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Abstract: This work aims at underscoring the need for the accurate quantification of the sensitivities
(i.e., functional derivatives) of the results (a.k.a. “responses”) produced by large-scale computational
models with respect to the models’ parameters, which are seldom known perfectly in practice. The
large impact that can arise from sensitivities of order higher than first has been highlighted by
the results of a third-order sensitivity and uncertainty analysis of an OECD/NEA reactor physics
benchmark, which will be briefly reviewed in this work to underscore that neglecting the higher-
order sensitivities causes substantial errors in predicting the expectation and variance of model
responses. The importance of accurately computing the higher-order sensitivities is further high-
lighted in this work by presenting a text-book analytical example from the field of neutron transport,
which impresses the need for the accurate quantification of higher-order response sensitivities by
demonstrating that their neglect would lead to substantial errors in predicting the moments (ex-
pectation, variance, skewness, kurtosis) of the model response’s distribution in the phase space of
model parameters. The incorporation of response sensitivities in methodologies for uncertainty
quantification, data adjustment and predictive modeling currently available for nuclear engineering
systems is also reviewed. The fundamental conclusion highlighted by this work is that confidence
intervals and tolerance limits on results predicted by models that only employ first-order sensitivities
are likely to provide a false sense of confidence, unless such models also demonstrate quantitatively
that the second- and higher-order sensitivities provide negligibly small contributions to the respec-
tive tolerance limits and confidence intervals. The high-order response sensitivities to parameters
underlying large-scale models can be computed most accurately and most efficiently by employ-
ing the high-order comprehensive adjoint sensitivity analysis methodology, which overcomes the
curse of dimensionality that hampers other methods when applied to large-scale models involving
many parameters.

Keywords: high-order response sensitivities to model parameters; curse of dimensionality; best-
estimate predicted model responses; best-estimate predicted model parameters; adjusted parameters
and responses; data assimilation; model calibration

1. Introduction

The state-of-the-art computational tool for sensitivity analysis, uncertainty quantifi-
cation and “data adjustment” of model responses (effective multiplication factors, reac-
tion rates) in reactor physics and reactor criticality safety is embodied in the module
TSURFER [1] of the code system SCALE, developed at the Oak Ridge National Laboratory.
The methodology underlying TSURFER is the so-called “generalized linear least squares
adjustment (GLLSA)” procedure [2], which is limited to incorporating just the first-order
sensitivities of the response with respect to the model parameters. The first-order response
sensitivities to the many thousands of model parameters (cross-sections, number densities,
etc.) involved in reactor physics computations are computed efficiently and accurately
using the first-order adjoint sensitivity analysis method.
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Since a general-purpose adjoint sensitivity analysis methodology capable of comput-
ing second-order sensitivities efficiently, reliably and accurately for large-scale systems
(such as encountered in reactor physics) was unavailable in the past, the potential effects
of higher-order sensitivities were not considered. However, a general-purpose, efficient
and accurate methodology was recently developed by Cacuci [3–5] and was applied, in a
sequence of pioneering works [6–11], to perform a comprehensive second-order sensitivity
and uncertainty analysis of an OECD/NEA polyethylene-reflected plutonium (acronym:
PERP) reactor physics benchmark [12], which comprised 21,976 uncertain models parame-
ters (including 180 group-averaged total microscopic cross-sections, 21,600 group-averaged
scattering microscopic cross-sections, 120 parameters describing the fission process, 60 pa-
rameters describing the fission spectrum, 10 parameters describing the system’s sources
and six isotopic number densities). Thus, the PERP benchmark comprises 21,976 first-
order sensitivities of the leakage response with respect to the model parameters and
482,944,576 second-order sensitivities (of which 241,483,276 are distinct from each other).
These fundamental works [6–11] have demonstrated that, for this benchmark, many second-
order sensitivities were significantly larger (by over an order of magnitude) than the first-
order sensitivities. Consequently, the cumulative effects of the second-order sensitivities on
the predicted uncertainties of the PERP benchmark’s response far exceeded the effects of
the first-order sensitivities. For example, for fully correlated total cross-sections, neglecting
the second-order sensitivities would cause an error as large as 2000% in the expected value
of the leakage response and up to 6000% in the variance of the leakage response.

The results obtained in [6–11] have motivated the quest for investigating the third-
order sensitivities of a large-scale linear system such as the PERP benchmark. For this
purpose, Cacuci [12] developed “The Third-Order Adjoint Method for Sensitivity Analysis
of Response-Coupled Linear Forward/Adjoint Systems”, which was applied to com-
pute [13–15] the largest third-order sensitivities of the PERP benchmark response, namely
the 5,832,000 third-order sensitivities of the PERP response to the 180 total cross-sections.
The results obtained in [13–15] indicated that, for a uniform standard deviation of 10%
of the microscopic total cross-sections, the third-order sensitivities contribute 80% to the
response variance, whereas the contribution stemming from the first- and second-order
sensitivities amount only to 2% and 18%, respectively. Neglecting the third-order sensi-
tivities could cause a very large non-conservative error by under-reporting the response
variance by a factor of 506%.

The results obtained in [14–16] have motivated the investigation reported in this work,
which demonstrates that significant, non-negligible values of second- and higher-order
sensitivities, such as those observed in [6–11,14–16], are not an isolated phenomenon but
are actually generic to the fundamental physical processes of neutron scattering (“slowing
down”) in any medium. This work is structured as follows: Section 2 briefly reviews the
computational model of the PERP benchmark and the impact of the second- and third-
order PERP sensitivities on the expectation and variance of the PERP benchmark’s leakage
response. The computational model of the PERP benchmark involves the solution of the
neutron slowing-down and transport (Boltzmann) equation, which is generic to modeling
any reactor physics or shielding system and, therefore, serves to the introduction of the
simplified physical model of neutron slowing down, which was originally developed by
Bethe [17] and used ever since [18–20] for computing the intra-group fluxes needed to
generate multigroup cross-section libraries, such as those contained in SCALE [1], which
are in turn needed to solve the multigroup form of the Boltzmann equation. Notably, a sen-
sitivity analysis of neutron slowing down processes does not seem to have been published
in the literature thus far. Section 3 presents the exact high-order sensitivity analysis of the
neutron slowing down equation/model, showing that all of the relative sensitivities of
the neutron flux are unity, so none can be dismissed a priori as “unimportant”. The exact
uncertainty analysis if the slowing down model is also presented in Section 3, underscoring
the importance of the higher-order sensitivities in contributing to the expectation, variance,
skewness and kurtosis of the neutron flux.
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Section 4 presents a comparison of the end results for the “adjusted” values produced
by the TSURFER-GLLSA procedure [1,2] for the model parameters (in this case: nuclear
cross-sections) and responses (in this case: effective multiplication factors) with the end-
results produced by the HO-BERRU-PM (high-order best-estimate results with reduced
uncertainties predictive modeling) methodology conceived by Cacuci [13,21]. The end-
results for the “adjusted” values produced by the TSURFER-GLLSA procedure for the
nuclear cross-sections (considered as “model parameters”) and effective multiplication
factors (considered as “model responses”) are obtained by minimizing a user-chosen
quadratic cost functional, which represents the “discrepancies between measurements
and computations”. In contradistinction to the TSURFER-GLLSA procedure [1,2], the HO-
BERRU-PM methodology uses the maximum entropy principle [22] to eliminate the need
for any “user-defined functional to be minimized”, while incorporating all of the available
high-order information, thus yielding higher-order best-estimate predictions for the model
parameters and responses. The distinctions between the TSURFER-GSSLA procedure
(which can consider only first-order sensitivities) and the HO-BERRU-PM methodology
(which can incorporate arbitrarily high order sensitivities) are summarized in Section 4,
for both the a priori and posterior (i.e., adjusted vs. predicted) quantities, highlighting the
contributions of the higher-order sensitivities.

Section 5 concludes this work by underscoring the need for computing sensitivities of
an order higher than one and underscoring the impact of these higher-order sensitivities
on predicted values for the moments (expectation, variance, skewness, kurtosis) of the
distribution of model responses in the phase space of parameters. The results presented in
this work underscore the fundamental conclusion that—at the very least—the second-order
sensitivities must be computed quantitatively, in order to show quantitatively if their
impact is negligible (or not) on confidence intervals and tolerance limits for the model
responses under investigation. In the absence of any information regarding the impact of
the second- and higher-order sensitivities, confidence intervals and tolerance limits based
on first-order sensitivities only for model responses cannot be trusted.

2. Motivation: Impact of Second- and Third-Order Response Sensitivities on
Uncertainty Analysis of the PERP OECD/NEA Reactor Physics Benchmark

The impact of the second- and third-order response sensitivities on the expected value
and variance of the model response under consideration is illustrated in this section by
recalling results obtained in [6–11] for the polyethylene-reflected plutonium (acronym:
PERP) OECD/NEA reactor physics benchmark [12], which is a sphere used for benchmark
subcritical neutron and gamma measurements. The constitutive materials of the PERP
benchmark are specified in Table 1.

Table 1. Dimensions and material composition of the PoRP benchmark.

Materials Isotopes Weight
Fraction

Density
(g/cm3) Zones

Material 1
(plutonium metal)

Isotope 1 (239Pu) 9.3804 × 10−1

19.6

Material 1 is assigned to zone
1; inner radius = 3.794 cm.

Isotope 2 (240Pu) 5.9411 × 10−2

Isotope 3 (69Ga) 1.5152 × 10−3

Isotope 4 (71Ga) 1.0346 × 10−3

Material 2
(polyethylene)

Isotope 5 (C) 8.5630 × 10−1

0.95

Material 2 is assigned to zone
2; inner radius = 3.794 cm;

outer radius = 7.604 cm.Isotope 6 (1H) 1.4370 × 10−1

The distribution of neutrons in the PERP system is modeled using the standard form
of the time-independent Boltzmann neutron transport equation, namely:
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Ω·∇ϕ(r, Ω, E) + Σt(r, E) ϕ(r, Ω, E) =
∫

4π

dΩ
′

E f∫
0

dE′ Σs

(
r, E′ → E, Ω

′ → Ω
)

ϕ
(

r, Ω
′
, E′
)

+
∫

4π

dΩ
′

E f∫
0

dE′ χ(r, E′ → E)νΣ f (r, E′)ϕ
(

r, Ω
′
, E′
)

+ Q(r, E),

(1)

where Q(r, E) is a spontaneous fission source, having the following expression:

Q(r, E) ,
N f

∑
k=1

λk Nk,1FSF
k νSF

k

(
2√

πak
3bk

e−
akbk

4

)
e−E/ak sinh

√
bkE. (2)

The neutron angular flux ϕ(r, Ω, E) depends on the energy variable E, the solid angle
variable Ω and the three-dimensional position vector r. The angular flux ϕ(r, Ω, E) is
subject to the customary vacuum boundary condition, which specifies that there is no
incoming flux of particles, namely:

ϕ(rs, Ω, E) = 0, rs ∈ ∂V, Ω · n < 0, 0 < E < ∞, (3)

where n denotes the unit outward normal vector at any point rs ∈ ∂V on the body’s outer
surface ∂V, and E f denotes the highest neutron energy considered for the system under
consideration. The terms on the left side of Equation (1) represent the neutron streaming
and total collision loss processes, while the terms on the right side of Equation (1) represent
the neutron scattering and fission production processes within the PERP benchmark.

The neutron flux is computed by solving numerically Equations (1)–(3) using the
multigroup discrete ordinates particle and radiation transport code PARTISN [23], which
solves the following multi-group approximation of Equation (1):

Ω·∇ϕg(r, Ω) + Σt,g(α; r) ϕg(r, Ω) =
χg(α;r)

ke f f
Φ(α; r) + Qg(α; r)

+
G
∑

g′=1

∫
4π

dΩ
′
ϕg′
(

r, Ω
′
)

Σs,g′→g(α; r, µ0) , g = 1, . . . , G,
(4)

ϕg(rd, Ω) = 0, Ω · n < 0, g = 1, . . . , G (5)

where µ0 , Ω·Ω′
, where rd is the radius of the PERP sphere and where the boundary

condition shown in Equation (5) imposes no incoming particle flux. The vector α, which
appears in the arguments of the various quantities in Equation (4), represents the “vector
of imprecisely known model parameters”, including atomic number densities, microscopic
group cross-sections, etc. The detailed definition of the components of the vector α for the
PERP benchmark is provided in [6–11], but this detailed definition is not used in this work.
The convention used in PARTISN [23] for obtaining the multigroup transport equation
shown in Equation (4) is to partition the range of the energy variable into G intervals of
width ∆Eg , Eg−1/2− Eg+1/2, g = 1, . . . , G and, subsequently, integrate Equations (1)–(3)
over each interval ∆Eg. By convention, the highest energy is at E1/2. Since the normal
transport of particles in energy is from high to low energy, as they collide with nuclei in
the medium, the index g increases as energy decreases. Integrating Equations (1)–(3) over
each energy interval ∆Eg leads to Equations (4) and (5), where the following definitions for
the various group-averaged quantities were used:

ϕg(r, Ω) ,
∫

∆Eg

dE ϕ(r, Ω, E) (6)

Σt,g(α; r) ,
1

ϕg(r, Ω)

∫
∆Eg

dE Σt(α; r, E) ϕ(r, Ω, E) (7)
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Σs,g′→g(α; r, µ0) ,
1

ϕg′(r, Ω)

∫
∆Eg

dE
∫

∆Eg′

dE′ Σs
(
α; r, E′ → E, µ0

)
ϕ
(
r, Ω, E′

)
(8)

χg(α; r) ,
∫

∆Eg

dE χ(α; r; E) (9)

Φ(α; r) ,
1∫

4π

ϕg(r, Ω)dΩ

G

∑
g=1

∫
∆Eg

dE νΣ f (α; r, E)
∫

4π

ϕ(r, Ω, E)dΩ (10)

Qg(α; r) ,
N f

∑
k=1

λk Nk,1FSF
k νSF

k

(
2√

πak
3bk

e−
akbk

4

) ∫
∆Eg

dE e−E/ak sinh
√

bkE. (11)

The group fluxes ϕg(r, Ω) are computed numerically using the MENDF71X [24] 618-
group cross-sections collapsed to 30 energy groups, in conjunction with a P3-Legendre
expansion of the scattering cross-section, an angular quadrature of S256 and a fine-mesh
spacing of 0.005 cm (comprising 759 meshes for the plutonium sphere of radius of 3.794 cm
and 762 meshes for the polyethylene shell of thickness of 3.81 cm). The other quantities
that appear in Equations (4)–(11) are described in detail in [6–11].

The response of interest for the PERP benchmark is the leakage of neutrons out of the
sphere’s outer surface. The leakage response, denoted as L(α), is defined mathematically
as the following integral over the outer surface of the spherical benchmark, comprising
neutrons of all energies leaking through the surface:

L(α) ,
∫
Sb

dS
G

∑
g=1

∫
Ω·n>0

dΩ Ω · n ϕg(r, Ω). (12)

As shown in [6–11], the distribution of the PERP leakage in each energy interval is
depicted in Figure 1. The value of the total leakage computed using Equation (1) for the
PERP benchmark is 1.7648 × 106 neutrons/s.
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The vector α, which appears in the arguments of the various quantities in Equa-
tions (4)–(12), represents the “vector of imprecisely known model parameters”. For the
PERP benchmark, the vector α comprises 21,976 imprecisely known (uncertain) model
parameters, as follows: 180 group-averaged total microscopic cross-sections, 21,600 group-
averaged scattering microscopic cross-sections, 120 parameters describing the fission pro-
cess, 60 parameters describing the fission spectrum, 10 parameters describing the system’s
sources and six isotopic number densities. The exact and efficient computation of the 21,976
first-order and 482,944,576 second-order sensitivities of the leakage response to the PERP
model parameters was reported in [6–11].

The results obtained in [6–11,14–16] indicated that the largest first-, second- and
third-order relative sensitivities of the PERP leakage response were all with respect
to the total microscopic group cross-section, σ30

t,H , of hydrogen (1H) in the lowest en-

ergy group, g = 30. Thus, the third-order relative sensitivity, S(3)
(

σ30
t,H , σ30

t,H , σ30
t,H

)
,[

∂3L/
(

∂σ30
t,H

)3
][(

σ30
t,H

)3
/L
]
= −2.966× 104, was found to be significantly larger than the

second-order sensitivity, S(2)
(

σ30
t,H , σ30

t,H

)
,
[

∂2L/
(

∂σ30
t,H

)2
][(

σ30
t,H

)2
/L
]
= 4.296× 102,

which in turn was an order of magnitude larger than the first-order relative sensitivity
S(1)

(
σ30

t,H

)
,
[
∂L/

(
∂σ30

t,H

)][(
σ30

t,H

)
/L
]
= −9.366× 100.

The results presented in Table 2, reproduced (with permission) from [6], illustrate
the impact of uncertainties in the total group cross-sections on the response’s expected
value and variance. The group total cross-sections were considered to be uncorrelated
and normally distributed, having uniform relative standard deviations of 5% (moderate)
and 10% (large), respectively. The impact of the other uncertain cross-sections and nuclear
parameter underlying the PERP benchmark are presented in [6–11], where they are shown
to accentuate the impacts presented in Table 2 and Figure 2, below.

Table 2. Comparison of response moments for various relative standard deviations of uncorrelated
and normally distributed microscopic total cross-sections (all numbers denote neutrons/second).

Relative Standard Deviation 5% 10%

L
(
α0) 1.765 × 106 1.765 × 106

[E(L)](2,U,N)
t 1.149 × 106 4.598 × 106

[E(L)](U,N)
t = L

(
α0)+ [E(L)](2,U,N)

t 2.914 × 106 6.363 × 106

[var (L)](1,U,N)
t 8.549 × 1011 3.419 × 1012

[var (L)](2,U,N)
t 1.799 × 1012 2.879 × 1013

[var (L)](3,U,N)
t 8.713 × 1012 1.308 × 1014

[var (L)](U,N)
t = [var (L)](1,U,N)

t
+[var (L)](2,U,N)

t + [var (L)](3,U,N)
t

1.083 × 1013 1.630 × 1014

In Table 2, the expected value of the leakage response is denoted as [E(L)](U,N)
t and

has the following mathematical expression:

[E(L)](U,N)
t = L

(
α0
)
+ [E(L)](2,U,N)

t , (13)

where [E(L)](2,U,N)
t denotes the second-order contributions to the expected value of the

leakage response and is defined as follows:

[E(L)](2,U,N)
t ,

1
2

G

∑
g=1

I

∑
i=1

∂2L(α)
∂σ

g
t,i∂σ

g
t,i

(
sg

t,i

)2
, G = 30 energy groups, I = 6 isotopes. (14)
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In Equation (13), the quantity L
(
α0) represents the leakage response computed using

the expected cross-section values; the superscript “U” denotes “uncorrelated” and the
superscript “N” denotes “normally distributed”. The quantity sg

t,i, which appears in
Equation (14), denotes the standard deviation associated with the total microscopic cross-
section for energy group g, g = 1, . . . , G, and isotope i, i = 1, . . . , I.

The variance of the leakage response of the PERP benchmark is denoted as [var (L)](U,N)
t

in Table 2 and has the following mathematical expression:

[var (L)](U,N)
t = [var (L)](1,U,N)

t + [var (L)](2,U,N)
t + [var (L)](3,U,N)

t . (15)

In Equation (15), the quantity [var (L)](1,U,N)
t ,

G
∑

g=1

I
∑

i=1

[
∂L(α)

∂σ
g
t,i

]2(
sg

t,i

)2
denotes the

contributions stemming from the first-order sensitivities; the quantity [var (L)](2,U,N)
t ,

1
2

G
∑

g=1

I
∑

i=1

[
∂2L(α)

∂σ
g
t,i∂σ

g
t,i

(
sg

t,i

)2
]2

denotes the contributions stemming from the second-order sen-

sitivities; the quantity [var (L)](3,U,N)
t ,

G
∑

g=1

I
∑

i=1

G
∑

g′=1

I
∑

j=1

[
∂L(α)

∂σ
g
t,i

∂3L(α)

∂σ
g
t,i∂σ

g′
t,j ∂σ

g′
t,j

](
sg

t,i

)2(
sg′

t,j

)2
de-

notes the contributions stemming from the third-order sensitivities, for G = 30 energy
groups and I = 6 isotopes. The results presented in the second column of Table 2 are
illustrated graphically in Figure 2, which is reproduced (with permission) from [6].

As illustrated in Figure 2, the relationship SD(3) � SD(2) > SD(1) indicates that the
contribution from the second-order sensitivities exceed the contributions from the first-
order ones, and even more importantly, the contributions from the third-order sensitivities
are dominant, being much larger than the contributions from either the first-order or the
second-order sensitivities. Hence, neglecting the third-order sensitivities would cause
a significant error in quantifying the standard deviation of the leakage response. The
results in Table 2 and Figure 2 also indicate that the contributions from the second-order
sensitivities cause a significant shift, by about 40%, of the expected value, [E(L)](U,N)

t , of
the leakage response by comparison to the leakage computed value L

(
α0). This means

that the customary procedure of neglecting second- (and higher) order sensitivities and
considering that the computed value, L

(
α0), is the same as the expected value [E(L)](U,N)

t
of the leakage response would be ca. 40% in error when considering uniform 5% relative
standard deviations for uncorrelated total cross-sections. The results presented in Table 2
also underscore the fact that the larger the parameters’ standard deviations, the larger
the impact of the second-order and third-order sensitivities. It was shown in [6–11] that
correlations among the cross-sections enhance the effects of the high-order sensitivities.
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The results obtained in [6–11] and summarized in this section, which indicated that the
PERP leakage response was most sensitive to the hydrogen cross-sections, have motivated
the high-order sensitivity and uncertainty analysis to be presented next, in Section 3.

3. High-Order Sensitivity and Uncertainty Analysis of Neutron Slowing Down
in Hydrogen

The multigroup fluxes and cross-sections defined in Equations (6)–(10) are used not
only in PARTISN [23] but are used in all of the deterministic solvers (e.g., SCALE [2]) of the
Boltzmann multi-group neutron transport equation. Although the multigroup Boltzmann
equation shown in Equation (4) is formally exact (i.e., no approximations have been made
in deriving it), this equation cannot be solved as it stands since the energy-dependent flux
ϕ(r, Ω, E), which enters into the definitions of the multigroup fluxes and cross-sections
defined in Equations (6)–(10), is not known at that stage. The first step in the usual
procedure for determining the energy-dependent flux ϕ(r, Ω, E) is to partition the energy
interval of interest into very many (“fine” or “ultra-fine”) energy groups and solve the
“infinite-medium” energy-dependent Boltzmann quasi-analytically to obtain the energy-
dependent “infinite-medium” flux [18–20]. In view of the results presented in Section 2,
it is of interest to investigate the sensitivities of the energy-dependent neutron flux with
respect to the total microscopic cross-section of hydrogen in a hydrogen-moderated system,
since the energy-dependent neutron flux is directly related, via Equation (12), to the
leakage response.

The main features of the energy-dependent neutron flux are determined by consider-
ing a medium of large (“infinite”) extent, in which neutrons emitted by a source (which
may be an external source or an internal fission source) will lose energy (“slow down”)
following scattering collisions and will disappear following absorption collisions with
the nuclei in the medium. A widely used model [17–20], which includes the scattering
and absorption processes of neutrons emitted by an energy-dependent source Q(E) in a
hydrogen-moderated system (which includes absorbing nuclide(s) having atomic mass(es)
much larger than unity), has the following form:∫ ∞

E
Φ
(
E′
)

Σs
(
E′
)dE′

E′
+ Q(E) = Φ(E)Σ(E); Σ(E) , Σs(E) + Σa(E) . (16)

The integral Equation (16) for the energy-dependent neutron flux, Φ(E), is derived
under the assumptions that: (i) the absorbing isotope does not contribute to scattering,
so that Σs(E) represents the scattering cross-section of hydrogen, and (ii) the absorption
cross-section Σa(E) stems mostly from the heavy nuclide in the hydrogen-moderated
system, since the absorption in hydrogen is negligible by comparison to its scattering cross-
section. Without affecting the sensitivity analysis to follow, the macroscopic cross-sections
can be considered to be just the corresponding products of the respective atomic number
densities and microscopic cross-sections, i.e., Σs(E) = NHσs(E) and Σa(E) = Naσa(E),
respectively. Additionally, without affecting the sensitivity analysis, the total cross-section
characterizing the hydrogen-moderated system can be considered to be simply the sum of
the two component macroscopic cross-sections, i.e., Σ(E) = NHσs(E) + Naσa(E). Under
the additional assumption that the (resonance) absorption sets in below the low-energy
limit, Es, of the fission spectrum (an assumption that also does not affect the sensitivity
analysis to follow), the solution of Equation (16) has the following form:

Φ(α; E) =
p(α; E)

∫ ∞
Es(α) Q(α; E′)dE′

EΣ(α; E)
; p(α; E) , exp

[
−
∫ Es(α)

E

Σa(α; E′)
Σ(α; E′)

dE′

E′

]
. (17)

Evidently, the flux Φ(α; E) depends on the fission spectrum and the various number
densities and microscopic cross-sections of the isotopes contained in the medium under
consideration. Therefore, it is convenient to use the generic notation introduced in Section 2
and, thus, to consider all of the uncertain model parameters that influence the flux Φ(α; E)



Energies 2021, 14, 6318 9 of 38

to be the components of a “vector of parameters” denoted as α , (α1, . . . , αTP)
† ∈ RTP,

where TP denotes the “total number of model parameters”. Variations in the model’s
parameters (i.e., cross-sections, number densities, etc.) will induce variations in the flux
Φ(α; E), the quantification of which is the scope of sensitivity analysis. Uncertainties in the
model parameters will induce uncertainties in the flux, which can be quantified by using
the expressions provided in [13].

As indicated by Equation (17), the neutron flux Φ(α; E) varies as 1/E and undergoes
sharp dips/depressions at resonance absorption energies, where Σ(α; E) becomes very
large. In addition, the flux Φ(α; E) is attenuated by the resonance escape probability,
p(α; E), as the neutrons undergo moderating scattering collisions. The qualitative form of
Φ(α; E) shown in Equation (17) is also representative of the neutron slowing down flux in
different mixtures of materials/isotopes [18–20].

The impact of the scattering process can be qualitatively determined by considering a
system in which neutron absorption is negligible, which would be the case of a neutron
slowing down in pure hydrogen. In such a system, the energy-dependent flux would take
on the following particular form of Equation (17):

ΦH(α; E) =
Q(α)

EΣs(α; E)
; Q(α) ,

∫ ∞

Es(α)
Q
(
α; E′

)
dE′ (E). (18)

Although Equation (18) is strictly correct only for an infinite hydrogen medium, it is
often used to estimate the energy-dependent flux in water-moderated reactors [18–20].

The effects of the scattering cross-sections can be quantified (in isolation from the
effects of the other model parameters) by considering that the source does not vary from its
nominal value denoted as Q

(
α0) and that the number density of hydrogen, NH , remains

unchanged, as well. Consider that the energy-dependent microscopic total cross-section
of hydrogen, σs(E), was measured in a series of measurements at an arbitrary but fixed
energy value Em 0 < Em < ∞ and was found to have a mean value denoted as σm. Under
these assumptions, the flux ΦH(α; E) in Equation (18) takes on the following expression:

ΦH(σ; E) =
Q
(
α0)

ENHσs(E)
. (19)

The Taylor-series expansion of ΦH(σ; E) around the nominal parameter value σm has
the following form:

ΦH(σ; E) =
Q
(
α0)

ENH

∞

∑
n=0

1
n!

{
dn

d[σs(E)]n
[σs(E)]−1

}
(σm)

[σs(E)− σm]
n. (20)

Recalling that

dn

dxn

(
x−1

)
= (−1)nn!x−(n+1), n = 0, 1, . . . . (21)

and using the result from Equation (21) in Equation (20) yields the following Taylor series
for ΦH(σ; E):

ΦH(σ; E) = lim
n→∞

[
Φ(n)

H (σ; E)
]
, (22)

where the quantity Φ(n)
H (σ; E) denotes the “nth-order approximation of the value of the

actual flux ΦH(σ; E)” and is defined as follows:

Φ(n)
H (σ; E) ,

Q
(
α0)

ENHσm

n

∑
k=0

(−1)ntn; t ,
σs(E)− σm

σm
. (23)



Energies 2021, 14, 6318 10 of 38

The Taylor series in Equation (22) converges only for values of σs(E) confined within
the following interval:

(1− β)σm ≤ σs(E) ≤ (1 + β)σm; 0 < β < 1. (24)

The results obtained in Equations (22) and (24) are essential for using the proba-
bility distribution of σs(E), which is seldom known completely in practice, to construct
statistical indicators (i.e., mean value, standard deviation, etc.) for the distribution of
ΦH(σ; E). It is especially important to ensure that the values of σs(E) used for constructing
statistical properties for ΦH(σ; E) do not fall outside the interval of convergence shown in
Equation (24).

In view of the relation shown in Equation (24), it follows that if a standard deviation,
SD[σs(E)], is also provided (in addition to the measured mean value σm, then it must be
ensured that the Taylor series shown in Equation (22) is used only for the following range
of values:

βσm ≤ SD[σs(E)] ≤ βσm; 0 < β < 1. (25)

If a standard deviation is not provided for the measurement of σs(Em), then the most
conservative assumption is to consider that σs(E) is uniformly distributed within the
interval provided in Equation (24), in which the Taylor series of ΦH(σ; E) convergences,
since the uniform distribution is the least informative (hence, the least biased) distribution.
It will henceforth be assumed that the distribution for σs(E) is uniform in the interval given
in Equation (24). Thus, the uniform probability distribution, P[σs(E)], the expectation,
E[σs(E)], the variance, Var[σs(E)], and the standard deviation, SD[σs(E)], of σs(E) have
the following expressions:

P[σs(E)] = 1
2βσm

; E[σs(E)] = σm; Var[σs(E)] = (βσm)2

3 ;
SD[σs(E)] = 1√

3
βσm; 0 < β < 1 .

(26)

The third and fourth moments, µ3[σs(E)] and µ4[σs(E)], of the uniform distribution
σs(E) have the following expressions:

µ3[σs(E)] ,
(1+β)σm∫
(1−β)σm

[σs(E)− σm]
3 dσs(E) = 0,

µ4[σs(E)] ,
(1+β)σm∫
(1−β)σm

[σs(E)− σm]
4 dσs(E) = (βσm)4

5 .

(27)

The uniform distribution defined in Equation (26) is symmetrical with respect to σm

and can be visualized as a rectangle of height P[σs(E)] = [2βσm]
−1 and width extending

from (1− β)σm to (1 + β)σm for 0 < β < 1. When β increases towards unity, the uniform
distribution P[σs(E)] = [2βσm]

−1 widens and its height decreases towards 0.5/σm. At
the other extreme, when β decreases towards zero, the distribution P[σs(E)] = [2βσm]

−1

becomes very narrow and peaked, tending towards a Dirac-delta distribution centered
at σm.

It follows from the expressions provided in Equations (26) and (24) that, if σs(E) is dis-
tributed uniformly as shown in Equation (26), then the Taylor series shown in Equation (22)
for ΦH(σ; E) converges only in the following interval expressed in terms of “standard
deviations of σs(E)′′:

σm −
√

3 · SD[σs(E)] ≤ σs(E) ≤ σm +
√

3 · SD[σs(E)]; 0 < β < 1. (28)
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3.1. Sensitivity Analysis

It follows from the expression given in Equation (20) that the absolute sensitivities
of ΦH(σ; E), which will be denoted as Sn(E), n = 1, 2, . . ., with respect to the parameter
σs(E) at energy E = Em, where σs(Em) = σm, have the following expressions:

Sn(E) =
Q
(
α0)

ENHσm
(−1)n

[
1

σm

]n
. (29)

It follows from the expression in Equation (29) that the relative sensitivities of ΦH(σ; E)
with respect to the parameter σs(E), which will be denoted as Rn(E), n = 1, 2, . . ., have
the following expressions:

Rn(E) = Sn(E)
(σm)

n

ΦH(σm; E)
= (−1)n, n = 1, 2, . . . . (30)

It is evident from Equation (30) that the relative values of the sensitivities of all orders
are all equal to unity; their values do not decrease with increasing order n = 1, 2, . . ..

The relative error, ε
(n)
Φ , between the exact value of ΦH(σ; E) provided in Equation (19)

and the Taylor series in Equation (22), truncated to the nth order is given by the follow-
ing expression:

ε
(n)
Φ ,

1
ΦH(σ; E)

[
ΦH(σ; E)−

Q
(
α0)

ENHσm

n

∑
k=0

(−1)ktk

]
= (−1)n+1tn+1. (31)

It follows from Equation (31) that:

∣∣∣ε(n)Φ

∣∣∣ = ∣∣∣tn+1
∣∣∣ = ∣∣∣∣∣

[
σs(E)− σm

σm

]n+1
∣∣∣∣∣ < 1. (32)

In turn, it follows from Equation (32) that the smallest order, n, which is required to
ensure that the Taylor-series expansion shown in Equation (22) represents the exact flux
given in Equation (19) within an error

∣∣∣ε(n)Φ

∣∣∣, must satisfy the following inequality:

n >

{
− log

∣∣∣ε(n)Φ

∣∣∣}
{− log|t|} − 1. (33)

In particular, Equations (33) and (24) indicate that when the parameter σs(E) attains
the largest value for which the Taylor-series representation given in Equation (22) still
converges, namely, σs(E) = (1 + β)σm, the smallest order, n, which is required to ensure
that the Taylor-series expansion shown in Equation (22) represents the exact flux ΦH(σ; E)
given in Equation (19) within an error

∣∣∣ε(n)Φ

∣∣∣, must satisfy the following inequality:

n >

{
− log

∣∣∣ε(n)Φ

∣∣∣}
{− log β} − 1. (34)

As an example of the use of the Taylor-series expansion in sensitivity analysis, consider
that it is desired to predict the value of ΦH(σ; E) when σs(E) is “one standard deviation
away from the mean”, i.e., when:

σ1SD
s (E) = σm + SD[σs(E)] = σm

(
1 +

1√
3

β

)
. (35)

Replacing the result obtained in Equation (35) into the definition provided in Equa-
tion (23) and taking β = 1− 10−4(to be extremely close to the outer boundaries of the
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“one-standard deviation interval”) yields the following result when keeping the first four
decimal digits:

t = β/
√

3 =
(

1− 10−4
)

/
√

3 ∼= 0.5773. (36)

In sensitivity analysis, the value provided in Equation (36) is used in Equation (23) to
investigate how accurately the various orders of approximations, Φ(n)

H (σ; E), can predict
the actual value of the flux at ΦH(σ; E). The following results, to four significant decimals,
are obtained from Equations (19), (23) and (35) for β = 1− 10−4 and t = 0.5773:

1. The exact value of the flux is:

ΦH

(
σ1SD

s ; E
)
=

Q
(
α0)

ENHσm

(
1 +

1− 10−4
√

3

)−1
∼= 0.6340

Q
(
α0)

ENHσm
. (37)

2. If only the first-order sensitivities of ΦH(σ; E) with respect to σs(E) are available, then
the first-order expansion (n = 1) in Equation (23) yields the following result:

Φ(1)
H (σ; E) ,

Q
(
α0)

ENHσm
(1− t) = 0.4227

Q
(
α0)

ENHσm
. (38)

It follows from Equations (37) and (38) that the error of the first-order approximation is:

ε
(1)
Φ ,

ΦH
(
σ1SD

s ; E
)
−Φ(1)

H (σ; E)
ΦH
(
σ1SD

s ; E
) = 33.33%. (39)

Thus, the result obtained by keeping only the first-order sensitivities in the Taylor
expansion underestimates the exact flux by 33.34%.

3. If first-order and second-order sensitivities of ΦH(σ; E) with respect to σs(E) are
available, then the second-order expansion (n = 2) in Equation (23) yields the follow-
ing result:

Φ(2)
H (σ; E) ,

Q
(
α0)

ENHσm

(
1− t + t2

)
= 0.7560

Q
(
α0)

ENHσm
. (40)

It follows from Equations (40) and (37) that the error of the second-order approxima-
tion is as follows:

ε
(2)
Φ ,

ΦH
(
σ1SD

s ; E
)
−Φ(2)

H (σ; E)
ΦH
(
σ1SD

s ; E
) = −19.24%. (41)

Thus, the result obtained by keeping the first- and second-order sensitivities in the
Taylor expansion overestimates the exact flux by 19.24%.

4. If all sensitivities up to and including the third-order sensitivities of ΦH(σ; E) with
respect to σs(E) are available, then the third-order expansion (n = 3) in Equation (23)
yields the following result:

Φ(3)
H (σ; E) ,

Q
(
α0)

ENHσm

(
1− t + t2 − t3

)
= 0.5636

Q
(
α0)

ENHσm
. (42)

It follows from Equations (42) and (37) that the error of the third-order approximation
is as follows:

ε
(3)
Φ ,

ΦH
(
σ1SD

s ; E
)
−Φ(3)

H (σ; E)
ΦH
(
σ1SD

s ; E
) = 11.11%. (43)

Thus, the result obtained by keeping the first-, second- and third-order sensitivities in
the Taylor expansion underestimates the exact flux by 11.11%.
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5. If all sensitivities up to and including the fourth-order sensitivities of ΦH(σ; E) with
respect to σs(E) are available, then the fourth-order expansion (n = 4) in Equation
(23) yields the following result:

Φ(4)
H (σ; E) ,

Q
(
α0)

ENHσm

(
1− t + t2 − t3 + t4

)
= 0.6747

Q
(
α0)

ENHσm
. (44)

It follows from Equations (44) and (37) that the error of the fourth-order approximation
is as follows:

ε
(4)
Φ ,

ΦH
(
σ1SD

s ; E
)
−Φ(4)

H (σ; E)
ΦH
(
σ1SD

s ; E
) = −6.42%. (45)

Thus, the result obtained by keeping the first-, second-, third- and fourth-order sensi-
tivities in the Taylor expansion overestimates the exact flux by 6.42%.

As indicated by the results in Equations (39), (41), (43) and (45) the odd-order approxi-
mations underestimate the true value, and the even-order approximations overestimate the
true value of the flux, while converging to the actual, true value of the flux ΦH(σ; E). This
behavior is expected, since the flux is represented by an alternating series, cf. Equation (23).
The results obtained in Equations (39), (41), (43) and (45) are consistent with the error
estimate provided in Equation (31). The relation provided in Equation (34) can be used
to determine which order of approximation would need to be used to obtain an approxi-
mate result that would be within a predetermined error by comparison to the exact result.
For example, over 46,000 terms in the Taylor-series expansion provided in Equation (23)
would be required to represent the flux ΦH(σ; E) with an accuracy of 1% at a distance of
σs(E) =

(
1 + 1− 10−4)σm away from σm; the expected extremely slow convergence of the

Taylor-series expansion very close to the end of the interval of convergence is evident.

3.2. Uncertainty Quantification: Moments of the Response Distribution

The expectation, E[ΦH], of the flux ΦH(σ; E), is obtained by integrating either Equation (19)
or Equation (22) over the uniform probability distribution for σs(E) shown in Equation (26). The
result of the respective integration is:

E[ΦH ] =
Q(α0)

ENH
1

2βσm

(1+β)σm∫
(1−β)σm

dσs(E)
σs(E) =

Q(α0)
ENH

1
2βσm

ln 1+β
1−β

=
Q(α0)
ENHσm

∞
∑

n=0

1
2βσm

(1+β)σm∫
(1−β)σm

[
σs(E)−σm

σm

]n
dσs(E) =

Q(α0)
ENHσm

∞
∑

k=0

β2k

2k+1

=
Q(α0)

ENH(βσm)
Arctanh(β); 0 < β < 1.

(46)

Note that E[ΦH ] is an even function of β, i.e.,

E[ΦH , β] = E[ΦH ,−β] =
Q
(
α0)

ENH

1
2βσm

ln
1 + β

1− β
. (47)

The nth-order approximation, denoted as E(n)[ΦH ], of the expectation E[ΦH ], is pro-
vided by the following truncated Taylor series:

E(2n)[ΦH ] = E
[
Φ(2n)

H (σ; E)
]
=

Q
(
α0)

ENHσm

n

∑
k=0

β2k

2k + 1
; E(2n+1)[ΦH ] = E(2n)[ΦH ]; n = 0, 1, . . . ; . (48)

Notably, the convergence of the infinite series representation of E[ΦH ] obtained in
Equation (46) depends solely on the chosen value for the positive parameter β: the smaller
the chosen value for β, the faster the convergence of the series representation for E[ΦH ].

The variance, denoted as V[ΦH ], of the flux ΦH(σ; E), is obtained by recalling the
following relation:

V[ΦH ] = E
[
(ΦH)

2
]
− E2[ΦH ]. (49)
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Using Equations (19) and (46) in Equation (49) yields the following result:

V[ΦH ] =

[
Q(α0)

ENH

]2
1

2βσm

(1+β)σm∫
(1−β)σm

dσs(E)
[σs(E)]2

−
[

Q(α0)
ENH

1
2βσm

ln 1+β
1−β

]2

=

[
Q(α0)
ENHσm

]2[
1

1−β2 − 1
4β2

(
ln 1+β

1−β

)2
]

.

(50)

Note that V[ΦH ] is an even function of β, i.e.,

V[ΦH , β] = V[ΦH ,−β] =

[
Q
(
α0)

ENHσm

]2[
1

1− β2 −
1

4β2

(
ln

1 + β

1− β

)2
]

. (51)

As indicated by the result obtained in Equation (50), the convergence of the series
representation of V[ΦH ] would also depend solely on the chosen value for the positive
parameter β: the smaller the chosen value for β, the faster the convergence of the series
representation for V[ΦH ] would be.

The nth-order approximation, denoted as V(n)[ΦH ] of the variance V[ΦH ], is also
obtained by using the relation provided in Equation (49), which takes on the following form:

V(n)[ΦH ] = E(n)
[(

Φ(n)
H

)2
]
−
(

E(n)
)2[

Φ(n)
H

]
; n = 1, 2, . . . .; . (52)

The third-order moment, denoted as µ3[ΦH ] of the flux ΦH(σ; E), is obtained us-
ing Equations (19) and (46) in the definition of µ3[ΦH ] and by performing the ensuing
integrations to obtain the result shown below:

µ3[ΦH ] ,
1

2βσm

(1+β)σm∫
(1−β)σm

{ΦH(σ; E)− E[ΦH ]}3dσs(E)

=

[
Q(α0)
ENHσm

]3
1

2β

[
2β

(1−β2)
2 − 3

1−β2 ln 1+β
1−β + 1

2β2

(
ln 1+β

1−β

)3
]

.

(53)

Note that µ3[ΦH ] is an even function of β, i.e.,

µ3[ΦH , β] = µ3[ΦH ,−β]

=

[
Q(α0)
ENHσm

]3
1

2β

[
2β

(1−β2)
2 − 3

1−β2 ln 1+β
1−β + 1

2β2

(
ln 1+β

1−β

)3
]

.
(54)

The skewness of the distribution of the response ΦH(σ; E) will be denoted as Skew[ΦH ]
and is defined as follows:

Skew[ΦH ] =
µ3[ΦH ]

{V[ΦH ]}
3
2
=

1
2β

[
2β

(1−β2)
2 − 3

1−β2 ln 1+β
1−β + 1

2β2

(
ln 1+β

1−β

)3
]

[
1

1−β2 − 1
4β2

(
ln 1+β

1−β

)2
] 3

2
. (55)

Skewness indicates the direction and relative magnitude of a distribution’s devia-
tion from the normal distribution. Note that, for this illustrative model, Skew[ΦH , β] =
Skew[ΦH ,−β].

The nth-order approximation of the third-order moment, denoted as µ
(n)
3 [ΦH ], is

defined below:

µ
(n)
3 [ΦH ] ,

1
2βσm

(1+β)σm∫
(1−β)σm

{
Φ(n)

H (σ; E)− E(n)[ΦH ]
}3

dσs(E) . (56)
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It follows from Equations (56), (23) and (48) that the first-order approximation of the
third-order moment, denoted as µ

(1)
3 [ΦH ], has the following expression:

µ
(1)
3 [ΦH ] ,

1
2βσm

(1+β)σm∫
(1−β)σm

{
Φ(1)

H (σ; E)− E(1)[ΦH ]
}3

dσs(E)

= 1
2βσm

(1+β)σm∫
(1−β)σm

{
Q(α0)
ENHσm

[
1− σs(E)−σm

σm

]
− Q(α0)

ENHσm

}3
dσs(E) ≡ 0.

(57)

It also follows from Equations (56), (23) and (48) that the second-order approximation
of the third-order moment, denoted as µ

(2)
3 [ΦH ], has the following expression:

µ
(2)
3 [ΦH ] ,

1
2βσm

(1+β)σm∫
(1−β)σm

{
Φ(2)

H (σ; E)− E(2)[ΦH ]
}3

dσs(E)

= 1
2βσm

(1+β)σm∫
(1−β)σm

{
Q(α0)
ENHσm

[
1− σs(E)−σm

σm
+
(

σs(E)−σm
σm

)2
]
− Q(α0)

ENHσm

(
1 + β2

3

)}3
dσs(E)

=

[
Q(α0)
ENHσm

]3
4

15 β4 + O
(

β6).
(58)

It is evident that high-order approximations for the third-order moment are very
laborious to obtain. On the other hand, since the definition of skewness involves not only
the response’s third moment but also the response’s variance, it is possible to compute
approximate values of the skewness, denoted as Skew(m,n)[ΦH ], by using approximations
of different orders for the response’s variance and third moment, respectively, as follows:

Skew(m,n)[ΦH ] ,
µ
(m)
3 [ΦH ]{

V(n)[ΦH ]
} 3

2
; m, n = 1, 2, . . . (59)

The flexible definition for the approximate skewness Skew(m,n)[ΦH ] provided in
Equation (59) enables the use of higher-order approximations for the response variance,
which require less computational effort to determine by comparison to the same order of ap-
proximation for the third moment. The flexible definition of Skew(m,n)[ΦH ] could provide
higher accuracy for the skewness with less computational effort by using a lower-order
approximation for the third moment than the order of approximation used for computing
the variance.

The fourth-order moment, denoted as µ4[ΦH] of the flux ΦH(σ; E), is defined as follows:

µ4[ΦH ] ,
1

2βσm

(1+β)σm∫
(1−β)σm

{ΦH(σ; E)− E[ΦH ]}4dσs(E)

=

[
Q(α0)
ENHσm

]4[
1+β2/3
(1−β2)

3 − 2
β(1−β2)

2 ln 1+β
1−β + 3

2β2(1−β2)

(
ln 1+β

1−β

)2
− 3

16β4

(
ln 1+β

1−β

)4
]

.

(60)

Note that µ4[ΦH ] is an even function of β, i.e.,

µ4[ΦH , β] = µ4[ΦH ,−β]

=

[
Q(α0)
ENHσm

]4[
1+β2/3
(1−β2)

3 − 2
β(1−β2)

2 ln 1+β
1−β + 3

2β2(1−β2)

(
ln 1+β

1−β

)2
− 3

16β4

(
ln 1+β

1−β

)4
]

.
(61)
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The nth-order approximation of the fourth-order moment, denoted as µ
(n)
4 [ΦH ], is

defined below:

µ
(n)
4 [ΦH ] ,

1
2βσm

(1+β)σm∫
(1−β)σm

{
Φ(n)

H (σ; E)− E(n)[ΦH ]
}4

dσs(E) . (62)

It follows from Equations (62), (23) and (48) that the first-order approximation of the
fourth-order moment, denoted as µ

(1)
4 [ΦH ], has the following expression:

µ
(1)
4 [ΦH ] ,

1
2βσm

(1+β)σm∫
(1−β)σm

{
Φ(1)

H (σ; E)− E(1)[ΦH ]
}4

dσs(E)

= 1
2βσm

(1+β)σm∫
(1−β)σm

{
Q(α0)
ENHσm

[
1− σs(E)−σm

σm

]
− Q(α0)

ENHσm

}4
dσs(E) =

[
Q(α0)
ENHσm

]4
β4

5 .

(63)

It also follows from Equations (62), (23) and (48) that the second-order approximation
of the third-order moment, denoted as µ

(2)
4 [ΦH ], has the following expression:

µ
(2)
4 [ΦH ] ,

1
2βσm

(1+β)σm∫
(1−β)σm

{
Φ(2)

H (σ; E)− E(2)[ΦH ]
}4

dσs(E)

= 1
2βσm

(1+β)σm∫
(1−β)σm

{
Q(α0)
ENHσm

[
1− σs(E)−σm

σm
+
(

σs(E)−σm
σm

)2
]
− Q(α0)

ENHσm

(
1 + β2

3

)}4
dσs(E)

=

[
Q(α0)
ENHσm

]3[
β4

5 + 6
7 β6 + O

(
β8)].

(64)

Evidently, high-order approximations for the fourth-order moment µ4[ΦH ] are very
laborious to obtain.

The kurtosis of the distribution of the response ΦH(σ; E) will be denoted as Kurt[ΦH ]
and is defined as follows:

Kurt[ΦH ] =
µ4[ΦH ]

{V[ΦH ]}2

=

[
1+β2/3

(1−β2)
3−

2
β(1−β2)

2 ln 1+β
1−β +

3
2β2(1−β2)

(
ln 1+β

1−β

)2
− 3

16β4

(
ln 1+β

1−β

)4
]

[
1

1−β2−
1

4β2

(
ln 1+β

1−β

)2
]2 .

(65)

The kurtosis of a probability distribution indicates the propensity of the respective
distribution to produce outliers or heavy tails.

The approximate kurtosis, denoted as Kurt(m,n)[ΦH ], can be computed by using
approximations of different orders for the response’s variance and fourth moment, respec-
tively, as follows:

Kurt(m,n)[ΦH ] =
µ
(m)
4 [ΦH ]{

V(n)[ΦH ]
}2 ; m, n = 1, 2, . . . . (66)

The flexible definition for the approximate skewness Kurt(m,n)[ΦH ] provided in
Equation (66) aims at obtaining higher accuracy for the kurtosis with less computational
effort than would be required if the fourth moment were computed at the same high order
m = n as the variance. Thus, the variance would be computed relatively inexpensively at
an order of approximation n > m, while the fourth moment would be computed only up
to the order of approximation m < n, expecting that Kurt(m,n)[ΦH ] ' Kurt(n,n)[ΦH ] for a
sufficiently high order m.
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Section 3.1 has presented the investigation of the order of sensitivities that would be
needed to achieve a target accuracy for predicting changes in the flux due to changes in
the cross-section σs(E) by using the Taylor-series expansion given in Equation (23). Analo-
gously, it is of interest to investigate the accuracy provided by the approximations E(n)[ΦH ],
V(n)[ΦH ], Skew(m,n)[ΦH ] and Kurt(m,n)[ΦH ], n = 1, 2, . . . ; m = 1, 2, . . ., for the expectation
E[ΦH ], variance V[ΦH ], skewness Skew[ΦH ] and kurtosis Kurt[ΦH ], respectively.

The expressions of the various orders of approximation for E(n)[ΦH] and V(n)[ΦH],
n = 1, 2, . . ., will be computed by using the expression of the approximations Φ(n)

H in
Equation (52), in order to verify independently the partial series that would be obtained by
expanding (in truncated Taylor series in β) the exact results obtained in Equations (46) and
(50). The following results are thus obtained:

1. If only the first-order sensitivities of ΦH(σ; E) with respect to σs(E) are available, then

the first-order approximation Φ(1)
H (σ; E) of ΦH(σ; E) takes on the following particular

form of Equation (23):

Φ(1)
H (σ; E) ,

Q
(
α0)

ENHσm
(1− t); t ,

σs(E)− σm

σm
(67)

The first-order approximate expectation E(1)[ΦH ] has the following expression:

E(1)[ΦH ] =
Q
(
α0)

ENHσm

1
2β

β∫
−β

(1− t) dt =
Q
(
α0)

ENHσm
= E(0)[ΦH ] (68)

The expectation E(1)[ΦH ] is accurate only to the zeroth-order term, since the contri-
bution from the first-order sensitivities vanishes after the integration of the respective
first-order (odd) term over the symmetric-interval around the expectation of the parame-
ter σs(E).

Replacing the expression given in Equation (67) into Equation (52) yields:

V(1)[ΦH ] =

[
Q
(
α0)

ENHσm

]2
 1

2β

β∫
−β

(1− t)2dt

− [ Q
(
α0)

ENHσm

]2

=

[
Q
(
α0)

ENHσm

]2
β2

3
(69)

The variance V(1)[ΦH ] is accurate up to and including the contributions stemming
from the first-order sensitivities.

2. If first-order and second-order sensitivities of ΦH(σ; E) with respect to σs(E) are avail-

able, then the second-order expansion Φ(2)
H (σ; E) of ΦH(σ; E) takes on the following

particular form of Equation (23):

Φ(2)
H (σ; E) ,

Q
(
α0)

ENHσm

(
1− t + t2

)
; t ,

σs(E)− σm

σm
. (70)

The expectation E(2)[ΦH ] has the following expression:

E(2)[ΦH ] =
Q
(
α0)

ENHσm

1
2β

β∫
−β

(
1− t + t2

)
dt =

Q
(
α0)

ENHσm

(
1 +

β2

3

)
. (71)

The expectation E(2)[ΦH ] is accurate up to and including the contributions stemming
from the second-order sensitivities.
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Replacing the expression given in Equation (70) into Equation (52) and using Equa-
tion (71) yields:

V(2)[ΦH ] =

[
Q(α0)
ENHσm

]2
[

1
2β

β∫
−β

(
1− t + t2)2dt

]
−
[

Q(α0)
ENHσm

]2(
1 + β2

3

)2

=

[
Q(α0)
ENHσm

]2(
β2

3 + 4
45 β4

)
.

(72)

The variance V(2)[ΦH ] is accurate up to and including the contributions stemming
from the first-order sensitivities but the contributions from the second-order sensitivities
are incomplete because the term 4β4/45 is incomplete. Additional contributions to the
term 4β4/45 will arise from the third-order sensitivities, as will be shown below.

3. If all sensitivities up to and including the third-order sensitivities of ΦH(σ; E) with

respect to σs(E) are available, then the third-order expansion Φ(3)
H (σ; E) of ΦH(σ; E)

takes on the following particular form of Equation (23):

Φ(3)
H (σ; E) ,

Q
(
α0)

ENHσm

(
1− t + t2 − t3

)
; t ,

σs(E)− σm

σm
. (73)

The expectation E(3)[ΦH ] has, therefore, the following expression:

E(3)[ΦH ] =
Q
(
α0)

ENHσm

1
2β

β∫
−β

(
1− t + t2 − t3

)
dt =

Q
(
α0)

ENHσm

(
1 +

β2

3

)
= E(2)[ΦH ]. (74)

The expectation E(3)[ΦH ] is only as accurate as the lower-order approximation E(2)[ΦH ],
i.e., it is accurate up to and including the contributions stemming from the second-order
sensitivities, because the contribution from the third-order sensitivities vanishes after the
integration of the respective third-order (odd) term over the symmetric interval around the
expectation of the parameter σs(E).

Replacing the expression given in Equation (73) into Equation (52) and using Equa-
tion (74) yields:

V(3)[ΦH ] =

[
Q(α0)
ENHσm

]2
[

1
2β

β∫
−β

(
1− t + t2 − t3)2dt

]
−
[

Q(α0)
ENHσm

]2(
1 + β2

3

)2

=

[
Q(α0)
ENHσm

]2(
β2

3 + 22
45 β4 + β6

7

)
.

(75)

The variance V(3)[ΦH ] is accurate up to and including the contributions stemming
from the second-order sensitivities but the contributions from the third-order sensitivities
are incomplete because the term β6/7 is incomplete. Additional contributions to the term
β6/7 will arise from the fourth-order sensitivities, as will be shown below.

4. If all sensitivities up to and including the fourth-order sensitivities of ΦH(σ; E) with

respect to σs(E) are available, then the fourth-order expansion Φ(4)
H (σ; E) of ΦH(σ; E)

takes on the following particular form of Equation (23):

Φ(4)
H (σ; E) ,

Q
(
α0)

ENHσm

(
1− t + t2 − t3 + t4

)
; t ,

σs(E)− σm

σm
. (76)
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The expectation E(4)[ΦH ] has the following expression:

E(4)[ΦH ] =
Q
(
α0)

ENHσm

1
2β

β∫
−β

(
1− t + t2 − t3 + t4

)
dt =

Q
(
α0)

ENHσm

(
1 +

β2

3
+

β4

5

)
. (77)

The expectation E(4)[ΦH ] is accurate up to and including the contributions stemming
from the fourth-order sensitivities.

Replacing the expression given in Equation (77) into Equation (52) and using Equa-
tion (77) yields:

V(4)[ΦH ] =

[
Q(α0)
ENHσm

]2
[

1
2β

β∫
−β

(
1− t + t2 − t3 + t4)2dt

]
−
[

Q(α0)
ENHσm

]2(
1 + β2

3 + β4

5

)2

=

[
Q(α0)
ENHσm

]2(
β2

3 + 22
45 β4 + 31

105 β6 + 16
225 β8

)
.

(78)

The variance V(4)[ΦH ] is accurate up to and including the contributions stemming
from the third-order sensitivities but the contributions from the fourth-order sensitivities
are incomplete because the term 16β8/225 is incomplete. Additional contributions to the
term 16β8/225 will arise from the fifth-order sensitivities.

As has been mentioned in the foregoing and as indicated by the results obtained
thus far, the convergence of the infinite series representations of the expectation and
variance, E[ΦH ] and, respectively, V[ΦH ] depends solely on the chosen value for the
positive parameter β: the smaller the chosen value for β, the faster the convergence of the
series representation for E[ΦH ] and for V[ΦH ], respectively. It is, therefore, of interest to
investigate numerically the errors associated with the first four orders of approximations
E(n)[ΦH ] and V(n)[ΦH ] for n = 1, 2, 3, 4, for several representative values for β, 0 < β < 1.
Three values will be considered for the parameter β, as follows:

(a) β = 0.2, which corresponds to a uniform distribution of height P[σs(E)] = 5/σm
and (very narrow) width confined to the interval 0.8 σm ≤ σs(E) ≤ 1.2 σm, with a standard
deviation SD[σs(E)] = 1√

3
βσm = (11.55% )σm.

(b) β = 0.5, which corresponds to a uniform distribution of height P[σs(E)] = 1/σm
and width confined to the interval 0.5 σm ≤ σs(E) ≤ 1.5 σm, with a standard deviation
SD[σs(E)] = (28.87%)σm.

(c) β = 0.95, which corresponds to a uniform distribution of height P[σs(E)] =
0.5263/σm and width confined to the interval 0.05 σm ≤ σs(E) ≤ 1.95 σm, with a standard
deviation SD[σs(E)] = (54.85%)σm.

The exact normalized expectation, EN [ΦH ], and normalized variance, VN [ΦH ], of the
flux ΦH(σ; E are defined by using Equations (46) and (50), as follows:

EN [ΦH ] , E[ΦH ]

[
Q
(
α0)

ENH

1
σm

]−1

=
1

2β
ln

1 + β

1− β
, (79)

VN [ΦH ] , V[ΦH ]

[
Q
(
α0)

ENHσm

]−2

=

[
1

1− β2 −
1

4β2

(
ln

1 + β

1− β

)2
]

. (80)

The normalized exact standard deviation is defined as follows: SDN [ΦH ] =
√

VN [ΦH ].

The normalized nth-order approximations E(n)
N [ΦH ], V(n)

N [ΦH ] and SD(n)
N [ΦH ] of the ex-

pectation, variance and standard deviation of the flux response ΦH(σ; E), respectively, are
defined as follows:

E(n)
N [ΦH ] , E(n)[ΦH ]

[
Q(α0)

ENH
1

σm

]−1
; V(n)

N [ΦH ] , V(n)[ΦH ]

[
Q(α0)
ENHσm

]−2
;

SD(n)
N [ΦH ] ,

√
V(n)

N [ΦH ] ; n = 1, 2, 3, 4.
(81)
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The results obtained from using the exact expression provided in Equations (79) and (80)
are compared to the approximate results obtained by using the expressions provided in
Equation (81), for n = 1, 2, 3, 4 and for β = 0.2, β = 0.5 and β = 0.95, respectively. Since all
four moments (i.e., expectation, variance, skewness and kurtosis) of the distribution of the
response ΦH(σ; E) are even functions of β, it suffices to consider only positive values for β.
The results obtained for the expectation and variance of the predicted distribution of the
response ΦH(σ; E) are summarized in Tables 3–5, below.

Table 3. Exact and approximate values for the expectation, variance and standard deviation of
ΦH(σ; E) for β = 0.2.

Moment Exact
Value

First-Order
Value (Error 1)

Second-Order
Value (Error 1)

Third-Order
Value (Error 1)

Fourth-
Order Value

(Error 1)

EN [ΦH ] 1.014 1.000
(1.4%)

1.000
(1.4%)

1.013
(0.07%)

1.013
(0.07%)

VN [ΦH ] 0.0142 0.0133
(5%)

0.0134
(3.88%)

0.0142
(exact 2)

0.0142
(exact 2)

SDN [ΦH ] 0.1190 0.1155
(3%)

0.1158
(2.7%)

0.0190
(exact 2)

0.0190
(exact 2)

1 Error = (exact-approximate)/exact. 2 Exact to at least four decimal digits.

Table 4. Exact and approximate values for the expectation, variance and standard deviation of
ΦH(σ; E) for β = 0.5.

Moment Exact
Value

First-Order
Value (Error 1)

Second-Order
Value (Error 1)

Third-Order
Value (Error 1)

Fourth-
Order Value

(Error 1)

EN [ΦH ] 1.0990 1.000
(9.01%)

1.083
(1.43%)

1.083
(1.43%)

1.096
(0.27%)

VN [ΦH ] 0.1264 0.0833
(34.05%)

0.0889
(29.67%)

0.1161
(8.13%)

0.1188
(6.03%)

SDN [ΦH ] 0.3555 0.2887
(18.8%)

0.2981
(16.2%)

0.3375
(5.06%)

0.3447
(3.05%)

1 Error = (exact-approximate)/exact.

Table 5. Exact and approximate values for the expectation, variance and standard deviation of
ΦH(σ; E) for β = 0.95.

Moment Exact
Value

First-Order
Value (Error 1)

Second-Order
Value (Error 1)

Third-Order
Value (Error 1)

Fourth-
Order Value

(Error 1)

EN [ΦH ] 1.928 1.000
(9.01%)

1.301
(32.53%)

1.301
(32.53%)

1.464
(24.1%)

VN [ΦH ] 6.5385 0.3008
(95.40%)

0.3732
(94.29%)

0.8040
(87.70%)

0.9632
(85.27%)

SDN [ΦH ] 2.5570 0.5485
(78.55%)

0.6109
(76.11%)

0.8967
(64.93%)

0.9814
(62.62%)

1 Error = (exact-approximate)/exact.

The following conclusions can be drawn from the results presented in Tables 3–5:

1. For very small values (β = 0.2) of the parameter β, the expansions (in powers of β),
which represent the various orders (n = 1, 2, 3, 4) of approximations of the normalized
expectation E(n)

N [ΦH ] and normalized variance V(n)
N [ΦH ] of the unknown distribution

of the flux ΦH(σ; E), converge very quickly to the respective exact values EN [ΦH ]
and VN [ΦH ], as indicated by the results presented in Table 3. Already the first-order
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approximations E(1)
N [ΦH ] and V(1)

N [ΦH ] yield results that are within 5% of the exact
values of the expectation and, respectively, variance of the flux ΦH(σ; E). The third-
order approximation E(1)

N [ΦH ] is within 0.07% of the exact value for the expectation

of the flux ΦH(σ; E), while the third-order approximation V(3)
N [ΦH ] of the standard

deviation of the flux ΦH(σ; E) is exact up to at least four decimals. Recall that a very
small value of β implies that the measurement σm , σs(Em) is extremely accurate,
i.e., the uniform distribution of σs(Em) around σm is extremely narrow.

2. The value β = 0.5 is characteristic of a measurement of moderate precision, so it is
representative of the majority of evaluated cross-sections such as the scattering cross-
section σs(Em). The results in Table 4 indicate that the first-order approximations
are not satisfactory: the first-order approximation E(1)

N [ΦH ] of the exact expectation

EN [ΦH ] is in error by 9%, while the first-order approximation SD(1)
N [ΦH ] of the exact

standard deviation SDN [ΦH ] is in error by 19%. Only the third-order (or higher-order)
approximations, E(3)

N [ΦH ] and SD(3)
N [ΦH ], would provide values for the expectation

and, respectively, standard deviation of the flux ΦH(σ; E), which would be within 5%
of the respective exact values.

3. The value β = 0.95 characterizes either an imprecise measurement or the need to
construct “tolerance intervals” that cover a large segment of the unknown distribution
of the quantity under investigation, i.e., the flux ΦH(σ; E), in this illustrative example.
As the results in Table 5 indicate, the convergence of the various approximations is
extremely slow. Even the fourth-order approximations E(4)

N [ΦH ] and SD(4)
N [ΦH ] are

very far off the exact values EN [ΦH ] and SDN [ΦH ], respectively, of the expectation
and the standard deviation of ΦH(σ; E).

The accuracies of the first-order and second-order approximations for the third-order
moment, µ3[ΦH ], and the skewness, Skew[ΦH ], of ΦH(σ; E) are illustrated by the results
presented in Table 6. The exact moment, µ3[ΦH ], of the predicted distribution of the
response ΦH(σ; E) is positive, indicating a distribution, which would be skewed toward
values more positive than the distribution’s expected value σm. As the positive values of
the parameter β increase towards unity, which would represent an increasingly broader
distribution for ΦH(σ; E), µ3[ΦH ] also increases; hence, the skewness of the distribution
for ΦH(σ; E) also increases. With pronounced skewness, standard statistical inference
procedures such as a confidence interval for a mean will be not only incorrect, in the sense
that the true coverage level will differ from the nominal (e.g., 95%) level, but they will also
result in unequal error probabilities on each side.

Table 6. Exact and approximate values for the third-order moment and skewness of ΦH(σ; E).

Third-Order Moment β = 0.2 β = 0.5 β = 0.95

Exact: µ3[ΦH ] 0.0005 0.0353 60.20
Exact: Skew[ΦH ] 0.2955 0.7857 3.6

First-order: µ
(1)
3 [ΦH ]

(Error 1)
0.0000
(100%)

0.0000
(100%)

0.0000
(100%)

First-order: Skew(1,1)[ΦH ]
(Error 1)

0.0000
(100%)

0.0000
(100%)

0.0000
(100%)

Second-order: µ
(2)
3 [ΦH ]

(Error 1)
0.0004
(20%)

0.0267
(32.2%)

0.2172
(99.6%)

Second-order: Skew(2,2)[ΦH ] 0.2576 1.0073 0.9527
(Error 1) (13.2%) (−28.3%) (73.6%)

Skew(2,4)[ΦH ] 0.2364 0.6521 0.2298
(Error 1) (20%) (17.0%) (93.6%)

1 Error = (exact-approximate)/exact.
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Very importantly, the results presented in bold in Table 6 indicate that the first-order
approximation for the third moment µ

(1)
3 [ΦH ] of the predicted response distribution is

always zero. Thus, using just the first-order response sensitivities will always be 100%
incorrect unless the distribution of the response under consideration happens to be sym-
metric. Conversely, if only first-order sensitivities are considered, the third-order moment
of the response is always zero. Thus, the response distribution is always predicted to be
symmetrical if only first-order sensitivities are considered. Hence, a “first-order sensitivity
and uncertainty quantification” will always produce an erroneous third moment (and
hence skewness) of the predicted response distribution, unless the distribution happens to
be symmetrical. At least second-order sensitivities must be used in order to estimate the
third-order moment (and, hence, the skewness) of the response distribution.

The overall conclusion that follows from the results presented in Table 6 is that low-
order (i.e., first- and second-order) approximations for the third-order moment, µ3[ΦH ],
of the response distribution can provide the correct sign (i.e., positive or negative) of the
response skewness, but cannot provide reliably correct values for the skewness. Signifi-
cantly higher-order approximations, which would require the computation of high-order
response sensitivities to model parameters, are needed in order to obtain reliable values
for the third-order response moment µ3[ΦH ] and, hence, for the skewness of the response
distribution. Comparing the results in Table 6 for increasing (positive) values for the
parameter β, the low-order (first- and second-order) approximations become increasingly
unreliable as β increases toward unity. This trend indicates that, as the response distri-
bution becomes wider, sensitivities of an increasingly higher-order would be needed in
order to improve the predicted values for the response skewness. Using a low-order (in
Table 6: second-order) approximation for the third moment µ3[ΦH ] but a higher-order (in
Table 6: fourth-order) approximation for the variance (so that a comparable amount of
computational effort would be needed for computing the respective approximations) does
not significantly improve the final results. If accurate values for the response skewness are
required, it is not possible to circumvent the need for computing high-order sensitivities,
which in turn enable the computation of high-order approximations to the third-order
moment and, hence, skewness.

The accuracies of the first-order and second-order approximations for the fourth-order
moment µ4[ΦH ] of ΦH(σ; E) are illustrated by the results presented in Table 7. The results
presented in Table 7 also indicate (similar to that indicated by the results presented in
Table 6) that for small values of the parameter β, the first-order approximation, µ

(1)
4 [ΦH ],

provides an approximate value, which differs by 25% from the exact value µ4[ΦH ], while
the second-order approximation µ

(2)
4 [ΦH ] provides the exact first four significant digits of

the exact value of µ4[ΦH ]. The main conclusions that follow from the results presented in
Table 7 are similar to those that were drawn from the results presented in Table 6 for the
response’s third-order moment and skewness, namely: low-order (i.e., first- and second-
order) approximations for the fourth-order moment, µ4[ΦH ], of the response distribution
can provide the correct sign of the response kurtosis, but cannot provide reliably correct
values for the kurtosis. Significantly higher-order approximations, which would require the
computation of high-order response sensitivities to model parameters, are needed in order
to obtain reliable values for the fourth-order response moment µ4[ΦH ] and, hence, for the
kurtosis of the response distribution. The results in Table 7 indicate that the low-order (first-
and second-order) approximations become increasingly unreliable as β increases (with
positive values) toward unity, which means that, as the response distribution becomes
wider, sensitivities of an increasingly higher-order would be needed in order to improve the
predicted values for the response kurtosis. If accurate values for the response kurtosis are
required, it is not possible to circumvent the need for computing high-order sensitivities.
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Table 7. Exact and approximate values for the fourth-order moment of ΦH(σ; E).

Fourth-Order Moment β = 0.2 β = 0.5 β = 0.95

Exact: µ4[ΦH ] 0.0004 0.0411 779.47
Exact: Kurt[ΦH ] 1.9837 2.5725 18.23

First-order: µ
(1)
4 [ΦH ]

(Error 1)
0.0003
(25%)

0.0125
(69.6%)

0.1629
(100%)

First-order: Kurt(1,1)[ΦH ]
(Error 1)

1.6960
(14.5%)

1.8014
(29.97%)

1.8004
(90%)

Second-order: µ
(2)
4 [ΦH ]

(Error 1)
0.0004

(Exact 2)
0.0259
(37%)

0.7930
(99.99%)

Second-order: Kurt(2,2)[ΦH ] 2.2277 3.2771 5.694
(Error 1) (−12.3%) (−27.39) (68.8%)

Kurt(2,4)[ΦH ] 1.9837 1.8351 0.8548
(Error 1) (Exact2) (28.6%) (95.3%)

1 Error = (exact-approximate)/exact. 2 Exact to at least four decimal digits.

It is known [18–20] that the form showed in Equation (18) of the slowing down neutron
flux in a hydrogenous medium also holds for the asymptotic (below the cut-off energy of
the fission source) slowing down flux in an infinite non-hydrogenous medium, where it
takes on the following form:

Φm(α; E) =
Q(α)

ξ(E)EΣs(α; E)
. (82)

In Equation (82), the quantity ξ(E) denotes the average increase in lethargy per
collision and depends on the atomic/molecular masses and the scattering cross-sections
of the nuclides in the medium. The analysis of the dependence of the flux Φm(α; E)
on the scattering cross-section of the mixture, Σs(α; E), is similar to the analysis of the
slowing-down flux ΦH(σ; E) in hydrogen [18–20].

The expression of the slowing down neutron flux distribution, Φ(α; E), in a hydroge-
nous medium in which both scattering and absorption are important was provided in
Equation (17). The Taylor-series expansion of Φ(α; E) at the nominal parameter value σm
has the following form:

Φ
(

σH ; E
)
=

∞

∑
n=0

1
n!

{
dnΦ

(
σH ; E

)
d(σH)

n

}
(Em ;σm ;α0)

(
σH − σm

)n
, (83)

where
dnΦ(σH ;E)

d(σH)
n =

n
∑

k=0

(
n
k

){
dk

d(σH)
k

[
1

Σ(σH ;E)

]}
d n−k G(α;E)

d(σH)
n−k = G(α; E) d n

d(σH)
n

[
1

Σ(σH ;E)

]
+

(
n
1

)
d G(α;E)

d(σH)
d n−1

d(σH)
n−1

[
1

Σ(σH ;E)

]
+ . . . + 1

Σ(σH ;E)
d n G(α;E)

d(σH)
n ;

G(α; E) , p(α;E)
E
∫ ∞

Es(α) Q(α; E′)dE′ Φ(α; E) .

(84)

It follows from Equations (83) and (84) that the first term, denoted as Φ1
(
σH ; E

)
, in

the Taylor series of Φ
(
σH ; E

)
is the following infinite series:

Φ1

(
σH ; E

)
= G

(
σm;α0; Em

) ∞

∑
n=0

1
n!

{
d n

d(σH)
n

[
1

Σ(σH ; E)

]}
(Em ;σm ;α0)

(
σH − σm

)n
, (85)

which has the same functional form as the series for ΦH(σ; E) in Equation (20). In fact, each
successive term in the series representation of Φ(α; E) shown in Equation (83) has the same
functional form as the series for ΦH(σ; E) in Equation (20). Therefore, the analysis that
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has been performed in the foregoing for ΦH(σ; E) is also applicable to perform sensitivity
and uncertainty analyses aimed at quantifying the impact of the uncertainties afflicting
the other parameters (cross-sections, number densities, source parameters, etc.) on the
distribution of the slowing down flux Φ(α; E) in a scattering and absorbing medium, but
these additional analyses are beyond the scope of this work.

4. Use of Model Response Sensitivities in First-Order Data Adjustment and
High-Order Predictive Modeling Methodologies

This section reviews the incorporation of sensitivities (of various orders) in data
adjustment and predictive modeling methodologies in order to indicate the level of accuracy
that could be expected when using these methodologies. Section 4.1 reviews the first-order
“generalized linear least squares adjustment (GSSLA)” methodology [2] incorporated in
the data adjustment software system TSURFER [1], developed at Oak Ridge National
Laboratory (ORNL), which represents the current state of the art in data adjustment used in
nuclear engineering for nuclear criticality safety and reactor physics/shielding applications.
Section 4.2 compares the TSURFER-GSSLA data adjustment methodology to the high-order
predictive modeling (HO-BERRU-PM) methodology recently developed by Cacuci [13,21],
highlighting the current capabilities and limitations of these two methodologies.

4.1. First-Order Generalized Least Squares Data Adjustment (GLLSA) Methodology in TSURFER

The current state of the art in “data adjustment” is represented by the so-called “gener-
alized linear least squares adjustment (GLLSA)” procedure [2] implemented in the software
module TSURFER [1] of the ORNL-SCALE software system used for reactor criticality
safety applications. The GSSLA procedure in TSURFER is based on concepts proposed
in the 1970s [25–27] and is limited to incorporating just the first-order sensitivities of the
response with respect to the model parameters. The end results for the “adjusted” values
produced by the TSURFER-GLLSA procedure for the nuclear cross-sections (considered as
“model parameters”) and effective multiplication factors (considered as “model responses”)
are obtained by minimizing a (user-chosen) quadratic cost functional, which represents
the discrepancies (“least-squares”) between measurements and computations. The GSSLA
procedure in TSURFER considers the following a priori information, which is described in
the paragraphs labeled (A) through (C), below:

(A). A set {αn|n = 1, . . . , M} of M imprecisely known “model parameters”, which in
TSURFER are the infinitely dilute multigroup cross-sections for all nuclide-reaction pairs
used in the transport calculations of all responses. The total number of model parameters,
M, is obtained by multiplying the number of unique nuclide-reaction pairs by the number
of energy groups. In practice, the values of the cross-sections αn are determined experimen-
tally and are, therefore, imprecisely known. For practical computations, these cross-sections
are arranged into an M-dimensional column vector, denoted as α , (α1, . . . , αM)†, and
are considered to be variates that obey an unknown multivariate probability distribution
function, denoted as pα(α), which is formally defined on a domain Dα. The dagger super-
script (†) will be used in this work to denote “transposition”. The various moments (e.g.,
mean values, covariances and variances, etc.) of pα(α) are determined from cross-section
measurements and subsequent evaluation processes and are formally defined as follows:

(i) The expected (or mean) value of a model parameter αn, denoted as E(αn), is
formally defined as follows:

E(αn) ,
∫

Dα

αn pα(α)dα, n = 1, . . . , M. (86)

The vector of expected values of the vector of parameters α , (α1, . . . , αM)† is defined
as follows:

E[α] , [E(α1), . . . , E(αM)]†. (87)
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(ii) The covariance, denoted as cov
(
αj, αn

)
, of two parameters αj and αn is formally

defined as follows:

cov
(
αj, αn

)
,
∫

Dα

(
δαj
)
(δαn)pα(α)dα ; δαn , αn − E(αn); j, n = 1, . . . , M. (88)

(iii) The variance, denoted as var(αn), of a parameter αn, is defined as follows:

var(αn) ,
∫

Dα

[αn − E(αn)]
2 pα(α)dα, n = 1, . . . , M. (89)

(iv) The standard deviation σn of αn is defined as follows:

σn ,
√

var(αn), n = 1, . . . , M. (90)

(v) The correlation, denoted as ρjn, between two parameters αm and αn, is defined
as follows:

ρjn , cov
(
αj, αn

)
/
(
σjσn

)
; j, n = 1, . . . , M. (91)

(vi) In TSURFER, the cross-section moments defined in Equations (86)–(89) are used
to define “relative” quantities as follows:

Cαα(m, n) ,
[

cov(αm, αn)

E(αm)E(αn)

]
, m, n = 1, . . . , M. (92)

Note that the quantities Cαα(m, n) are not correlation coefficients, since the correlation
coefficients (in a correlation matrix) are defined by dividing the absolute covariances by the
respective standard deviations, as defined in Equation (91), rather than by the parameter
expected values, as done in TSURFER and as (therefore) shown in Equation (92). The
elements Cαα(m, n) are used in TSURFER to construct an M × M-dimensional cross-
section covariance matrix, denoted as Cαα, and defined as follows:

Cαα , [Cαα(m, n)]M×M. (93)

(B) TSURFER also considers a set {mi|i = 1, . . . , I } of I “integral response” (e.g., ef-
fective multiplication factors, reaction rates), some of which may have been measured
in selected benchmark experiments. The set of measured responses is arranged in an
I-dimensional column vector denoted as m , (m1, . . . mi, . . . , mI)

†. The measured integral
responses are imprecisely known quantities, which are characterized by their expected val-
ues and variances/covariances. The expected values E(mi) are formally defined as follows:

E(mi) ,
∫

Dm

mi pm(m)dm, i = 1, . . . , I, (94)

where pm(m) is an unknown multivariate distribution for the measured responses, formally
defined on a domain Dm. In TSURFER’s “absolute format”, the I × I covariance matrix
for the measured responses is denoted as C̃mm and comprises elements C̃mm(i, j) defined
as follows:

C̃mm(i, j) ,
∫

Dm

[mi − E(mi)]
[
mj − E

(
mj
)]

pm(m)dm, i, j = 1, . . . , I. (95)

(C) Finally, TSURFER considers a set {ki(α)|i = 1, . . . , I } of I “calculated responses”
(which represent either effective multiplication factors or reaction rates), which correspond
to each experimental “integral response”. The notation ki(α) indicates that these calcu-
lated responses are functions of the model parameters (i.e., nuclear data). The calculated
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responses ki(α) are arranged in an I-dimension vector k(α) , [k1(α), . . . , kI(α)]
†. Com-

puted responses, which have no measured counterparts, are designated in TSURFER as
“applications”. By convention, unknown experimental values corresponding to applica-
tions are represented by the corresponding calculated values. Each calculated response,
ki(α), is considered in TSURFER to be represented by the following first-order (linear)
Taylor-series expansion:

ki(α) = ki

(
αre f

)
+

M

∑
j=1

[
∂ki(α)

∂αj

]
(α

re f
j )

(
αj − α

re f
j

)
, i = 1, . . . , I, (96)

where αre f is a vector that comprises “cross-section reference values”. In particular, setting
α

re f
n ≡ E(αn) in Equation (96) and taking the expectation value of the resulting expression

yields the following expression for the expected value of ki(α):

E[ki(α)] = ki

(
αre f

)
; αre f , [E(α)], i = 1, . . . , I. (97)

The relation in Equation (97) indicates that the expected value of the calculated
response in TSURFER is the same as the TSURFER-calculated response itself. As has been
shown in Section 3 and will also be shown in Section 4.2, however, the assumption made in
TSURFER that Equation (97) is correct holds only if the second- and higher-order terms in
the Taylor series of ki(α) are discarded. Of course, Equation (97) is invalid when second
(and/or higher) order sensitivities are not discarded.

The linear first-order expression provided in Equation (96) is also used in TSURFER
to obtain expressions for the variances/covariances, cov

[
ki(α), k j(α)

]
, between two com-

puted responses ki(α) and k j(α). These covariances are obtained by writing Equation (96)
for k j(α), multiplying the Taylor series for k j(α) by the Taylor series for ki(α) and formally
determining the expectation value of the expression that results from this multiplication.
The expression obtained after this sequence of operations is as follows:

cov
[
ki(α), k j(α)

]
=

M

∑
m=1

M

∑
n=1

[
∂ki(α)

∂αm

∂k j(α)

∂αn

]
E(α)

cov(αm, αn), i, j = 1, . . . , I, (98)

where the symbol [ ]E(α) indicates “evaluation at the expected values of the model pa-
rameters” (cross-sections). The quantity ∂ki(α)/∂αm represents the “absolute” first-order
sensitivity (i.e., functional derivative) of the ith response with respect to the mth parameter
and has units of “[response]/[parameter]”. The unitless quantities (∂ki/∂αm)× (αm/ki)
are called “relative” sensitivities.

Using the quantities defined in Equation (92), TSURFER re-writes Equation (98) in the
following form:

cov
[
ki(α), k j(α)

]
=

M
∑

m=1

M
∑

n=1

[(
αm

∂ki(α)
∂αm

)(
αn

∂kj(α)

∂αn

)]
E(α)

Cαα(m, n),

=
M
∑

m=1

M
∑

n=1

[
S̃kα(i, m)S̃kα(j, n)

]
E(α)

Cαα(m, n) , i, j = 1, . . . , I,
(99)

where

S̃kα(i, m) , αm
∂ki(α)

∂αm
. (100)

The quantities S̃kα(i, m) are used in TSURFER to construct the I × M matrix S̃kα,
defined as follows:

S̃kα ,
[
S̃kα(i, m)

]
I×M

. (101)
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Although TSURFER calls the matrix S̃kα to be the “I by M absolute sensitivity ma-
trix”, this is a misnomer, since the elements S̃kα(i, m) of this matrix have the same units
as the respective computed response and are, therefore, neither “absolute” sensitivities
(which the quantities ∂ki/∂αm are) nor “relative” sensitivities (which the unitless quantities
(∂ki/∂αm)× (αm/ki) are).

In matrix form, Equation (99) is written in TSURFER in the following form when
evaluated at the expected parameter values E[α]:

C̃kk ,
[
cov
(
ki, k j

)]
I×I = S̃kαCααS̃

†
kα (102)

The matrix C̃kk is called in TSURFER the “I by I absolute covariance matrix for prior
calculated responses”, and Equation (102) is called the “sandwich rule”.

The GLLSA procedure [2] implemented in TSURFER “consolidates” the a priori
information provided above in items (A) through (C) in order to obtain “adjusted” (i.e.,
“improved estimates of”) mean values and covariances for the parameters (cross-sections),
as well as “adjusted” values for the means and covariances of the responses and the (target)
application under consideration. The GLLSA procedure computes the adjusted values for
the means and covariances of the parameters and responses by performing a constrained
minimization of the user-chosen “chi-square functional” defined below

χ2 ,

[
α
′ −α

α

]†

C−1
αα

[
α
′ −α

α

]
+

[
m
′ −m
m

]†

C−1
mm

[
m
′ −m
m

]
, (103)

and subject to the constraint that the linear model represented by Equation (96) be sat-
isfied. In Equation (103), the matrix Cmm represents the I × I-dimensional relative co-
variance matrix for the prior measured responses, having the components Cmm(i, j) ,
C̃mm(i, j)/

(
mimj

)
,i, j = 1, . . . , I. Furthermore, the quantities α

′
and m

′
in Equation (103)

represent the “adjusted values” for the model parameters and responses, which are to
be determined as the end results of performing the constrained minimization procedure.
This minimization procedure is performed by constructing an augmented Lagrangian
functional, which is obtained by using Lagrange multipliers to append the “hard con-
straints” represented by Equation (96) to the user-defined “chi-square functional” shown
in Equation (103) and, subsequently, determining the values/expressions for α

′
and m

′
at

which the first-order derivatives of the resulting augmented Lagrangian vanish.
The TSURFER formulas for the adjusted quantities that result from the GLLSA proce-

dure are reproduced below, written in what TSURFER calls “absolute format”:

1. The formula for computing the M-dimensional vector of adjusted cross-sections
(“model parameters”), denoted in TSURFER as α

′
, is as follows:

α
′
= α−

[
CααS̃

†
ka

]
C̃
−1
dd d̃, ∆α̃ ≡ α

′ −α, (104)

where:
C̃dd , C̃kk + C̃mm = S̃kαCααS̃

†
kα + C̃mm (105)

Additionally,
d̃ , k(α)−m (106)

2. The formula for computing the M×M-dimensional covariance matrix for the ad-
justed cross-sections, denoted in TSURFER as C

α
′
α
′ , is as follows:

C
α
′
α
′ = Cαα −

[
CααS̃

†
ka

]
C̃
−1
dd

[
S̃kαCαα

]
. (107)
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3. The M-dimensional vector of adjusted measured responses produced by TSURFER’s
GLLSA procedure is denoted as m

′
, and the formula for computing it is as follows:

m
′
= m + C̃mmC̃

−1
dd d̃; ∆m̃ , m

′ −m. (108)

4. The formula for computing the covariance matrix C̃m′m′ for the adjusted measured
responses is as follows:

C̃m′m′ = C̃mm − C̃mmC̃
−1
dd C̃mm . (109)

5. The GLLSA procedure in TSURFER forces the following relationships to hold:

k
′(
α
′
)
= m

′
, (110)

where m
′

denotes the I-dimensional vector of adjusted measured responses produced
by the GLLSA procedure and k

′(
α
′
)

denotes the I-dimensional vector of adjusted cal-

culated responses obtained using the adjusted nuclear parameters α
′
. Consequently,

the following relationships are also forced to hold in TSURFER:

∆k = k
′(
α
′
)
− k(α) = m

′ −m− d = Skα∆α . (111)

6. TSURFER also computes the “consistency indicator between the calculations and
measurements”, which is given in TSURFER by the following “chi-square formula”:

χ2
TSURFER = d†C−ddd . (112)

The application response bias in TSURFER is denoted as βα and defined as the ex-
pected deviation of the original calculated application response, denoted as ka(α), from
the best estimate of the measured response, denoted as m′a, which is unknown but is
assumed to obey some probability distribution. If the application response did actually
have a prior measured value ma, then the best estimate for the experiment value would
be the adjusted value m′a provided by the GLLSA procedure. Mathematically, TSURFER
defines the application bias as the expectation of the difference between ka(α) and m′a, i.e.,

βα , E
[
ka(α)−m′a

] ∼= ka − ka

(
α
′
)
∼= −S̃

†
a∆α . (113)

The first-order linear relation shown in Equation (113) is used in TSURFER as the basis
for constructing “confidence intervals” and “tolerance limits” for the predicted multiplica-
tion factors (predicted model responses) for which there are no measurements. TSURFER
assumes a first-order approximation of the dependence of the effective multiplication fac-
tors on the underlying cross-sections and, therefore, assumes a linear relationship between

the initial experimental biases ∆k(exp)
i for the ith experiment and the TSURFER calculated

bias ∆k(app) for the application. Furthermore, TSURFER assumes that all distributions
are Gaussian and that the standard deviations for the experimental measurements and
reference calculated values are known.

Of all of the above assumptions made in TSURFER for constructing “confidence inter-
vals” and “tolerance limits” for the predicted multiplication factors, the most questionable
(and severe) is the assumption of linearity shown in Equation (113), which holds only if
all sensitivities higher than the first order are discarded. However, TSURFER cannot com-
pute second- (or higher) order sensitivities, so the validity of Equation (113) is unproven.
Evidently, if second- and/or higher-order sensitivities were not negligible, Equation (113)
would be severely in error, and consequently, the “confidence intervals” and “tolerance
limits” computed in TSURFER would be severely misleading. In conclusion, the “confi-
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dence intervals” and “tolerance limits” computed in TSURFER are not trustworthy until
TSURFER implements capabilities for computing higher-order sensitivities and proves
quantitatively that these are negligibly small. Otherwise, all of the uncertainty analysis and
data adjustment results, including tolerance limits and confidence intervals, produced by
TSURFER must be interpreted with due caution.

4.2. High-Order Sensitivities in the HO-BERRU-PM Methodology

The HO-BERRU-PM methodology (high-order best-estimated results with reduced
uncertainties predictive modeling) conceived by Cacuci [13,21] combines experimental and
computational information in the joint phase space of responses and model parameters,
including second-order and third-order response sensitivities to model parameters. The
HO-BERRU-PM methodology uses the maximum entropy principle [22] to eliminate the
need for introducing and “minimizing” a user-chosen “cost functional quantifying the
discrepancies between measurements and computations”, thus yielding results that are free
of subjective user-interferences, while generalizing and significantly extending the current
dynamic data assimilation procedures [28,29]. Incorporating correlations, including those
between the imprecisely known model parameters and computed model responses, the HO-
BERRU-PM also provides a quantitative metric, constructed from sensitivity and covariance
matrices, for determining the degree of agreement among the various computational and
experimental data while eliminating discrepant information.

In contradistinction to TSURFER, which uses the linear (first-order) model shown in
Equation (96), Cacuci’s HO-BERRU-PM framework [13,21] uses the third-order multivariate
Taylor-series expansion of the model’s computed response with respect to the model’s
parameters. Denoting the computed model response as rc

i1
(α), where the superscript “c”

denotes “computed” and where the subscript i1 = 1, . . . , Nr denotes one of a total of Nr
responses that would be of interest, the third-order multivariate Taylor-series expansion of
the response around the model’s parameters’ expected values α0 ,

(
α0

1, . . . , α0
Nα

)
, where

Nα denotes the total number of model parameters, has the following form:

rc
i1(α) = rc

i1

(
α0
)
+

Nα

∑
i=1

{
∂rc

i1
(α)

∂αi

}
α0

(
αi − α0

i

)
+ rHO

i1

(
α;α0

)
; i1 = 1, . . . , Nr, (114)

where

rHO
i1

(
α;α0) , 1

2

Nα

∑
i,j=1

{
∂2rc

i1
(α)

∂αi∂αj

}
α0

(
αi − α0

i
)(

αj − α0
j

)
+ 1

3!

Nα

∑
i,j,k=1

{
∂3rc

i1
(α)

∂αi∂αj∂αk

}
α0

(
αi − α0

i
)(

αj − α0
j

)(
αk − α0

k
)

+ 1
4!

Nα

∑
i,j,k,`=1

{
∂4rc

i1
(α)

∂αi∂αj∂αk∂α`

}
α0

(
αi − α0

i
)(

αj − α0
j

)(
αk − α0

k
)(

α` − α0
`

)
; i1 = 1, . . . , Nr.

(115)

In Equations (114) and (115), the expected parameter values are denoted as α0 ,(
α0

1, . . . , α0
Nα

)
, while the quantity rc

i1

(
α0) and the response derivatives (a.k.a. “sensitivi-

ties”) with respect to the model parameters are evaluated at the expected parameter values.
The expected value of the third-order Taylor-series expansion provided in Equation (114)

is obtained by integrating this expansion formally over the unknown parameter distribution
pα(α). This operation yields the following expression for the expected (mean) value, denoted
as E

[
rc

i1
(α)
]
, of a response rc

i1
(α):

E
[
rc

i1(α)
]
= rc

i1

(
α0
)
+

1
2

Nα

∑
i,j=1

{
∂2rc

i1
(α)

∂αi∂αj

}
α0

ρijσiσj +
1
6

Nα

∑
i,j,k=1

{
∂3rc

i1
(α)

∂αi∂αj∂αk

}
α0

tijkσiσjσk; i1 = 1, . . . , Nr. (116)
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The third-order term in Equation (116) involves implicitly the third-order moment,µijk
3 ,

of the multivariate parameter distribution function pα(α), which is written explicitly in
terms of the third-order correlation parameter, tijk; these third-order quantities are defined
as follows:

µ
ijk
3 (α) ,

∫
Dα

(
αi − α0

i

)(
αj − α0

j

)(
αk − α0

k

)
pα(α)dα , tijkσiσjσk; i, j, k = 1, . . . , Nα; (117)

qijklσiσjσkσl ,
〈(

αi − α0
i

)(
αj − α0

j

)(
αk − α0

k

)(
αl − α0

l

)〉
α
, µ

ijkl
4 ; i, j, k, l = 1, . . . , Jα (118)

Comparing the expression in Equation (116) with the expression used in TSURFER
for the expected value of the calculated response under consideration, which is given in
Equation (97), indicates that for a response ki(α) ≡ rc

i (α), the HO-BERRU-PM expected
value contains higher-order terms in addition to the zeroth-order term ki

(
α0) considered

by TSURFER, namely:

EBERRU [rc
i (α)] = ETSURFER[rc

i (α)] + EHO
[
rc

i

(
α0
)]

; i = 1, . . . , I, (119)

where
ETSURFER[rc

i (α)] = rc
i

(
α0
)

, (120)

Additionally,

EHO[rc
i (α)] ,

1
2

Nα

∑
i,j=1

{
∂2rc

i1
(α)

∂αi∂αj

}
α0

ρijσiσj +
1
6

Nα

∑
i,j,k=1

{
∂3rc

i1
(α)

∂αi∂αj∂αk

}
α0

tijkσiσjσk; i = 1, . . . , Nr. (121)

Multiplying the third-order Taylor expansion for the response rc
i1
(α) provided in

Equations (114) by the corresponding third-order Taylor expansion that would correspond
to another calculated response, denoted as rc

i2
(α), and integrating the resulting expression

formally over the unknown parameter distribution pα(α) yields the following expression,
which is used in HO-BERRU-PM for the covariance, denoted as cov

(
rc

i1
, rc

i2

)
, of two

responses, rc
i1
(α) and rc

i2
(α), f or i1, i2 = 1, . . . , Nr:

cov
(

rc
i1

, rc
i2

)
=

Nα

∑
i=1

Nα

∑
j=1

(
∂rc

i1
∂αi

∂rc
i2

∂αj

)
ρijσiσj +

1
2

Nα

∑
i=1

Nα

∑
j=1

Nα

∑
µ=1

(
∂2rc

i1
∂αi∂αj

∂rc
i2

∂αµ
+

∂rc
i1

∂αi

∂2rc
i2

∂αj∂αµ

)
tijµσiσjσµ

+ 1
4

Nα

∑
i=1

Nα

∑
j=1

Nα

∑
µ=1

Nα

∑
ν=1

(
∂2rc

i1
∂αi∂αj

)(
∂2rc

i2
∂αµ∂αν

)(
qijµν − ρijρµν

)
σiσjσµσν

+ 1
6

Nα

∑
i=1

Nα

∑
j=1

Nα

∑
µ=1

Nα

∑
ν=1

(
∂rc

i1
∂αi

∂3rc
i2

∂αj∂αµ∂αν
+

∂rc
i2

∂αi

∂3rc
i1

∂αj∂αµ∂αν

)
qijµνσiσjσµσν .

(122)

Terms involving response sensitivities higher than the fourth order in the parameters’
standard deviations have been discarded in Equation (122). The expression in Equa-
tion (122) involves implicitly the fourth-order moment, µ

ijkl
4 , of the multivariate parameter

distribution function pα(α) and, explicitly, the fourth-order parameter correlation, qijkl ;
these fourth-order moments are defined as follows:

µ
ijkl
4 (α) ,

∫
Dα

(
αi − α0

i

)(
αj − α0

j

)(
αk − α0

k

)(
α` − α0

`

)
pα(α)dα , qijklσiσjσkσ`; i, j, k, ` = 1, . . . , Nα. (123)

In particular, the variance of a response rc
i1
(α) is obtained by setting i1 = i2 in

Equation (122).
When the parameters follow a multivariate Gaussian distribution (as it is often as-

sumed in practical applications), the following relations hold:

tijµ ≡ 0; qijµν = ρijρµν + ρiµρjν + ρiνρjµ ; i, j, µ, ν = 1, . . . , Nα . (124)
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The third-order cumulant for three responses, rc
i1
(α), rc

i2
(α) and rc

i3
(α), which is

denoted below as µ3

(
rc

i1
, rc

i2
, rc

i3

)
, f or i1, i2, i3 = 1, . . . , Nr, is also obtained by using Equa-

tion (114) and has the following expression:

µ3

(
rc

i1
, rc

i2
, rc

i3

)
,
〈[

rc
i1
− E

(
rc

i1

)][
rc

i2
− E

(
rc

i2

)][
rc

i3
− E

(
rc

i3

)]〉
α
=

Nα

∑
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Nα

∑
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Nα
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+ 1
2
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Nα

∑
j=1
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i1 k
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∂αj
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(
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)
σiσjσµσν

+ 1
2

Nα

∑
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Nα

∑
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Nα

∑
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Nα
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∂αi
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+ 1
2

Nα
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∂αµ
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(125)

The covariance of a response, rc
i1
(α) and a parameter α`, i1 = 1, . . . , Nr and ` =

1, . . . , Nα, which is denoted as cov
(

rc
i1

, α`

)
, is obtained by multiplying Equation (114) by(

α` − α0
`

)
and formally integrating the resulting expression over the unknown multivariate

parameter distribution function pα(α) to obtain the following expression:

cov
(

rc
i1

, α`

)
=

Nα

∑
i=1

{
∂rc

i1
(α)

∂αi

}
α0

cov(αi, α`) +
1
2

Nα

∑
i=1

Nα

∑
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{
∂2rc

i1
(α)

∂αi∂αj

}
α0

tij`σiσjσ`

+ 1
6

Nα

∑
i=1

Nα

∑
j=1

Nα

∑
k=1

{
∂3rc

i1
(α)

∂αi∂αj∂αk

}
α0

qijµνσiσjσkσ`; i1 = 1, . . . , Nr; ` = 1, . . . , Nα.
(126)

The expectation values E
[
rc

k(α)
]
, k = 1, . . . , Nr, given by Equation (116) are considered

to be the components of the following vector of “expected values of the computed response”:

E[rc(α)] ,
[
E(rc

1), . . . , E
(
rc

Nr

)]†. (127)

The response covariances defined in Equation (122) are considered to be the compo-
nents of an (Nr × Nr)-dimensional matrix denoted as Cr, which is defined as follows:

Cr ,
〈
[rc − E(rc)][rc − E(rc)]†

〉
α
. (128)

Using Equation (122) indicates that Equation (128) can be written as follows:

Cr = C̃kk + CHO
r (129)

where the matrix C̃kk is TSURFER’s “sandwich rule” provided in Equation (102) and where
the elements cHO

r (i1, i2) of the matrix CHO
r ,

[
cHO

r (i1, i2)
]

Nr×Nr
, i1 , i2 = 1, .., Nr, comprise

the contributions stemming from the higher-order response sensitivities and are defined
as follows:

cHO
r (i1, i2) , 1

2
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∑
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Nα

∑
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Nα
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+

∂rc
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+ 1
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σiσjσµσν

+ 1
6

Nα
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Nα

∑
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(
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i1
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+
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i2

∂αi

∂3rc
i1

∂αj∂αµ∂αν

)
qijµνσiσjσµσν .

(130)
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The covariances between the computed responses and the model parameters defined
in Equation (126) are considered to be the components of an (Nr × Nα)-dimensional matrix
denoted as Crα and defined as follows:

Crα ,
〈
[rc − E(rc)]

(
α−α0

)†
〉

α

= C†
αr. (131)

Using Equation (126) indicates that Equation (131) can be written as follows:

Cαr =
[
CααS̃

†
ka

]
+ CHO

αr . (132)

where the first-order matrix
[
CααS̃

†
ka

]
is as it appears in the posterior expressions

calculated by TSURFER for the adjusted cross-sections and their adjusted covariances,
see Equations (104) and (107), and where the elements cHO

rα (i1, `) of the matrix CHO
rα ,[

cHO
rα (i1, `)

]
Nr×Nα

=
[
CHO

αr

]†
comprise the contributions stemming from the higher-order

response sensitivities and are defined as follows:

cHO
rα (i1, `) , 1

2

Nα

∑
i=1

Nα

∑
j=1

{
∂2rc

i1
(α)

∂αi∂αj

}
α0

tij`σiσjσ`

+ 1
6

Nα

∑
i=1

Nα

∑
j=1

Nα

∑
k=1

{
∂3rc

i1
(α)

∂αi∂αj∂αk

}
α0

qijµνσiσjσkσ`; i1 = 1, . . . , Nr; ` = 1, . . . , Nα.
(133)

The prior information used in the HO-BERRU-PM regarding the measured responses
is the same as in TSURFER, namely: (i) the expectation (or mean value) of the experimen-
tally measured responses rm

i , which is denoted as E
(
rm

i
)
; (ii) the covariance between two

measured responses, which is denoted as cov
(

rm
i , rm

j

)
, i, j = 1, . . . , Nr.

In the HO-BERRU-PM methodology, the expected values of the measured responses
are considered to constitute the components of a column vector rm defined as follows:

E(rm) ,
[
E(rm

1 ), . . . , E
(
rm

Nr

)]†, (134)

while the covariance matrix of measured responses is denoted as Cm and is defined as follows:

Cm ,
[
cov
(

rm
i , rm

j

)]
Nr×Nr

(135)

Cacuci’s HO-BERRU-PM [13,21] methodology combines experimental and computa-
tional information in the joint phase space of the measured responses, calculated responses
and model parameters, including not only the first-order response sensitivities, but also the
complete set of second- and third-order sensitivities of the model responses to the model
parameters. In contradistinction to the GLLSA procedure in TSURFER, the HO-BERRU-PM
formalism uses the maximum entropy principle to eliminate the need for introducing
and “minimizing” the user-chosen “cost functional quantifying the discrepancies between
measurements and computations”, as done in TSURFER. The use of the maximum entropy
principle enables the HO-BERRU-PM to consider the model as an “imprecisely known”
entity, as opposed to being appended by Lagrange multipliers as a “hard constraint” devoid
of any model errors, as the TSURFER’s GLLSA procedure does when appending the first-
order approximation to the model represented by Equation (96) as a hard constraint to the
augmented Lagrangian to be minimized. Consequently, the HO-BERRU-PM methodology
yields best-estimate results that not only incorporate second- and third-order response
sensitivities but are also free of subjective user interferences and can include numerical
errors stemming from the numerical solution of the model equations.

After the prior information is assimilated/consolidated within the HO-BERRU-PM
methodology, the saddle-point method is used to evaluate the joint posterior distribution
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obtained in the combined phase spaces of the model parameters, calculated responses and
measured responses, to obtain the following best-estimate results:

1. The best-estimate posterior expectation values for the vector of predicted model
parameters; this vector is denoted as αbe and is given by the following formula:

αbe = α0 −Cαr(Cm + Cr)
−1d, (136)

where the vector d denotes the vector of deviations between the expected value of the
computed response and the expected value of the measured response, namely:

d , [E(rc)− E(rm)]. (137)

2. The best-estimate posterior parameter covariance matrix, denoted as Cbe
α , for the

best-estimate parameters αbe:

Cbe
α = Cα −Cαr(Cm + Cr)

−1Crα. (138)

In Equation (138), the matrices Cα and Cαr(Cm + Cr)
−1Crα are symmetric and positive

definite. Therefore, the subtraction indicated in Equation (138) implies that the components
of the main diagonal of Cbe

α must have smaller values than the corresponding elements
of the main diagonal of Cα. In this sense, the introduction of new computational and
experimental information has produced reduced (by comparison to the a priori variances
of the model parameters) values for the posterior best-estimate parameter variances (which
are the elements on the diagonal of Cbe

α ).

3. The best-estimate posterior expectation values for the vector of predicted responses,
which is denoted as rbe and which has the following expression:

rbe = rm + Cm(Cm + Cr)
−1[E(rc)− E(rm)], (139)

4. The best-estimate posterior covariance matrix for the best-estimate responses rbe,
which is denoted as Cbe

r and which has the following expression:

Cbe
r = Cm −Cm(Cm + Cr)

−1Cm . (140)

As indicated in Equation (140), the initial covariance matrix Cm is multiplied by the
matrix

[
I− (Cm + Cr)

−1Cm

]
, which means that the variances contained on the diagonal

of the best-estimate matrix Cbe
r will be smaller than the experimentally measured variances

contained in Cm. Hence, the addition of new experimental information will reduce the
predicted best-estimate response variances in Cbe

r by comparison to the measured variances
contained a priori in Cm.

5. The posterior covariance matrix comprising the best-estimate correlations between
the best-estimate parameters αbe and the best-estimate responses rbe, which is denoted
as Cbe

αr, has the following expression:

Cbe
αr = Cαr(Cm + Cr)

−1Cm . (141)

6. The a “chi-square” indicator, which measures the agreement/disagreement between
the experimental responses and the computed responses. This indicator is denoted
as χ2

HO (since it includes higher-order sensitivities and correlations) and has the
following expression:

χ2
HO ,

1
2
[E(rc)− E(rm)]†(Cm + Cr)

−1[E(rc)− E(rm)]. (142)
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As the expression obtained in Equation (142) indicates, the “consistency indicator” χ2

can be evaluated directly from the a priori data, after having inverted the matrix (Cm + Cr).
The indicator χ2 can be interpreted as measuring (in the corresponding metric) the square
of the length of the vector d , [E(rc)− E(rm)], thus indicating the degree of consistency
among the a priori information available about the model parameters, calculated and
measured responses. As the dimension of [E(rc)− E(rm)] indicates, the number of degrees
of freedom characteristic of the calibration under consideration is equal to the number Nr
of experimental responses. In the extreme case of “absence of experimental responses”, no
actual calibration occurs. An actual calibration (adjustment) occurs only when including at
least one experimental response.

4.3. Comparison: HO-BERRU-PM Methodology versus TSURFER-GLLSA Methodology

The correspondences between the notations used in TSURFER and HO-BERRU-PM,
respectively, are as follows:

(i): The number of parameters is denoted as Nα in HO-BERRU-PM; the number of
parameters is denoted as M in TSURFER; hence, Nα ≡ M.

(ii) The number of computed responses is denoted as Nr in HO-BERRU-PM; the
number of parameters is denoted as I in TSURFER; hence, Nr ≡ I.

(iii) The expected parameter values are denoted as α0 ,
(

α0
1, . . . , α0

Nα

)
, using the

superscript “zero” in HO-BERRU-PM; the expected parameter values are denoted as
E[α] , [E(α1), . . . , E(αM)]† in TSURFER; the correspondence is evident.

It is noteworthy that the equivalent of the vector d , [E(rc)− E(rm)] also appears in
the posterior quantities produced by the TSURFER-GLLSA procedure, in the form of the
vector d̃ , k[E(α)]−m, as defined in Equation (106), but d 6= d̃ since E(rc) 6= k[E(α)], as
shown in Equation (119). Recalling the expression of E(rc) from Equation (119), it follows
that the following relation holds:

d , [E(rc)− E(rm)] = d̃ + EHO
[
rc

i

(
α0
)]

. (143)

4.3.1. A Priori Information: TSURFER versus HO-BERRU-PM

HO-BERRU-PM methodology considers all of the a priori information incorporated
into the TSURFER-GLLSA methodology, as well as the following additional a priori in-
formation: (i) second-order and third-order sensitivities of the calculated responses with
respect to the model parameters; (ii) third-order correlations between parameters; (iii)
higher-order expressions for the expected values of computed responses; (iv) higher-order
expressions for the covariances between computed responses; (v) higher-order expressions
for the covariances between computed responses and model parameters. Table 8 sum-
marizes the distinctions between TSURFER-GLLSA and HO-BERRU-PM methodologies
regarding the incorporation of a priori information.

4.3.2. Posterior Results: TSURFER Adjustments versus HO-BERRU-PM Predictions

At the most fundamental conceptual level, the TSURFER-GLLSA methodology relies
fundamentally on minimizing a user-chosen “chi-square” functional subject to the require-
ment that the following hard constraint be satisfied: “the first-order Taylor-expansion of
the calculated response as a linear function of the model parameters”. In contradistinction,
the HO-BERRU-PM methodology eliminates the need for a “user-chosen functional to be
minimized” by employing the maximum entropy principle to combine, without imposing
any “hard constraints”, the available information regarding the measured and computed
responses, including a nonlinear third-order Taylor-series representation of the underlying
model, connecting the model parameters to the model’s calculated responses. The distinc-
tions between the best-estimate parameter values, αbe, predicted by the HO-BERRU-PM
methodology, and the adjusted parameter values, α

′
, produced by TSURFER-GLLSA, are
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obtained by replacing Equations (129), (132) and (143) in Equation (136) and subtracting
Equation (104) from the resulting equation. These operations yield the following relation:

αbe −α
′
= −Cαr(Cm + Cr)

−1d +
[
CααS̃

†
ka

]
C̃
−1
dd d̃

= −
[
CααS̃

†
ka + CHO

αr

](
Cm + C̃kk + CHO

r

)−1{
d̃ + EHO[rc

i
(
α0)]} +

[
CααS̃

†
ka

](
Cm + C̃kk

)−1
d̃.

(144)

Table 8. A Priori Information: TSURFER-GLLSA vs. HO-BERRU-PM.

A Priori Quantity TSURFER HO-BERRU-PM [HO-BERRU-
PM]−[TSURFER]

Second-order
sensitivities N/A Yes Equation (115)

Third-order
sensitivities N/A Yes Equation (115)

Third-order
parameter

correlations
N/A Yes Equation (117)

Expected value of
calculated response Equation (97) Equation (119) Equation (121)

Covariance of two
calculated responses Equation (102) Equation (129) Equation (130)

Parameter-calculated
response covariance

[
CααS̃

†
ka

]
Equation (132) Equation (133)

“Vector of deviations” d̃ [Equation (106) ] d [Equation (137)] Equation (143)

The difference between the best-estimate covariances Cbe
α for the best-estimate parame-

ter values, αbe, predicted by the HO-BERRU-PM methodology and the adjusted covariances
C
α
′
α
′ for the adjusted parameter values, α

′
, produced by TSURFER, is obtained by replac-

ing Equations (129) and (132) in Equation (138) and subtracting Equation (107) from the
resulting equation. These operations yield the following relation:

Cbe
α −C

α
′
α
′ = −Cαr(Cm + Cr)

−1Crα +
[
CααS̃

†
ka

]
C̃
−1
dd

[
S̃kαCαα

]
= −

[
CααS̃

†
ka + CHO

αr

](
Cm + C̃kk + CHO

r

)−1[
CααS̃

†
ka + CHO

αr

]†
+
[
CααS̃

†
ka

](
Cm + C̃kk

)−1[
S̃kαCαα

]
.

(145)

The difference between the best-estimate response values, rbe, predicted by the HO-
BERRU-PM methodology and the adjusted response values, m

′
, produced by TSURFER,

is obtained by replacing Equations (129) and (143) in Equation (139) and subtracting
Equation (108) from the resulting equation. These operations yield the following relation:

rbe −m
′
= Cm(Cm + Cr)

−1[E(rc)− E(rm)]− C̃mmC̃
−1
dd d̃

= Cm

(
Cm + C̃kk + CHO

r

)−1{
d̃ + EHO[rc

i
(
α0)]}−Cm

(
Cm + C̃kk

)−1
d̃.

(146)

The difference between the best-estimate covariances Cbe
r for the best-estimate re-

sponse values, rbe, predicted by the HO-BERRU-PM methodology and the adjusted covari-
ances, C̃m′m′ , for the adjusted responses m

′
produced by TSURFER-GLLSA is obtained

by replacing Equation (129) in Equation (140) and subtracting Equation (109) from the
resulting equation. These operations yield the following relation:

Cbe
r − C̃m′m′ = −Cm(Cm + Cr)

−1Cm + C̃mmC̃
−1
dd C̃mm

= Cm

(
Cm + C̃kk + CHO

r

)−1
Cm −Cm

(
Cm + C̃kk

)−1
Cm.

(147)

The difference between the high-order indicator, χ2
HO, produced by the HO-BERRU-

PM methodology and the indicator χ2
TSURFER produced by TSURFER is obtained by re-
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placing Equations (129) and (143) in Equation (142) and subtracting Equation (112) from
the resulting equation. These operations yield the following relation:

χ2
HO − χ2

TSURFER = 1
2 [E(r

c)− E(rm)]†(Cm + Cr)
−1[E(rc)− E(rm)]− d†C−1

dd d

=
{

d̃ + EHO[rc
i
(
α0)]}†(

Cm + C̃kk + CHO
r

)−1{
d̃ + EHO[rc

i
(
α0)]} − d̃

†(
Cm + C̃kk

)−1
d̃.

(148)

The distinctions between the posterior adjusted quantities produced by TSURFER-
GLLSA versus the HO-BERRU-PM framework are summarized in Table 9.

Table 9. Posterior information: TSURFER-GLLSA vs. HO-BERRU-PM.

Posterior Quantity HO-BERRU-PM
Predicted Quantity

TSURFER Adjusted
Quantity

[HO-BERRU-
PM]−[TSURFER]

Differences

Expected parameter value Equation (136) Equation (104) Equation (144)
Parameter covariance Equation (138) Equation (107) Equation (145)

Expected response value Equation (139) Equation (108) Equation (146)
Response covariance Equation (140) Equation (109) Equation (147)

Parameter-response covariance Equation (141) N/A N/A
Chi-square indicator Equation (142) Equation (112) Equation (148)

It is evident from Equations (144)−(148) that the expressions of the quantities pre-
dicted by the HO-BERRU-PM methodology comprise, as particular cases, the quantities
adjusted by TSURFER-GLLSA. The quantities predicted by the HO-BERRU-PM method-
ology will become identical to the quantities adjusted by TSURFER-GLLSA if (and only
if) all of the sensitivities higher than the first order are ignored. Notably, the computation
within the HO-BERRU-PM methodology of the best-estimate parameter and response
values, together with their corresponding best-estimate covariance matrices, only requires
the computation of (Cm + Cr)

−1, which entails the inversion of a matrix of size Nr × Nr.
The matrix (Cm + Cr) has the same dimensions (of the number of measured responses) as
the corresponding matrix, C̃dd, which needs to be inverted in TSURFER, even though the
matrices in the HO-BERRU-PM methodology comprise not only the first-order response
sensitivities (as in TSURFER-GLLSA) but also comprise all of the second- and third-order
response sensitivities to the model parameters. This important HO-BERRU-PM characteris-
tic is essential for applications to large-scale practical problems, since in the overwhelming
majority of practical situations, the number of model parameters far exceeds the number of
responses of interest.

5. Discussion and Conclusions

This work has underscored the need for computing higher-order (i.e., higher than
first-order) sensitivities (functional derivatives) of model responses with respect to the
model parameters. The significant potential impact of the higher-order sensitivities on
the expected values and variances/covariances for the calculated and predicted model
responses have also been highlighted. In particular, if only first-order sensitivities are
considered, the third-order moment of the response is always zero. Hence, a “first-order
sensitivity and uncertainty quantification” will always produce an erroneous third moment
(and, hence, skewness) of the predicted response distribution, unless the unknown response
distribution happens to be symmetrical. At least second-order sensitivities must be used
in order to estimate the third-order moment (and, hence, the skewness) of the response
distribution. Skewness indicates the direction and relative magnitude of a distribution’s
deviation from the normal distribution, while kurtosis indicates the propensity of the
predicted response distribution to have heavy tails and/or outliers. With pronounced
skewness, standard statistical inference procedures such as constructing a confidence
interval for the mean (expectation) of a computed/predicted model response will be not
only incorrect, in the sense that the true coverage level will differ from the nominal (e.g.,
95%) level, but the error probabilities will be unequal on each side of the predicted mean.
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The evident conclusion that can be drawn from this work is that the consideration of
only the first-order sensitivities is insufficient for making credible predictions regarding
the expected values and uncertainties (variances, covariances, skewness) of calculated
and predicted/adjusted responses. At the very least, the second-order sensitivities must
also be computed in order to enable the quantitative assessment of their impact on the
predicted quantities. Since the second-order sensitivities impact decisively the expected
values and the skewness of the calculated/predicted responses, they will also impact the
computation of confidence intervals and tolerance limits for the predicted expectation of
these responses. For large-scale nonlinear systems, the second-order response sensitivities
can be computed exactly and efficiently by applying the adjoint methodology developed
by Cacuci [5]. Extending the methodology presented in [5] to enable the exact and efficient
computation of third-order (and higher-order) sensitivities for large-scale nonlinear systems
is currently in progress. For large-scale (response-coupled) linear forward/adjoint systems,
all of the response sensitivities up to and including the fourth-order sensitivities can be
computed exactly and most efficiently by applying the methodology (fourth CASAM),
recently developed by Cacuci [30].
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