Optimal Time-of-Use Electricity Price for a Microgrid System Considering Profit of Power Company and Demand Users
Abstract
:1. Introduction
1.1. Background
1.2. Literature Reviews
1.3. Aim and Contributions
1.4. Paper Organization
2. Price Elasticity of Load
3. Stochastic Problem
4. Problem Formulation
4.1. Multi-Objective Dispatch Model
4.1.1. Maximizing the Profit of Power Company and Demand Users
- (1)
- Profit of the power company
- (2)
- Profit of the demand users
4.1.2. Minimizing the Rate of Abandoning PV Power and Wind Power
4.2. Constraints
4.2.1. Power Balance Constraint
4.2.2. PV Power and Wind Power Constraints
4.2.3. ESS Constraint
4.2.4. Optimization Variables
5. Multi-Objective Algorithm
- (1)
- The initial data of the load demand, electricity price, wind power, and PV power are input.
- (2)
- The populations of the variables (TOU electricity price) are randomly generated within the limits of TOU electricity price.
- (3)
- The loads that carry out the random TOU electricity price are calculated by Equations (1)–(5).
- (4)
- The load demand and output power of renewable energy are compared to determine the charging or discharging processes of the ESS. If the output power of renewable energy can satisfy the load demand, the ESS is operated during the charging process. If the output power of renewable energy cannot satisfy the load demand, then the ESS is operated during the discharging process. The multi-objective functions of f1 and f2 are calculated using Equations (10)–(13).
- (5)
- The non-domination solution set is obtained from Step (4).
- (6)
- Update the TOU electricity price and velocity.
- (7)
- Update the new solutions by mutating the solutions of Step (6) and determining the new non-domination solution.
- (8)
- Stop criterion. When the number of iterations is less than the number parameters set herein, go to Step (6); otherwise, stop criterion.
- (9)
- The Pareto optimal set was obtained by applying multi-objective particle swarm optimization.
- (10)
- The satisfactory solution is obtained by Equations (22) and (23).
6. Case Study
6.1. Base Case
6.2. Analysis of the Profit of the Power Company and Demand Users
6.3. Analysis of the Rate of Abandoning Output Power of Renewable Energy
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zong, W.G. Size optimization for a hybrid photovoltaic–wind energy system. Int. J. Electr. Power Energy Syst. 2012, 42, 448–451. [Google Scholar]
- Parvania, M.; Fotuhi-Firuzabad, M. Integrating Load Reduction Into Wholesale Energy Market With Application to Wind Power Integration. IEEE Syst. J. 2012, 6, 35–45. [Google Scholar] [CrossRef]
- Liu, J.; Fang, W.; Zhang, X.; Yang, C. An Improved Photovoltaic Power Forecasting Model With the Assistance of Aerosol Index Data. IEEE Trans. Sustain. Energy 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Kapsali, M.; Kaldellis, J.K. Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms. Appl. Energy 2010, 87, 3475–3485. [Google Scholar] [CrossRef]
- Bayer, P.; Rybach, L.; Blum, P.; Brauchler, R. Review on life cycle environmental effects of geothermal power generation. Renew. Sustain. Energy Rev. 2013, 26, 446–463. [Google Scholar] [CrossRef]
- Parastegari, M.; Hooshmand, R.A.; Khodabakhshian, A.; Zare, A.H. Joint operation of wind farm, photovoltaic, pump-storage and energy storage devices in energy and reserve markets. Int. J. Electr. Power Energy Syst. 2015, 64, 275–284. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef]
- Abdi, H.; Dehnavi, E.; Mohammadi, F. Dynamic Economic Dispatch Problem Integrated With Demand Response (DEDDR) Considering Non-Linear Responsive Load Models. IEEE Trans. Smart Grid 2016, 7, 2586–2595. [Google Scholar] [CrossRef]
- Aghaei, J.; Alizadeh, M.I. Critical peak pricing with load control demand response program in unit commitment problem. IET Gener. Transm. Distrib. 2013, 7, 681–690. [Google Scholar] [CrossRef]
- Qian, L.P.; Zhang, Y.; Huang, J.; Wu, Y. Demand Response Management via Real-Time Electricity Price Control in Smart Grids. IEEE J. Sel. Areas Commun. 2013, 31, 1268–1280. [Google Scholar] [CrossRef]
- Asadinejad, A.; Tomsovic, K. Optimal Operation for Economic and Exergetic Objectives of a Multiple Energy Carrier System Considering Demand Response Program. Energies 2019, 12, 3995. [Google Scholar] [CrossRef] [Green Version]
- Parvania, M.; Fotuhi-Firuzabad, M.; Shahidehpour, M. Optimal Demand Response Aggregation in Wholesale Electricity Markets. IEEE Trans. Smart Grid 2013, 4, 1957–1965. [Google Scholar] [CrossRef]
- Nojavan, S.; Zare, K.; Mohammadi-Ivatloo, B. Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program. Appl. Energy 2017, 187, 449–464. [Google Scholar] [CrossRef]
- Yu, R.; Yang, W.; Rahardja, S. A Statistical Demand-Price Model With Its Application in Optimal Real-Time Price. IEEE Trans. Smart Grid 2012, 3, 1734–1742. [Google Scholar] [CrossRef]
- Nojavan, S.; Mohammadi-Ivatloo, B.; Zare, K. Optimal bidding strategy of electricity retailers using robust optimisation approach considering time-of-use rate demand response programs under market price uncertainties. Gener. Transm. Distrib. IET 2015, 9, 328–338. [Google Scholar] [CrossRef]
- Hu, F.; Feng, X.; Cao, H. A Short-Term Decision Model for Electricity Retailers: Electricity Procurement and Time-of-Use Pricing. Energies 2018, 11, 3258. [Google Scholar] [CrossRef] [Green Version]
- Haider, H.T.; See, O.H.; Elmenreich, W. Residential demand response scheme based on adaptive consumption level pricing. Energy 2016, 113, 301–308. [Google Scholar] [CrossRef]
- Wu, Z.; Tazvinga, H.; Xia, X. Demand side management of photovoltaic-battery hybrid system. Appl. Energy 2015, 148, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Aalami, H.A.; Moghaddam, M.P.; Yousefi, G.R. Modeling and prioritizing demand response programs in power markets. Electr. Power Syst. Res. 2010, 80, 426–435. [Google Scholar] [CrossRef]
- Yousefi, S.; Moghaddam, M.P.; Majd, V.J. Optimal real time pricing in an agent-based retail market using a comprehensive demand response model. Energy 2011, 36, 5716–5727. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Berizzi, A.; Cao, X. Life cycle planning of battery energy storage system in off-grid wind–solar–diesel microgrid. IET Gener. Transm. Distrib. 2018, 12, 4451–4461. [Google Scholar] [CrossRef]
- Tazvinga, H.; Xia, X.; Zhang, J. Minimum cost solution of photovoltaic–diesel–battery hybrid power systems for remote consumers. Sol. Energy 2013, 96, 292–299. [Google Scholar] [CrossRef]
- Yang, H.; Wei, Z.; Lin, L.; Fang, Z. Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm. Sol. Energy 2008, 82, 354–367. [Google Scholar] [CrossRef]
- Borhanazad, H.; Mekhilef, S.; Ganapathy, V.G.; Modiri-Delshad, M.; Mirtaheri, A. Optimization of micro-grid system using MOPSO. Renew. Energy 2014, 71, 295–306. [Google Scholar] [CrossRef]
- Lokeshgupta, B.; Sivasubramani, S. Multi-objective dynamic economic and emission dispatch with demand side management. Int. J. Electr. Power Energy Syst. 2018, 97, 334–343. [Google Scholar] [CrossRef]
- Sedighizadeh, M.; Esmaili, M.; Jamshidi, A.; Ghaderi, M.-H. Stochastic multi-objective economic-environmental energy and reserve scheduling of microgrids considering battery energy storage system. Int. J. Electr. Power Energy Syst. 2019, 106, 1–16. [Google Scholar] [CrossRef]
Time (h) | Initial Electricity Price (USD/MWh) | |
---|---|---|
Off-peak | 7–9, 14–19, 22 | 75 |
Peak | 10–13, 20–21 | 75 |
Valley | 1–6, 23–24 | 75 |
Lower Limit (USD/MWh) | Upper Limit (USD/MWh) | |
---|---|---|
Peak | 90 | 153 |
Off-peak | 60 | 90 |
Valley | 15 | 60 |
Parameters | |
---|---|
Power capacity (MW) | 1000 |
0.9 | |
0.1 | |
0.1 | |
1 | |
1 |
Wind Power | PV Power | Load Demand | Probability |
---|---|---|---|
0.7 | 0.7 | 0.7 L | 0.05 |
0.85 | 0.85 | 0.85 L | 0.15 |
L | 0.5 | ||
1.15 | 1.15 | 1.15 L | 0.15 |
1.3 | 1.3 | 1.3 L | 0.05 |
Time (h) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Load (MW) | 700 | 750 | 850 | 950 | 100 | 1100 | 1150 | 1200 | 1300 | 1400 | 1450 | 1500 |
PV (MW) | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 180 | 360 | 420 | 550 | 430 |
Wind (MW) | 1430 | 1300 | 1235 | 1105 | 975 | 910 | 1087 | 1080 | 1005 | 560 | 465 | 620 |
Time (h) | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
Load (MW) | 1400 | 1300 | 1200 | 1050 | 1000 | 1100 | 1200 | 1400 | 1300 | 1100 | 900 | 800 |
PV (MW) | 370 | 300 | 255 | 200 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Wind (MW) | 610 | 1065 | 1005 | 902 | 950 | 1155 | 1260 | 980 | 910 | 1155 | 1170 | 1040 |
α | β | TOU Price (USD/MWh) | Objective Function | Profit of the Power Company and Demand Users | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Valley | Off-Peak | Peak | f1 (USD) | f2 (%) | Procompany (USD) | Prousers (USD) | Income of Selling Electricity | Penalty Cost of Power Supply Shortage | |||
Base | × | × | 75.0 | 75.0 | 75.0 | × | 6.82 | 1,692,909.1 | 0 | 1,856,849.5 | 163,940.4 |
Case 1 | 0.3 | 0.7 | 15.0 | 60.0 | 111.0 | 698,347.0 | 5.33 | 1,287,124.6 | 377,918.7 | 1,471,612.6 | 184,488.0 |
Case 2 | 0.4 | 0.6 | 15.0 | 60.0 | 140.0 | 792,943.3 | 4.74 | 1,458,766.9 | 349,061.0 | 1,584,055.2 | 125,288.2 |
Case 3 | 0.5 | 0.5 | 15.0 | 62.6 | 153.0 | 928,014.4 | 5.51 | 1,519,936.6 | 336,092.2 | 1,624,858.3 | 10,4921.7 |
Case4 | 0.6 | 0.4 | 37.9 | 88.7 | 112.5 | 1,102,424.1 | 6.54 | 1,846,779.9 | −14,109.5 | 1,934,830.9 | 88,051.0 |
Case 5 | 0.7 | 0.3 | 51.2 | 85.4 | 110.6 | 1,315,901.6 | 7.06 | 1,913,492.7 | −78,477.3 | 1,997,332.4 | 83,839.7 |
Load Distribution | ||||||
---|---|---|---|---|---|---|
Valley (MW) | Proportion of Valley % | Off-Peak (MW) | Proportion of Off-Peak % | Peak (MW) | Proportion of Peak % | |
Base case | 7050 | 26.0 | 11,600 | 42.8 | 8450 | 31.2 |
Case 1 | 9170 | 32.1 | 12,472 | 43.7 | 6925 | 24.2 |
Case 2 | 9170 | 33.5 | 12,472 | 45.6 | 5696 | 20.8 |
Case 3 | 9170 | 34.4 | 12,320 | 46.3 | 5146 | 19.3 |
Case 4 | 8362 | 32.1 | 10,805 | 41.5 | 6863 | 26.4 |
Case 5 | 7891 | 30.6 | 10,995 | 42.6 | 6941 | 26.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Yang, N.-C.; Liu, J.-H. Optimal Time-of-Use Electricity Price for a Microgrid System Considering Profit of Power Company and Demand Users. Energies 2021, 14, 6333. https://doi.org/10.3390/en14196333
Zhang N, Yang N-C, Liu J-H. Optimal Time-of-Use Electricity Price for a Microgrid System Considering Profit of Power Company and Demand Users. Energies. 2021; 14(19):6333. https://doi.org/10.3390/en14196333
Chicago/Turabian StyleZhang, Ning, Nien-Che Yang, and Jian-Hong Liu. 2021. "Optimal Time-of-Use Electricity Price for a Microgrid System Considering Profit of Power Company and Demand Users" Energies 14, no. 19: 6333. https://doi.org/10.3390/en14196333
APA StyleZhang, N., Yang, N. -C., & Liu, J. -H. (2021). Optimal Time-of-Use Electricity Price for a Microgrid System Considering Profit of Power Company and Demand Users. Energies, 14(19), 6333. https://doi.org/10.3390/en14196333