popularize demand response in the United Kingdom [9].

Energy storage systems (ESS) can be applied in DSM to store energy during certain
times and provide the stored energy immediately if necessary [10]. In that way, customer-
installed ESSs can replace conventional maximum demand controllers installed for DSM,
which perform peak shaving or shifting on the customers’ side to effectively control their
electricity loads under a time-of-use (TOU) tariff structure. For DSM, customer-installed
ESSs collect information about customers’ loads, tariff rates, and the status of their devices
such as batteries and power conditioning systems (PCS). Based on that information, ESSs
predict the profiles of customers’ future loads for the operational scheduling of charging
and discharging.

Among previous studies that have proposed ESS-based DSM methods for customers
using TOU tariffs, some have introduced estimating the optimal capacity of ESSs to reduce
the annual peak power used by industrial, commercial, and residential customers [11–13].
Kim et al. have proposed an optimal operational method using multiple ESSs for high
demand customers that they validated using real-time control [14]. Kodaira et al. proposed
an operational strategy for ESSs to allow peak shaving according to the probabilistic
prediction of loads to minimize the peak effects in distribution [15]. Yoon et al. have
applied a real-coded genetic algorithm for the efficient scheduling of ESS charging and
discharging in order to improve the feasibility of the systems [16]. Kang et al. proposed
another ESS operational strategy that involves participating in the demand response (DR)
market and self-saving operations for ESSs [10]. Lee et al. developed an ESS scheduling
algorithm that integrates self-saving and participation in DR based on predicted load
profiles [17]. Jeong et al. developed adaptive ESS operation strategies based on the
classification of different customers’ loads [18].

However, ESS-based DSM methods have been limited in real-time control of variability
in load. Several researches have introduced that the widespread adoption of smart grid
applications in distribution such as distributed RESs and electric vehicles causes severe
variability in load, which can deteriorate the quality of power [19–23]. To develop ESS-
ready scheduling algorithms capable of real-time control against load variations, it is
required to acquire information including real-time load variability for an acceptable
duration. Unfortunately, the ESS-based DSM methods have been developed with reference
to samples of customers’ historical load profiles representing an accumulated duration,
which has been 15 min in South Korea and cannot show real-time load variability This
limitation brings the developed method to schedule ESS to discharge fixed amounts of
power during such accumulated durations. To overcome such limited resolution, effective
estimation techniques capable of predicting load variations are needed that can generate
synthetic load profiles with higher resolutions.

To estimate variability in power systems, several studies have proposed synthetic data
generation models. Among them, Ngoko et al. applied a Markov model for the synthesis
of high-resolution data about solar radiation [24]. Kang and Tam generated synthetic
sequences of proposed characterization parameters of measured solar data using a Markov
approach and verified the similarity between observed and synthetic sequences using
the Kolmogorov–Smirnov (K-S) test [25]. Pillai et al. proposed synthetic load generation
to reduce the uncertainty of power system designs for a newly developed area; to that
end, they applied an artificial neuron network (ANN) model to estimate synthetic loads
utilizing corresponding meteorological data representing the targeted area [26]. Lastly,
Ekonomou et al. utilized temperature, humidity, and other meteorological parameters
to develop an ANN-based estimation model for synthetizing sequences of demand and
more accurate estimation via training, verification, and testing processes [27]. All of those
methods of estimating variability in power systems developed with stochastic or artificial
algorithms provide practical guidance for effectively estimating load variation within the
sampling limitation.
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Against that background, this study here proposes an ESS-based DSM approach that
enables the simultaneous maximum demand control with variability in customers’ loads
within 15 min during peak shaving. To optimize the reservation of capacity given the
proposed maximum demand control in ESSs, this study also proposes a new method
concerning the generation of synthetic loads to estimate 1-min load variations during
15 min periods with a hybrid model developed by combining the estimation models of
Markov transition matrixes (MTM) and the ANN algorithms. The proposed methods
were simulated with load profiles accumulated by industrial and general (i.e., commercial)
customers, for results demonstrating the advanced performance of the proposed methods
compared with conventional approaches.

In what follows, Section 2 introduces the conventional ESS-based means of control
for DSM under TOU tariff structures. Next, Section 3 proposes an ESS-based method
for controlling maximum demand minute-by-minute and introduces a hybrid model for
synthesizing load generation to effectively estimate minute-based variations from a sample
of 15-min load profiles. Section 4 presents our simulations of the proposed methods based
on load profiles accumulated by different customers, after which Section 5 concludes
the work.

2. Conventional ESS Control for DSM
2.1. TOU Tariff Structure

Korea Electric Power Corporation (KEPCO) provides TOU tariff structures to indus-
trial and general (i.e., commercial) customers with different electricity rate schedules for
season and time, shown in Table 1 [5]. The schedules are classified into winter and non-
winter seasons (i.e., spring, summer, and fall), and 24-h weekday schedules for each season
are classified into three load-based phases: off-peak, mid-peak, and on-peak. On Saturdays,
the on-peak load is replaced by the mid-peak load, and on Sundays and holidays, the
mid-peak and on-peak loads are replaced by the off-peak load. Table 2 presents examples
of electricity rate tables for industrial and general customers provided by KEPCO [5], in
which service refers to customers’ contract demand, B indicates a demand of 300 kW or
more, and High-voltage A and High-voltage B indicate the voltages of 3.3–66 kV and 154
kV, respectively. With rates differentiated by demand and usage, the monthly charges for
industrial and general customers in South Korean won (KRW) can be calculated as:

Monthly Charge = 1.137 ×
{

Cdemand × Ppeak + ∑
(
Cusage × Eusage

)}
(1)

where 1.137 is the value-added tax (VAT) of 10% plus so-called “Electric Power Industry
Basis Fund” of 3.7%; Cdemand is the demand charge rate in KRW/kW; Ppeak is the annual
peak of customers in kW; and Cusage and Eusage are the usage charge rates in KRW/kWh
and energy usages in kWh at the corresponding hours, respectively. Ppeak is decided in
15-min intervals during mid-peak and on-peak loads, and valid for a year after a new peak
appears. Because this new peak can significantly increase the monthly charge due to the
higher rate on the demand charge (Cdemand), real-time control of load variability is needed
to restrain annual peaks of customers.

Table 1. Electricity rate schedules for season and time [5].

Classification Spring, Summer, and Fall
(1 March–31 October)

Winter
(1 November–28 February)

Off-peak 23:00–09:00 23:00–09:00

Mid-peak
09:00–10:00
12:00–13:00
17:00–23:00

09:00–10:00
12:00–17:00
20:00–22:00

On-peak 10:00–12:00
13:00–17:00

10:00–12:00
17:00–20:00
22:00–23:00
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Table 2. Examples of electricity rate tables for industrial and general customers [5].

Class Cdemand[KRW/kW] Cusage [KRW/kWh]
Period Summer Spring & Fall Winter

Industrial service (B)
High-voltage (B),

Option II
7380

Off-peak load 56.2 56.2 63.2
Mid-peak load 108.5 78.5 108.5
On-peak load 189.7 108.8 164.7

General service (B)
High-voltage (A),

Option II
8320

Off-peak load 56.1 56.1 63.1
Mid-peak load 109.0 78.6 109.2
On-peak load 191.1 109.3 166.7

2.2. Peak Shaving and Arbitrage

In conventional DSM, control of customer-installed ESSs for TOU tariffs is delegated
to the peak shaving and arbitrage algorithms [18]. On the one hand, peak shaving saves de-
mand charges by reducing Ppeak as it discharges ESSs in order to not exceed a previously set
peak reference determined by specifications for the installed ESSs based on data purporting
historical loads. The reference also considers appropriate buffers to stabilize real-time
control, which primarily depends on accurate load forecasting [28,29]. On the other hand,
arbitrage utilizes time-variant rates of electricity consumption (Cusage), as introduced in
Table 2. The operation charges ESSs during off-peak loads, in which Cusage is relatively low,
and discharges ESSs during mid-peak and on-peak loads, in which Cusage is relatively high,
thereby reducing usage rates. Figure 1 shows a flow-chart of the peak shaving and arbitrage
operations. When the customers’ load exceeds the set peak reference, ESSs preferentially
discharge for peak shaving; when it does not, ESSs discharge for arbitrage if needed. Peak
shaving is prioritized over arbitrage since it reduces demand charges more efficiently than
arbitrage. Figure 2 shows an example of peak shaving with conventional ESS-based DSM
control for a certain industrial customer’s load, which takes an M-shaped pattern. The
ESS’s capacity is assumed to be 10% of the customer’s annual peak, and the ESS is charged
during the on-peak load (i.e., 1:00–5:00) and discharged when the load exceeds the peak
reference (i.e., 9:00–12:00 and 14:00–17:00).
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Figure 2. Example of the result of peak shaving with the conventional ESS-based DSM.

3. Proposed ESS Operation for DSM
3.1. ESS-Based Maximum Demand Control

The conventional maximum demand control is performed with specialized equipment
that detects or estimates the maximum demand of the corresponding customers’ load
accumulated in 15 min and blocks parts of the loads step-by-step according to prearranged
schedule when the estimated maximum demand exceeds the target demand [30,31]. By
contrast, ESS-based maximum demand control activates the ESS instead of blocking the
load [32].

Figure 3 demonstrates an operating principal of maximum demand control. To begin,
the control mechanism always compares the accumulated current demand and the reference
demand in real time within 15 min. Once the predicted demand at the end of the 15 min,
calculated by an increasing rate of the accumulated current demand, is estimated to exceed
the target demand, the ESS-based approach activates the ESS to reduce the current demand.
That step allows keeping the current demand at the end of the 15 min under the target
demand. The reference demand (ER) and predicted demand (EP) are calculated as:

ER = ET × t
T

(2)

EP = EC +
∆E
∆t

× (T − t) (3)

where ET is the target demand; T is demand period; and t is the elapsed period.
The ESS-based maximum demand control has suggested operational areas and bound-

aries for ESS operation as illustrated in Figure 4 [32]. The maximum line indicates a
limitation of the switchgears installed by customers and consequently shows the greatest
slope. The ESS-based lower boundary is the line at which the ESS can reduce demand
according to its maximal discharge. The ESS-based upper boundary is generated in parallel
by the upward movement of the ESS-based lower boundary, meaning that the marginal
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boundary can be controlled by the ESS. The control release line provides a guideline for
the ESS about stopping its discharge; if the current demand reaches the area below the line,
then the corresponding 15 min period does not require demand control. It is generated in
parallel by the downward movement of the maximum line. However, if the current de-
mand reaches the area below the maximum line and above the ESS-based upper boundary,
then the system cannot maintain the current target demand and consequently needs to
increase the target.
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3.2. Estimation of 1-Min Load Variations
3.2.1. MTM-Based Estimation

To estimate 1-min load variations within a 15 min period, this study adopted a
probabilistic model using an MTM. The MTM indicates the probability of transitioning
(pij) from the current state to the next state if a change in state occurs corresponding to
time [33]. Figure 5 shows the general n × n MTM; the sum of each row is 1, whereas pij is a
value between 0 and 1.
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Data regarding variability (V(t)), generated to obtain high-resolution data within the
15-min demand period, were calculated as:

V(t) =
P1(t)− P15(t)

P15, peak
(4)

where P1(t) is 1-min load data; P15(t) is the average value of P1(t) in 15-min intervals;
and P15,peak is the peak during the corresponding 15 min. The state of MTM (Sk) can be
determined as follows:

Sk = Vmin + d(k − 1), k = 1, 2, . . . , m + 1 (5)

where Vmin is the minimum value of data regarding variability; m is the total number of
gaps between states; and d is a gap between states, calculated as:

d =
Vmax − Vmin

m
(6)

where Vmax is the maximum value of the data regarding variability. Once the MTM was
generated, the estimation data were synthesized by first adding the accumulation to each
row in the MTM and later creating lines of the cumulative probability of transition. Second,
the initial current state of those lines was randomly defined. Third, the probability from
the current state to the next state was generated as a random value between 0 and 1, such
that if the value is less than or equal to the value at the row of the lines of the cumulative
probability of transition, then the next state is determined. That process repeats itself, and
minute-by-minute data regarding variability (Vg(t)) are estimated. Last, 1-min load data
(P1, g(t)) are calculated as:

P1,g(t) = Vg(t)× P15,peak + P15(t) (7)

3.2.2. ANN-Based Estimation

To estimate 1-min variations within the 15-min period, this study also used a feed-
forward ANN model, in which feed-forward refers to a condition in which the flow is
unidirectional, and no feedback between neurons exists [27]. Figure 6 shows a general struc-
ture of the ANN model, containing three layers-input, hidden, and output-each composed
of neurons. A weighted connection exists between layers, and the input layer comprises
input variables. Each neuron in the hidden layer is deformed by the sum of input variables
weighted by W(1) [34,35], and a hyperbolic tangent sigmoid function is used [27]. The
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output variables in the output layer are the sum of hidden nodes weighted by W(2). The
ANN-based data regarding variability (Yk,g(t)) are calculated as:

Yk,g(t) = W(2)
0k +

M

∑
m=1

(
W(2)

mk ·
(

2

1 + e−2(W(1)
0m +∑N

n=1 W(1)
nm Xn(t))

)
− 1)

)
(8)

where k refers to gaps within the 15-min demand period (k = 1, 2, . . . , 15); M is the number
of hidden neurons; N is the number of input variables; and W(1) and W(2) are the ANN
model parameters of each layer. The learning algorithm of the model minimizes the mean
squared error (MSE) of the actual and generated data by adjusting parameters, W(1) and
W(2). The MSE is calculated as:

MSE =
1
l

l

∑
t=1

(
Yk,actual(t)− Yk,g(t)

)2
(9)

where l is the length of learning data and Yk,actual(t) is actual variability over 1 min. The
learning algorithm uses resilient propagation to minimize the MSE [36,37].
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Table 3 summarizes the input and output variables used in the proposed ANN-based
estimation model. Last, the generated variability data are converted into 1-min generated
data regarding load according to Equation (7), as in the MTM model as well.

Table 3. Configuration of training data.

Variables Information

Inputs

P15(t) Variables of customers’ demand during 15 min

TOU(t) Variables of the TOU tariff
(i.e., off-peak = 1, mid-peak = 2, on-peak = 3)

Day(t) Variables for days of the week
(i.e., Mon. = [1,0,0,0,0,0,0], Tue. = [0,1,0,0,0,0,0] . . . )

Interval(t)
Variables of intervals that divide sections based on the

maximum and minimum values of P(t)
(i.e., 0–25 kW = 1, 25–50 kW = 2, 50–75 kW = 3, 75–100 kW = 4)

Outputs V(t) 1-min variability data during the corresponding 15 min
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3.2.3. Hybrid

This study also developed a hybrid model by combining the MTM and ANN models
to improve the accuracy of estimation. The estimation model showing high variability
has an advantage or improving the stability of control because its generated 1-min load
tends to conservatively reserve the ESS’s capacity. However, greater variability could
deteriorate the accuracy of the estimation of the generated data. As demonstrated in the
TOU tariff structure in Section 2.1, the annual peak affecting the charge in demand is
determined at either the on-peak load or the mid-peak load. Thus, the proposed hybrid
model utilizes the estimation model showing greater variability to generate load profiles
at the on-peak and mid-peak load times, whereas the model showing smaller variability
generates load profiles at the off-peak load time. That combined approach improves both
the stability of the ESS’s reserved capacity for maximum demand control and the accuracy
of the estimation of all generated data.

Figure 7 illustrates the development of the proposed hybrid model. In the first stage,
the 1-min data regarding variability were generated according to information provided
about load. Thereafter, estimating 1-min load variations over 15 min was performed by
both the MTM and ANN-based models. The model with the greater standard deviation in
variability was used to estimate the on- and mid-peak loads, whereas the model with the
smaller standard deviation was used to estimate the off-peak load.
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3.3. ESS-Based DSM: A Proposal

In turn, this study proposes a new operational method for customer-installed ESSs for
efficient DSM that can offer real-time maximum demand control within 15-min periods.
The method effectively applies ESS-based maximum demand control to conventional peak
shaving by:

• Step 1: Generating synthetic load profiles including minute-by-minute load fluctu-
ations for an entire year using the proposed hybrid estimation model described in
Section 3.2.3;

• Step 2: Calculating optimal capacity within the ESS for controlling maximum demand,
as described in Section 3.1, based on the generated 1-min synthetic load profiles; and

• Step 3: Establishing a new peak reference for simultaneous peak shaving and maxi-
mum demand control.

This approach improves the effect of peak shaving by controlling variability within
15 min during the real-time operation of the ESS.

Figure 8 presents a flow-chart of the proposed ESS-based DSM method. Top priority is
assigned to ESS-based maximum demand control, which allows simultaneously operating
with peak shaving during days with annual peaks higher than the newly established peak
reference. The new reference can be aggressively decreased to improve peak shaving’s
effect compared with the conventional peak reference, which includes buffers to stabilize
control due to the accuracy of load forecasting as introduced in Section 2.2. If those annual
peaks can be controlled by the peak shaving operation with the conventional peak reference,
then maximum demand control become unnecessary. If annual peaks are not showing,
then the ESS performs arbitrage according to daily charging and discharging schedules
similar to the conventional ESS-based DSM, as described in Figure 1.
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Figure 9 shows an example of the simultaneous operation of peak shaving and maxi-
mum demand control. The customer’s load and ESS specification are identical to the case
in Figure 2, although the proposed DSM algorithm is added. The proposed peak reference
for peak shaving is established as 54,169 kW, for a decrease of 8 kW from the conventional
peak reference, 54,177 kW. That result indicates additional ESS discharges for maximum
demand control during several 15-min periods while ESS is discharged for peak shaving
(i.e., 9:00–12:00 and 14:00–17:00).
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4. Simulation
4.1. Data

The simulation to verify the proposed ESS-based DSM operation utilizes 15-min load
profiles accumulated by industrial and general customers using South Korea’s TOU tariff
from 1 January to 31 December 2016. Figure 10 shows daily patterns of those profiles,
which are normalized by their annual peaks for effective comparison. The daily loads
of manufacturing industries (i.e., Customers A and B) show an M-shaped pattern in
Figure 10a; the TOU tariff structure of Industrial service (B) High-voltage (B), Option II,
is applied to those two customers. By contrast, the daily loads of commercial buildings
(i.e., Customers C and D) show a square wave-shaped pattern in Figure 10b, and General
service (B) High-voltage (A), Option II, is applied.

The 1-min customer load profiles are exceedingly limited compared with the 15-min
load profiles. To estimate 1-min load variations, this study used the 1-min load profiles of
Customer A measured across three weeks. Data from first 2-week period (i.e., 20,160 sam-
ples) were applied to develop the estimation model, whereas data from the last week (i.e.,
10,080 samples) were used to verify the developed model.
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4.2. Verification of Estimating 1-Min Load Variations

To verify the proposed estimation models for 1-min load variations, this study con-
ducted a K–S test, which verifies statistical similarity between generated and actual
datasets [38]. The K–S test integral (KSI) denoting the sum of differences in the cumulative
distribution function (CDF) of the two datasets is calculated as [39]:

KSI(%) = 100

∫ xmax
xmin

Dn dx

ac
(10)

where xmax and xmin are the maximum and minimum values of data, respectively; Dn is
the differences between the CDF of the actual and generated datasets; and ac indicates the
critical area, which is calculated as:

ac = Vc × (xmax − xmin) (11)

where Vc is a threshold with a 99% confidence interval. OVER denotes the statistical
similarity of two datasets when the difference in CDF between them exceeds the threshold.
That value is calculated as:

OVER(%) = 100

∫ xmax
xmin

aux dx

ac
(12)

where, aux is a value that exceeds the threshold and is calculated as:

aux =

{
Dn − Vc, i f Dn > Vc

0, i f Dn ≤ Vc
(13)

Figure 11 shows daily 1-min load profiles of Customer A estimated by the proposed
MTM, ANN, and hybrid models as well as measured load profiles. Because the standard
deviation of the estimated 1-min variations of the MTM and ANN models were 0.0110 and
0.0161, respectively, the hybrid model was developed by applying the MTM model, which
showed lower variability, to estimate the off-peak loads while applying the ANN model,
which showed higher variability, to estimate the on- and mid-peak loads. The standard
deviation of the hybrid model was 0.0140, which was the standard deviation closet to the
measured data, 0.0134.

Figure 12 shows the CDFs and K-S statistics of the estimation results of the MTM, ANN,
and hybrid models, whereas Table 4 compares KSI and OVER values of the estimation
results. The hybrid model indicated a low KSI value and 0 OVER compared to the MTM
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and ANN estimations. Those results verify the improved estimation performance of the
hybrid model.
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Figure 12. Estimation results of the MTM, ANN, and hybrid models: (a) CDF and (b) K–S statistic (Dn).

Table 4. Estimated KSI and OVER of results of the MTM, ANN, and hybrid models.

K–S Test MTM ANN Hybrid

KSI (%) 37.1217 36.0646 13.2477
OVER (%) 10.8233 4.4234 0

4.3. Result of the Simulation of the Proposed ESS-Based DSM

The proposed ESS-based DSM algorithm was simulated during the entire year for
four customers: Customers A, B, C, and D. For the simulations, the ESS capacity of each
customer was assumed to be 10% of each annual peak with 1 C-rate capability of charging
and discharging. The charging and discharging efficiencies of the ESS were assumed to
be 91% and 99%, respectively [10]. Consequently, round-trip efficiency was calculated as
approximately 90%. For the reserved capacity of ESS-based maximum demand control,
1-min variations of the 15-min load profiles of customers were estimated with the hybrid
model developed in Section 4.2. Figure 13 shows the estimated results of 1-min synthetic
load profiles for Customers A–D on the same days in Figure 10.
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The simulation results were compared according to a proposed parameter of feasibility
analysis, benefit per battery (BPB), calculated as:

BPB = (Coriginal − CDSM)/SBAT (14)

where Coriginal is the annual electricity cost of the corresponding customer calculated
by applying the original load profiles to Equation (1); CDSM is the annual electricity cost,
including savings from the ESS-based DSM; and SBAT is the corresponding battery capacity.

Table 5 summarizes the simulation results of the proposed ESS-based DSM operations
compared with the conventional ESS-based DSM approaches described in Section 2.2 for
Customers A–D. For all customers, the proposed algorithm showed improved performance
due to increased BPBs with decreased peak references from peak shaving. In addition, the
increased BPB was higher for Customers A and B, at +21.4 and +146.7 (KRW/kWh) respec-
tively, compared with that of Customers C and D, which were +7.7 and +4.2 (KRW/kWh),
also respectively. That difference indicates that the proposed method is more effective for
the M-shaped daily load patterns than the square wave-shaped patterns.

Table 5. Simulation results of the proposed ESS-based DSM for Customers A–D.

Customer ESS-Based DSM Peak Ref. [kW] BPB [KRW/kWh]

Customer A
Conventional 49,589.1 82,727.5

Proposed 49,587.9 82,748.9 (+21.4)

Customer B
Conventional 54,177.3 79,893.0

Proposed 54,167.9 80,039.7 (+146.7)

Customer C
Conventional 2288.42 74,452.6

Proposed 2288.40 74,460.3 (+7.7)

Customer D
Conventional 4232.95 62,652.3

Proposed 4232.93 62,656.5 (+4.2)

5. Conclusions

As a result of this study, we proposed an ESS-based DSM method that developed by
applying ESS-based maximum demand control to the conventional DSM operations of
customer-installed ESSs. The new method enables the simultaneous real-time control of
load variations within 15-min periods during conventional peak shaving, which is opti-
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mized by 15-min accumulated load profiles and needs to consider buffers for establishing
its peak reference due to the limitation of being unable to control variability in 15-min
periods. This study validated the proposed ESS-based DSM method via simulation using
load profiles accumulated from four industrial and general customers under South Korea’s
TOU tariff structure. The simulation compared the conventional and proposed ESS-based
DSM for all four customers using a proposed feasibility parameter, BPB, calculated by
annual savings with the DSM application based on battery size. The simulation revealed
that the proposed method improved the performance for all customers and performed
better for M-shaped daily load patterns (i.e., Customers A and B) than square wave-shaped
patterns (i.e., Customers C and D).

This study also proposed a hybrid method to estimate 1-min variations in 15-min load
profiles of customers to reserve an ESS’s capacity for maximum demand control. First, we
developed two estimation models based on the MTM and ANN approaches. The proposed
hybrid model applies the model with the higher variability in estimating the load profiles
on mid-and on-peak loads, whereas the model showing the lower variability was used to
estimate off-peak loads. The 1-min load profiles measured from an industrial customer (i.e.,
Customer A) for 3 weeks were used for model development (i.e., 2 weeks) and validation
(i.e., 1 week). The developed ANN-based estimation model showed greater variability,
whereas the MTM-based model showed lower variability. The hybrid method combines
the ANN approach for estimating mid-and on-peak loads and the MTM approach for
estimating off-peak loads. The K–S test results using KSI and OVER indicated the improved
estimation of the hybrid method compared with the MTM- and ANN-based estimations.

Our work to improve ESS-based DSM algorithms more broadly seeks to increase the
feasibility of customer-installed ESSs and, in turn, accelerate the widespread use of ESSs.
To that end, future studies should apply the proposed ESS-based methods of controlling
variability to effectively control the variability of RESs such as solar and wind, which have
sporadic output characteristics. In addition, the proposed approach to generating synthetic
high-resolution signals can be used to estimate variability in the generation of those RESs.
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