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Abstract: With high proportions of renewable energy generation in power systems, the power
system dispatch with renewable energy generation has currently become a popular research direction.
In our study, we propose a multi-objective dispatch model for a hybrid microgrid comprising a
wind generator, photovoltaic (PV) generator, and an energy storage system to optimize the time-
of-use (TOU) electricity price. The objective of the proposed multi-objective dispatch model is to
maximize the profit of the power company and demand users, and minimize the proportion of users
abandoning PV power and wind power. The elastic price of the load demand with a linear function
is employed to optimize the TOU electricity price. Finally, we applied five test cases to validate the
practicability of the multi-objective dispatch model.

Keywords: photovoltaic power; wind power; energy storage system; time-of-use electricity

1. Introduction
1.1. Background

In recent years, the use of conventional energy sources has gradually decreased. How-
ever, environmental pollution remains extremely serious. Many countries have vigorously
promoted the generation of renewable energy [1]. Renewable energy generation, including
wind power [2], photovoltaic (PV) power [3], pumped hydro storage [4], and geothermal
power [5], among others, have been widely utilized in power systems.

Due to the uncertainty of wind speed and solar radiation, the wind output power and
PV output power are uncertain and random. This poses serious challenges to economic
dispatch [6]. With the increasing power generation capacities of wind turbines and PV
panels, the problems in power dispatching and power system reliability will become
increasingly serious.

1.2. Literature Reviews

For the problems mentioned above, some studies have proposed various solutions,
such as utilizing the demand response (DR) and energy storage system (ESS). The ESS
is a great tool for solving the above problem owing to its flexible charging–discharging
characteristics [7]. DR is another effective tool for improving the economic dispatch
problem by guiding consumers to change their electricity costs through a series of measures.
For DR, there are two parts: incentive-based programs—for example, emergency DR
programs—and time-based rate programs—for example, time-of-use (TOU) pricing [8].

In [9], a critical peak electricity pricing model based on load control was investigated
for the multi-objective function of the cost and emissions of the microgrid. Mixed-integer
linear programming is applied to solve the multi-objective optimal problem. In [10], a
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real-time electricity price model was proposed to adjust the proportion of each stage in load
demand through DR management. A price control algorithm based on simulated annealing
was utilized to solve the nonconvex electricity price dispatch problem. In [11], the concept
of exergy was used to evaluate each energy carrier, and an economic–exergetic optimal
scheduling model, with the implementation of a real-time pricing-based DR program,
was proposed and formulated into a mixed-integer linear programming problem. In [12],
an optimization framework was proposed for DR aggregation. Optimal contracts were
offered to users by DR aggregators using the self-scheduling optimization model based
on electricity price. In [13], bilateral contracting and selling prices were determined by
considering the uncertainty characteristics of the demand load and the output power of
renewable resources. Fixed pricing, TOU pricing, and real-time pricing (RTP) are compared
to determine selling prices. In [14], a demand elasticity model was developed to determine
the optimal electricity price signal for RTP. The rationality of the proposed model was
verified using the six-bus test system. In [15], a robust optimization model was proposed
to obtain the optimal decision for electricity retailers. In addition, an optimal bidding
model using the time-based DR program model was proposed. The effect of the DR
program on the total procurement cost was also considered. In [16], a short-term decision
model was established to determine the electricity procurement and retail prices in the
electricity retailer. In addition, the DR was established using a price elasticity matrix. A
robust optimization approach was applied to model the uncertainty in spot prices. Price
elasticity coefficients are divided into commercial, residential, and industrial. In [17], a DR
scheme was proposed based on an adaptive consumption-level pricing scheme. It not only
encourages customers to manage their energy consumption and consequently lower their
energy bill, but also allows for utilities to manage aggregate consumption and predict load
requirements. In [18], an optimal energy management was proposed in a grid-connected
PV–battery hybrid system to explore solar energy and benefit customers on the demand
side. In addition, an optimal control method is developed to schedule the power flow
of a hybrid system. To solve the uncertain disturbances, model predictive control as a
closed-loop method was used to dispatch the power flow in real time.

1.3. Aim and Contributions

In this study, we propose a multi-objective dispatch model to determine the optimal
TOU electricity price by utilizing the DR. Unlike other studies that use the electricity
price elasticity matrix for the DR model, the elastic price of load demand with a linear
function is applied to the model for optimizing the TOU electricity price herein. The
purpose of the multi-objective function in the proposed dispatch model is to minimize
the rate of abandoning renewable power and maximize the profit of the power company
and demand users. However, the multi-objective function, including economic cost and
pollution emission, is the relevant dispatch model.

1.4. Paper Organization

The remainder of this paper proceeds as follows. The price elasticity of the load
demand with a linear function is described in Section 2. In Section 3, a stochastic problem
is presented to solve the uncertainty of PV power, wind power, and demand loads. The
problem formulations, including the multi-objective function and constraints, are described
in Section 4. Section 5 proposes a comprehensive weighting-factor-based method for
the multi-objective function. In Section 6, the test cases and results are presented and
analyzed to demonstrate the proposed dispatch model. Finally, we present the conclusions
in Section 7.

2. Price Elasticity of Load

From an economic perspective, the load is closely related to electricity price. Therefore,
under the base of meeting the most basic load, users adjust the load demand depending
on the TOU electricity price to minimize their electricity cost [19]. In addition to the
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basic load demand of the user’s life and work, the user may adjust the daily load curve
according to the electricity price. For example, users may charge electric vehicles, increase
the charging time at the lower electricity price period, and reduce the charging time at the
higher electricity price period.

The correlation between the electricity price and load demand is shown in Figure 1.
The demand for user load decreases as the electricity price increases, as illustrated in
Figure 1. Four different representations of load demand against electricity price were
proposed—linear, potential, logarithmic, and exponential representation functions—in [20].
The price elasticity of a load with a linear function was applied herein to optimize the TOU
electricity price.

Figure 1. Electricity price against load demand.

The price elasticity of the load is defined as the sensitive response of the load to the
electricity price [19]. The price elasticity of demand is calculated as follows:

E(t) =
P0(t)
∆P(t)

· ∆L(t)
L0(t)

(1)

where L0(t) is the initial load demand at time t, and P0(t) is the initial electricity price at
time t.

The linear function for the price elasticity of the load can be illustrated as [20]

L(t) = a + b · P(t) (2)

where a and b denote the coefficients of the linear function of the load demand against the
electricity price.

On the basis of Equations (1) and (2), the price elasticity of load demand can be
calculated as follows:

E(t) =
∆L(t)
∆P(t)

· P0(t)
L0(t)

= b · P0(t)
a + bP0(t)

(3)

Subsequently, the increased load demand can be expressed as

∆L(t) = b · ∆P(t)L0(t)
a + bP0(t)

(4)

Therefore, the load demand after modifying electricity price can be expressed as

L1(t) = L0(t) + ∆L(t) = L0(t) + b · L0(t)∆P(t)
a + bP0(t)

(5)
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3. Stochastic Problem

The randomness of PV power, wind power, and load demand may significantly affect
the dispatch of power systems. The multi-scenario simulation technology is implemented
to select several typical system operation states in the proposed dispatch model by using
the uncertainty information of the load demand, PV power, and wind power. The dis-
crete probability distribution set of the load, wind power, and PV power is described as
follows [13]:

DL =
{
(L,β1

L); · · · (L± i∆L,βi
L); · · · (L± n∆L,βNL

L )
}

DPV =

{
(PPV,β1

PV); · · · (PPV ± i∆PPV,βi
PV); · · ·

PPV ± n∆PPV,βNPV
PV )

}

Dwind =

{
(Pwind,β1

wind); · · · (Pwind ± i∆Pwind,βi
wind); · · ·

(Pwind ± n∆Pwind,βNwind
wind )

} (6)

where DL, Dwind, and DPV are the sets of load, wind power, and PV power, respectively;
NL is the number of scenarios of load demand; NPV is the number scenarios of PV power;
Nwind is the number scenarios of wind power; βi

L is the probability of load demand in the
i-th scenario; βi

PV is the probability of PV power in the i-th scenario; βi
wind is the probability

of wind power in the i-th scenario; ∆L is the base deviation of load demand; ∆PPV is the
base deviation of PV power; and ∆ Pwind is the base deviation of wind power.

The probabilities of wind power, load demand, and PV power satisfy the following:
β1

L + β2
L + · · · · · ·+ β

NL
L = 1

β1
PV + β2

PV + · · · · · ·+ β
NPV
PV = 1

β1
wind + β2

wind + · · · · · ·+ β
Nwind
wind = 1

(7)

NL

∑
i

NPV

∑
j

Nwind

∑
k

βi
Lβ

j
PVβ

k
wind = 1 (8)

The total set D of scenarios for load demand, PV power, and wind power can be
calculated as follows:

D = DL × DPV × Dwind (9)

4. Problem Formulation

In this study, the utilization rate of renewable energy and the economy are two impor-
tant indices for power system scheduling. The multi-objective function of the proposed
dispatch model includes the profit of the power company and demand users, and the rate
of abandoning the output power of wind turbines and PV panels.

The relation between the TOU electricity price and the cost of the power company
and demand users is analyzed. However, there is no correlation between TOU electricity
price and renewable energy power. The cost of the wind generator and PV generator were
disregarded, and the cost of the ESS was also ignored in our study. The hybrid microgrid
used herein is only composed of solar power generation, wind power generation, and ESS,
excluding traditional energy generation.

4.1. Multi-Objective Dispatch Model

In our work, the multi-objective dispatch model is aimed at determining the optimal
TOU electricity price. The multi-objective function established in this section includes the
following: (1) maximization of the profit of the power company and the demand users,
and (2) minimization of the rate of abandoning the total output power of wind panels and
PV turbines.
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4.1.1. Maximizing the Profit of Power Company and Demand Users

For the economic dispatch of power systems, the profits of the power company and
demand users are both considered herein. However, the profits of the power company
and demand users may have less or more of an effect on the optimal TOU electricity price,
depending on the case. The profit of the power company comprises the income of selling
electricity and the penalty cost of power supply shortage. The profit of demand users is to
reduce electricity costs after implementing the optimal TOU electricity price. The profit of
the demand users is the electricity cost at the initial electricity price minus the electricity
cost at the optimal TOU electricity price.

Therefore, the first function (f 1) for the power company’s profit and demand users is
expressed as follows:

max f1 = αProcompany + βProuser (10)

where Procompany is the profit of the power company, Prouser is the profit of demand users,
and α and β are the weight coefficients of the profit of the power company and demand
users, respectively. In this study, the relation between them is α + β = 1.

(1) Profit of the power company

For the power company, the profit mainly comprises selling electricity to demand
users, the generation cost, and the penalty cost for the power supply shortage. In our study,
the renewable generation cost was not considered. Therefore, in this study, the profit of
the power company includes the penalty cost of power supply shortage and the income of
selling electricity to demand users, expressed as

Procompany =
T

∑
t=1

P(t)(L(t)u1(t) + (Pgen(t) + Pdis(t))u2(t))− apunish

T

∑
t=1

dshort(t) (11)

where Pgen(t) is the output power of renewable energy at time t; Pdis(t) is the discharge
power of the ESS at time t; u1(t) and u2(t) are binary numbers: u1(t) = 0 and u2(t) = 1
indicates that the load demand exceeds the total renewable energy power at time t; u1(t) = 1
and u2(t) = 0 indicates that the renewable energy power exceeds the load demand at time t;
apunish is the penalty coefficient of power supply shortage; and dshort(t) is the shortage of
power supply at time t.

(2) Profit of the demand users

For demand users, electricity cost is the first consideration. However, the electricity
cost of demand users is mainly affected by the electricity price and load demand. In
this study, the profit of the demand users is given by reducing electricity costs after
implementing the optimal TOU electricity price. This can be expressed as follows:

Prouser = C0 − CTOU =
T

∑
t=1

P0(t)L0(t)−
T

∑
t=1

(∆P(t) + P0(t))L1(t) (12)

where C0 denotes the electricity cost of demand users with the initial electricity price, and
CTOU is the electricity cost of demand users with TOU electricity price.

4.1.2. Minimizing the Rate of Abandoning PV Power and Wind Power

Owing to the uncontrollable characteristic of the renewable energy power, when the
sum output power of renewable energy exceeds the load demand, the extra output power
of wind turbines and PV panels will be abandoned. By optimizing the TOU electricity price,
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the load curve comes close to the renewable energy power to reduce the rate of abandoning
PV power and wind power. The second objective is expressed as follows:

min f2 = 1−

T
∑

t=1
(L(t) + Pchar(t)))

T
∑

t=1
(PPV.upper(t) + Pwind.upper(t))

(13)

where Pchar(t) is the charge power of the ESS at time t; and PPV.upper(t) and Pwind.upper(t)
are the upper PV power and the upper wind power at time t, respectively.

4.2. Constraints

The multi-objective dispatch model proposed herein meets the following equality and
inequality constraints (14)–(21).

4.2.1. Power Balance Constraint

For power system scheduling, the output power, charge power, and discharge power
of the ESS should be equal to the power supply and charge power of the ESS, which can be
expressed as

L1(t) + Pchar(t) = PPV(t) + Pwind(t) + Pdis(t) + dshort(t) (14)

4.2.2. PV Power and Wind Power Constraints

The wind power and PV power utilized in the hybrid microgrid were mainly deter-
mined by the maximum and minimum values of the output power. The utilization of PV
power and wind power should satisfy the following constraints:

0 ≤ PPV(t) ≤ PPV.upper(t) (15)

0 ≤ Pwind(t) ≤ Pwind.upper(t) (16)

4.2.3. ESS Constraint

When the ESS is operated during the charging process, battery banks are charged with
renewable energy power. The stored energy of the battery is determined by the charge
power and stored energy of the previous hour. It is calculated as [21]:

E(t) = E(t− 1) + Pchar(t) · ηchar (17)

where E(t) is the stored energy of the battery at time t and ηchar is the battery charge efficiency.
When the ESS is operated during the discharging process, the battery banks discharge

power to load demand. The stored energy of the battery is determined by the discharge
power and stored energy of the previous hour. It can be calculated as [21]:

E(t) = E(t− 1)− Pdis(t)/ηdis (18)

where Pdis is the battery discharge efficiency.
Herein, the self-discharge of the ESS is negligible in our work. The state of charge

(SOC) constraint is expressed as [22]:

SOC.lower ≤ SOC(t) ≤ SOC.upper (19)

where SOC(t) is the SOC of the ESS at time t, SOC.lower is the lower SOC of the ESS, and
SOC.upper is the upper SOC of the ESS.

The constraint of the discharged power for the ESS is expressed as

0 ≤ Pdis(t) ≤ min(Pdis.upper, (SOC(t− 1)− SOC.lower)EESS) (20)
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The constraint of the charging power for the ESS is expressed as

0 ≤ Pchar(t) ≤ min(Pchar.upper, (SOC.upper − SOC(t− 1))EESS) (21)

where Pchar.upper and Pdis.upper are the upper charging power and discharged power of the
battery banks, respectively, and EESS is the rated capacity of the battery banks.

4.2.4. Optimization Variables

In the multi-objective dispatch model proposed herein, the TOU electricity price is the
optimization variable. According to the hourly load data, the hours of one day were divided
into three parts: peak period, off-peak period, and valley period. The initial electricity
prices were all set to 75 USD/MWh. The three periods in the TOU electricity prices are
listed in Table 1. In the electricity market of power systems, to maintain the stability of the
electricity price, the electricity price of the power company should be adjusted within a
fixed range. The constraints of the TOU electricity price are limited, as shown in Table 2.

Table 1. Three periods in the TOU electricity price.

Time (h) Initial Electricity Price (USD/MWh)

Off-peak 7–9, 14–19, 22 75
Peak 10–13, 20–21 75

Valley 1–6, 23–24 75

Table 2. Constraint of TOU electricity price.

Lower Limit (USD/MWh) Upper Limit (USD/MWh)

Peak 90 153
Off-peak 60 90

Valley 15 60

5. Multi-Objective Algorithm

The multi-objective genetic algorithm (GA) [23] and particle swarm optimization
(MOPSO) [24], as mature optimization algorithms, have been applied by many scholars. In
our work, the optimal solution of the multi-objective dispatch mode is determined using
MOPSO. A satisfactory solution is selected from the Pareto optimal solution set [25]. The
standardized objective function for each solution is expressed as [26]: σ1(x) = f1(x)− f1.min

f1.max− f1.min

σ2(x) = f2.max− f2(x)
f2.max− f2.min

(22)

where s(x) = [ f1(x), f2(x)] is the standardized objective function of the objective function
f = [f 1, f 2]; f 1.max and f 2.max are the maxima of the objective functions f 1 and f 2, respectively;
f 1.min and f 2.min are the minimum values of the objective functions f 1 and f 2, respectively.

The normalized function value of the nondominated solution can be calculated as [26]:

Nσ,i =

N
∑

m=1
σm(i)

N
∑

m=1

M
∑

i=1
σm(i)

(23)

where Nσ,i is the normalized function value with i nondominated solution, N is the number
of objective functions, and M is the number of nondominated solutions. The maximum
value of Nσ,i determines the optimal solutions of the multi-objective function.

The flowchart shown in Figure 2 presents the step procedure for the multi-objective
dispatch model.
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Figure 2. Flowchart of the optimization calculation.

(1) The initial data of the load demand, electricity price, wind power, and PV power
are input.

(2) The populations of the variables (TOU electricity price) are randomly generated
within the limits of TOU electricity price.

(3) The loads that carry out the random TOU electricity price are calculated by Equations (1)–(5).
(4) The load demand and output power of renewable energy are compared to determine

the charging or discharging processes of the ESS. If the output power of renewable
energy can satisfy the load demand, the ESS is operated during the charging process.
If the output power of renewable energy cannot satisfy the load demand, then the
ESS is operated during the discharging process. The multi-objective functions of f 1
and f 2 are calculated using Equations (10)–(13).

(5) The non-domination solution set is obtained from Step (4).
(6) Update the TOU electricity price and velocity.
(7) Update the new solutions by mutating the solutions of Step (6) and determining the

new non-domination solution.
(8) Stop criterion. When the number of iterations is less than the number parameters set

herein, go to Step (6); otherwise, stop criterion.
(9) The Pareto optimal set was obtained by applying multi-objective particle swarm optimization.
(10) The satisfactory solution is obtained by Equations (22) and (23).
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6. Case Study

In this section, a hybrid microgrid composed of PV power plants, wind power plants,
and ESSs is used to test the multi-objective dispatch model proposed herein. The ESS
parameters are presented in Table 3. The coefficients of the linear function for the price
elasticity of load demand a and b are 300 and −1.5, respectively, extracted from [20]
with some modifications. The penalty coefficient of the power supply shortage was
70 USD/MWh.

Table 3. Parameters of ESS.

Parameters

Power capacity (MW) 1000
SOC.upper 0.9
SOC.lower 0.1
SOC(1) 0.1

ηdis 1
ηchar 1

The proposed multi-objective dispatch model was solved using MOPSO in this section.
In our MOPSO work, the population size was 20, the number of iterations was 100, and
the repository size was 100. The proposed algorithm was implemented in the software
package MATLAB 2015 on a PC with an M1 CPU and 8 GB of RAM.

In our work, the number scenarios of load demand, wind power, and PV power were
set to 5. We assume that the deviations of wind power, PV power, and load demand obey
the standard normal distribution. The base deviation of the load demand, output power of
the wind, and PV panels is 15% of the load demand, and the output power of the wind and
PV panels. The discrete probability of the output power of the wind and PV panels and the
load demand are shown in Table 4, which is from [13] with some modifications. The total
number of scenarios was 5 × 5 × 5 = 125. The hourly wind power, PV power, and load
demand data for one day are shown in Table 5.

Table 4. Probability of PV power, wind power, and load demand.

Wind Power PV Power Load Demand Probability

0.7 Pwind 0.7 PPV 0.7 L 0.05
0.85 Pwind 0.85 PPV 0.85 L 0.15

Pwind PPV L 0.5
1.15 Pwind 1.15 PPV 1.15 L 0.15
1.3 Pwind 1.3 PPV 1.3 L 0.05

Table 5. Hourly data of PV power, wind power, and load demand in one day.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Load (MW) 700 750 850 950 100 1100 1150 1200 1300 1400 1450 1500
PV (MW) 0 0 0 0 0 0 120 180 360 420 550 430

Wind (MW) 1430 1300 1235 1105 975 910 1087 1080 1005 560 465 620

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Load (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800
PV (MW) 370 300 255 200 100 0 0 0 0 0 0 0

Wind (MW) 610 1065 1005 902 950 1155 1260 980 910 1155 1170 1040



Energies 2021, 14, 6333 10 of 13

Subsequently, Equation (6) can be expressed as
DL = {(L, 0.5); (L± 0.15L, 0.15); (L± 0.3L, 0.05)}

DPV =

{
(PPV, 0.5); (PPV ± 0.15PPV, 0.15);

(PPV ± 0.3PPV, 0.05)

}
Dwind =

{
(Pwind,β1

wind); (Pwind ± 0.15Pwind, 0.15);
(Pwind ± 0.3Pwind, 0.05)

} (24)

Five cases were simulated by applying MOPSO to verify the multi-objective dispatch
model proposed herein. These five cases were proposed with different profit coefficients.
The optimization results were analyzed and compared. The simulation results for these
five cases are listed in Tables 6 and 7. Table 6 illustrates the optimal TOU electricity price,
multi-objective function, and profit of the power company and demand users. Table 7
illustrates the proportion of load demand at the three-part period for these five cases.

Table 6. Simulation results of five cases.

α β

TOU Price (USD/MWh) Objective Function Profit of the Power Company
and Demand Users

Valley Off-Peak Peak f 1 (USD) f 2 (%) Procompany
(USD) Prousers (USD)

Income of
Selling

Electricity

Penalty Cost of
Power Supply

Shortage

Base × × 75.0 75.0 75.0 × 6.82 1,692,909.1 0 1,856,849.5 163,940.4
Case 1 0.3 0.7 15.0 60.0 111.0 698,347.0 5.33 1,287,124.6 377,918.7 1,471,612.6 184,488.0
Case 2 0.4 0.6 15.0 60.0 140.0 792,943.3 4.74 1,458,766.9 349,061.0 1,584,055.2 125,288.2
Case 3 0.5 0.5 15.0 62.6 153.0 928,014.4 5.51 1,519,936.6 336,092.2 1,624,858.3 10,4921.7
Case4 0.6 0.4 37.9 88.7 112.5 1,102,424.1 6.54 1,846,779.9 −14,109.5 1,934,830.9 88,051.0
Case 5 0.7 0.3 51.2 85.4 110.6 1,315,901.6 7.06 1,913,492.7 −78,477.3 1,997,332.4 83,839.7

Table 7. Proportion of load demand in each period.

Load Distribution

Valley (MW) Proportion of Valley % Off-Peak (MW) Proportion of
Off-Peak % Peak (MW) Proportion of Peak %

Base case 7050 26.0 11,600 42.8 8450 31.2
Case 1 9170 32.1 12,472 43.7 6925 24.2
Case 2 9170 33.5 12,472 45.6 5696 20.8
Case 3 9170 34.4 12,320 46.3 5146 19.3
Case 4 8362 32.1 10,805 41.5 6863 26.4
Case 5 7891 30.6 10,995 42.6 6941 26.9

Figure 3 shows the simulation results for the multi-objective dispatch model solved by
MOPSO. The profit of the power company and demand users, and the rate of abandoning
PV power and wind power, may conflict.

6.1. Base Case

To analyze the economic and the rate of abandoning PV power and wind power, the
base case was set to an initial electricity price of 75 USD/MWh in the hybrid microgrid.
The proportion of the load in the base case is shown in the first row of Table 6. The multi-
objective function of f 2 was 6.82%. The profit of the power company and demand users
cannot be calculated as the weight coefficients of the power company’s profit and demand
users are not set in this case. The proportions of demand load at peak, off-peak, and valley
periods were 31.2%, 42.8%, and 26%, respectively.

6.2. Analysis of the Profit of the Power Company and Demand Users

For the profit of demand users, minimizing the electricity price is the optimal solution,
as it can obtain the minimum electricity cost of demand users. The weight coefficients of
the profit of demand users are higher than those of the power company in Cases 1 and 2.
Therefore, in the two cases, the optimal electricity prices of the valley and off-peak periods
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are 15 USD/MWh and 60 USD/MWh, respectively, which are the lower limits of the TOU
electricity price. For Cases 1–3, the weight coefficients of the profit of demand users are
progressively reduced. In Cases 1–3, the optimal electricity prices at the peak period are
110 USD/MWh, 114 USD/MWh, and 153 USD/MWh, respectively. In Cases 4 and 5, the
weight coefficients of the power company are higher than those of demand users. From the
simulation results in Cases 4 and 5, the profits for demand users are −14,109.5 USD and
−78,477.3 USD, respectively. Therefore, the profit of the power company increases, and the
profit of users is less than zero.

Figure 3. MOPSO simulation results for the multi-objective dispatch model.

For the profit of the power company, maximizing the electricity price is the optimal
solution that can maximize the income of selling electricity for the power company. As
shown in Table 5, the off-peak electricity prices of Cases 4 and 5 are 88.7 USD/MWh and
85.4 USD/MWh, respectively. The electricity prices are close to the upper limit of the
off-peak electricity price. The valley electricity prices of Cases 4 and 5 are 37.9 USD/MWh
and 51.2 USD/MWh, respectively, obviously exceeding those of Case 1 and Case 2. The
weight coefficients of the profit of the power company exceed those of demand users in
Cases 3 and 4.

In Case 3, the weight coefficients of the profit of demand users and the power company
are equal to 0.5. Compared with the results of Cases 1 and 2, the off-peak electricity price is
increased by 2.6 USD/MWh as the weight coefficient of the profit of the power company
in Case 3 exceeds that in Cases 1 and 2. Moreover, the electricity prices of the valley and
off-peak periods in Case 3 are smaller than those in Cases 4 and 5 as the weight coefficient
of the profit of users in Case 3 exceeds that in Cases 4 and 5.

6.3. Analysis of the Rate of Abandoning Output Power of Renewable Energy

To minimize the rate of abandoning the output power of renewable energy, the excess
output power of renewable energy should be minimized. The hours of exceeding the total
output power of renewable energy may occur during the valley period. The sum of the
output power of the renewable energy exceeds the load demand.

As shown in Table 6, compared with the base case data, the valley period loads in
Cases 1, 2, and 3 are all increased by 2120 MW as the valley electricity price in these three
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cases was 15 USD/MWh. The valley electricity prices in Cases 4 and 5 are 37.9 USD/MWh
and 51.2 USD/MWh, respectively, which are higher than those of the three cases. Therefore,
the loads at the valley period in Cases 4 and 5 only increased by 1312 MW and 841 MW,
respectively. During the valley period, the loads in Cases 4 and 5 were less than those in
the three cases.

From the above simulation results, the weight coefficients of the profit of demand
users gradually decrease. The weight coefficients of the profit of the power company
gradually increase from the results of Cases 1–5. With the increasing weight coefficients of
the power company profit, the electricity price and the rate of abandoning PV power and
wind power increased.

The load demand of the valley period increases, and the load demand of the peak
period is reduced. The results of the first three cases were similar. This is as the TOU
electricity prices of these three cases are close to the lower limit of the electricity price. The
TOU electricity price in Case 3 was the upper limit of the electricity price.

7. Conclusions

DR plays a significant role in power system scheduling. As one of the methods for the
DR, the price elasticity of load demands was applied herein to establish a multi-objective
dispatch model for integration to minimize the rate of abandoning renewable energy
generation power and maximize the profit of the power company and demand users. The
hybrid microgrid comprises renewable generation and an ESS. The uncertainty problem
of renewable generation is considered in this study. MOPSO was applied to obtain the
solutions for the optimal TOU electricity price for the proposed multi-objective model.

The simulation results of five cases with different profit weight coefficients were
analyzed and compared to prove the feasibility of the proposed multi-objective dispatch
model. The results listed in Table 6 show that, with the increasing weight coefficients of
the power company profit, electricity price, and the rate of abandoning PV power and
wind power are increased. The results in Figure 3 show that with an increase in the profit
of the power company and demand users, the rate of abandoning PV power and wind
power correspondingly decrease. We can draw the conclusion that the profits of power
companies and demand users, and the rate of abandoning PV power and wind power, are
conflicting. With an increase in the profit weight coefficient, the optimal electricity price
increases. Simultaneously, the rate of abandoning PV power and wind power increased.
In our work, the elastic price of the load demand with a linear function is employed to
optimize the TOU electricity price. However, the coefficients of the linear function for the
price elasticity of load demand should be more accurate, which could form the basis for
the next research topic.
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