Coupled Basin and Hydro-Mechanical Modeling of Gas Chimney Formation: The SW Barents Sea
Abstract
:1. Introduction
2. Geological Settings and Petroleum Systems
3. Data and Methods
3.1. Basin Modelling
3.1.1. Burial Histories
3.1.2. Thermal Histories
3.2. Hydro-Mechanical Modeling at the Reservoir Scale
4. Modeling Results
4.1. Basin Modeling
4.1.1. Dataset from the Hammerfest Basin
4.1.2. Calibration
4.1.3. Results
4.2. Hydro-Mechanical Modeling at the Reservoir Scale
4.2.1. Initial Reservoir Model Based on Dataset from the Hammerfest Basin
4.2.2. Chimney Modeling Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Physical Properties A | ||||||||
---|---|---|---|---|---|---|---|---|
Layer | Color B | Lithology | ϕ0 | B | ρ | k | Cρ | Q |
(km) | (kg/m3) | (W/m/K) | (J/kg/K) | (μW/m3) | ||||
Nordland Gp | Siltstone (organic lean) | 0.55 | 1.96 | 2720 | 2.05 | 921 | 1 | |
Torsk Fm | Shale (organic lean, typical) | 0.70 | 1.20 | 2700 | 1.70 | 879 | 2 | |
Kveite-Kviting fms. | Siltstone (organic lean) | 0.55 | 1.96 | 2720 | 2.05 | 921 | 1 | |
Kolmule Fm | Shale (organic lean, silty) | 0.67 | 1.20 | 2700 | 1.77 | 879 | 2 | |
Kolje Fm | Shale (typical) | 0.70 | 1.20 | 2700 | 1.64 | 879 | 2 | |
Knurr Fm | Shale (typical) | 0.70 | 1.20 | 2700 | 1.64 | 879 | 2 | |
Hekkingen Fm | Shale (organic rich, 8% TOC C) | 0.70 | 1.20 | 2500 | 1.20 | 879 | 3 | |
Fuglen Fm | Shale (organic lean, siliceous, typical) | 0.70 | 1.20 | 2710 | 1.90 | 879 | 1 | |
Stø Fm 01 | Sandstone (typical) | 0.41 | 3.23 | 2720 | 3.95 | 837 | 1 | |
Stø Fm 02 | Siltstone (organic lean) | 0.55 | 1.96 | 2720 | 2.05 | 921 | 1 | |
Nordmela Fm | Siltstone (organic lean) | 0.55 | 1.96 | 2720 | 2.05 | 921 | 1 | |
Tubåen Fm | Sandstone (clay poor) | 0.42 | 3.33 | 2700 | 5.95 | 837 | 0 | |
Fruholmen Fm | Siltstone (organic rich, 2–3% TOC) | 0.55 | 1.96 | 2700 | 2.00 | 921 | 1 | |
Snadd Fm | Siltstone (organic rich, 2–3% TOC) | 0.55 | 1.96 | 2700 | 2.00 | 921 | 1 | |
Kobbe Fm | Siltstone (organic rich, 2–3% TOC) | 0.55 | 1.96 | 2700 | 2.00 | 921 | 1 | |
Havert-Klappmys fms. | Shale (organic lean, silty) | 0.67 | 2.33 | 2700 | 1.77 | 879 | 2 | |
Ørret Fm | Siltstone (organic lean) | 0.55 | 2.44 | 2720 | 2.05 | 921 | 1 |
References
- Berndt, C. Focused fluid flow in passive continental margins. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2005, 363, 2855–2871. [Google Scholar] [CrossRef]
- Iyer, K.; Rupke, L.; Galerne, C.Y. Modeling fluid flow in sedimentary basins with sill intrusions: Implications for hydrothermal venting and climate change. Geochem. Geophys. Geosyst. 2013, 14, 5244–5262. [Google Scholar] [CrossRef] [Green Version]
- Hurst, A.; Cartwright, J. Sand Injectites: Implications for Hydrocarbon Exploration and Production; American Association of Petroleum Geologists: Tulsa, OK, USA, 2007; Volume 87. [Google Scholar]
- Vadakkepuliyambatta, S.; Bünz, S.; Mienert, J.; Chand, S. Distribution of subsurface fluid-flow systems in the SW Barents Sea. Mar. Petrol. Geol. 2013, 43, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Patterson, C. Age of meteorites and the earth. Geochim. Cosmochim. Acta 1956, 10, 230–237. [Google Scholar] [CrossRef]
- Hovland, M.; Judd, A. Seabed Pockmarks and Seepages. Impact on Geology, Biology and the Marine Environment; Graham & Trotman: Bath, UK, 1988. [Google Scholar]
- Judd, A.G.; Hovland, M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment; Cambridge University Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Rise, L.; Sættem, J.; Fanavoll, S.; Thorsnes, T.; Ottesen, D.; Bøe, R. Sea-bed pockmarks related to fluid migration from Mesozoic bedrock strata in the Skagerrak offshore Norway. Mar. Petrol. Geol. 1999, 16, 619–631. [Google Scholar] [CrossRef]
- Bachu, S. CO2 storage in geological media: Role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 2008, 34, 254–273. [Google Scholar] [CrossRef]
- Benson, S.; Cole, D.R. CO2 sequestration in deep sedimentary formations. Elements 2008, 4, 325–331. [Google Scholar] [CrossRef]
- Bickle, M. Geological carbon storage. Nat. Geosci. 2009, 2, 815–819. [Google Scholar] [CrossRef]
- Hustoft, S.; Bünz, S.; Mienert, J. Three-dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid-Norway. Basin Res. 2010, 22, 465–480. [Google Scholar] [CrossRef]
- Ostanin, I.; Anka, Z.; di Primio, R.; Bernal, A. Hydrocarbon plumbing systems above the Snøhvit gas field: Structural control and implications for thermogenic methane leakage in the Hammerfest Basin, SW Barents Sea. Mar. Petrol. Geol. 2013, 43, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Loseth, H.; Gading, M.; Wensaas, L. Hydrocarbon leakage interpreted on seismic data. Mar. Petrol. Geol. 2009, 26, 1304–1319. [Google Scholar] [CrossRef]
- Iyer, K.; Schmid, D.W.; Planke, S.; Millett, J. Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth Planet. Sci. Lett. 2017, 467, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Yarushina, V.M.; Podladchikov, Y.Y. (De)compaction of porous viscoelastoplastic media: Model formulation. J. Geophys. Res. Solid Earth 2015, 4146–4170. [Google Scholar] [CrossRef]
- Loseth, H.; Wensaas, L.; Arntsen, B.; Hanken, N.M.; Basire, C.; Graue, K. 1000 m long gas blow-out pipes. Mar. Petrol. Geol. 2011, 28, 1047–1060. [Google Scholar] [CrossRef]
- Karstens, J.; Berndt, C. Seismic chimneys in the Southern Viking Graben—Implications for palaeo fluid migration and overpressure evolution. Earth Planet. Sci. Lett. 2015, 412, 88–100. [Google Scholar] [CrossRef]
- Plaza-Faverola, A.; Bünz, S.; Mienert, J. Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth Planet. Sci. Lett. 2011, 305, 297–308. [Google Scholar] [CrossRef]
- Tasianas, A.; Mahl, L.; Darcis, M.; Buenz, S.; Class, H. Simulating seismic chimney structures as potential vertical migration pathways for CO2 in the Snøhvit area, SW Barents Sea: Model challenges and outcomes. Environ. Earth Sci. 2016, 75, 504. [Google Scholar] [CrossRef] [Green Version]
- Ostanin, I.; Anka, Z.; di Primio, R. Role of Faults in Hydrocarbon Leakage in the Hammerfest Basin, SW Barents Sea: Insights from Seismic Data and Numerical Modelling. Geosciences 2017, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Duran, E.; di Primio, R.; Anka, Z.; Stoddart, D.; Horsfield, B. 3D-basin modelling of the Hammerfest Basin (southwestern Barents Sea): A quantitative assessment of petroleum generation, migration and leakage. Mar. Petrol. Geol. 2013, 45, 281–303. [Google Scholar] [CrossRef]
- Yarushina, V.M.; Podladchikov, Y.Y.; Wang, L.H. Model for (de) compaction and porosity waves in porous rocks under shear stresses. J. Geophys. Res. Solid Earth. 2020, 125, e2020JB019683. [Google Scholar] [CrossRef]
- Räss, L.; Simon, N.S.C.; Podladchikov, Y.Y. Spontaneous formation of fluid escape pipes from subsurface reservoirs. Sci. Rep. 2018, 8, 11116. [Google Scholar] [CrossRef]
- Mckenzie, D. The compaction of igneous and sedimentary rocks. J. Geol. Soc. 1987, 144, 299–307. [Google Scholar] [CrossRef]
- Faleide, J.I.; Tsikalas, F.; Breivik, A.J.; Mjelde, R.; Ritzmann, O.; Engen, O.; Wilson, J.; Eldholm, O. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 2008, 31, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Faleide, J.I.; Vågnes, E.; Gudlaugsson, S.T. Late Mesozoic-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting. Mar. Petrol. Geol. 1993, 10, 186–214. [Google Scholar] [CrossRef]
- Gac, S.; Hansford, P.A.; Faleide, J.I. Basin modelling of the SW Barents Sea. Mar. Petrol. Geol. 2018, 95, 167–187. [Google Scholar] [CrossRef]
- Ohm, S.E.; Karlsen, D.A.; Austin, T.J.F. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. AAPG Bull. 2008, 92, 1191–1223. [Google Scholar] [CrossRef]
- Gilmullina, A.; Klausen, T.G.; Paterson, N.W.; Suslova, A.; Eide, C.H. Regional correlation and seismic stratigraphy of Triassic Strata in the Greater Barents Sea: Implications for sediment transport in Arctic basins. Basin Res. 2021, 33, 1546–1579. [Google Scholar] [CrossRef]
- Breivik, A.J.; Mjelde, R.; Grogan, P.; Shimamura, H.; Murai, Y.; Nishimura, Y.; Kuwano, A. A possible Caledonide arm through the Barents Sea imaged by OBS data. Tectonophysics 2002, 355, 67–97. [Google Scholar] [CrossRef]
- Faleide, J.I.; Gudlaugsson, S.T.; Jacquart, G. Evolution of the western Barents Sea. Mar. Petrol. Geol. 1984, 1, 123–150. [Google Scholar] [CrossRef]
- Larsen, R.M.; Fjaeran, T.; Skarpnes, O. Hydrocarbon potential of the Norwegian Barents Sea based on recent well results. In Norwegian Petroleum Society Special Publications; Elsevier: Amsterdam, The Netherlands, 1993; Volume 2, pp. 321–331. ISBN 0928-8937. [Google Scholar]
- Reemst, P.; Cloetingh, S.; Fanavoll, S. Tectonostratigraphic modelling of Cenozoic uplift and erosion in the south-western Barents Sea. Mar. Petrol. Geol. 1994, 11, 478–490. [Google Scholar] [CrossRef]
- Berglund, L.T.; Augustson, J.; Færseth, R.; Gjelberg, J.; Ramberg-Moe, H. The evolution of the Hammerfest Basin. In Proceedings of the Habitat of Hydrocarbons on the Norvegian Continental Shelf International Conference, Stavanger, Norway, 1–3 October 1986; pp. 319–338. [Google Scholar]
- Vorren, T.O.; Richardsen, G.; Knutsen, S.-M.; Henriksen, E. Cenozoic erosion and sedimentation in the western Barents Sea. Mar. Petrol. Geol. 1991, 8, 317–340. [Google Scholar] [CrossRef]
- Mohammedyasin, S.M.; Lippard, S.J.; Omosanya, K.O.; Johansen, S.E.; Harishidayat, D. Deep-seated faults and hydrocarbon leakage in the Snøhvit Gas Field, Hammerfest Basin, Southwestern Barents Sea. Mar. Petrol. Geol. 2016, 77, 160–178. [Google Scholar] [CrossRef] [Green Version]
- Norwegian Petroleum Directorate. Available online: https://www.npd.no (accessed on 29 September 2021).
- Hansen, H.N. Reservoir Characterization of the Stø Formation in the Hammerfest Basin, SW Barents Sea. Master’s Thesis, University of Oslo, Oslo, Norway, 2016. [Google Scholar]
- Duran, E.; di Primio, R.; Anka, Z.; Stoddart, D.; Horsfield, B. Petroleum system analysis of the Hammerfest Basin (southwestern Barents Sea): Comparison of basin modelling and geochemical data. Org. Geochem. 2013, 63, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Hantschel, T.; Kauerauf, A.I. Fundamentals of Basin and Petroleum Systems Modeling; Springer Science & Business Media: Berlin, Germany, 2009; ISBN 978-3-540-72317-2. [Google Scholar]
- Steckler, M.S.; Watts, A.B. Subsidence of the Atlantic-type continental margin of New York. Earth Planet. Sci. Lett. 1978, 41, 1–13. [Google Scholar] [CrossRef]
- Wangen, M. Physical Principles of Sedimentary Basin Analysis; Cambridge University Press: Cambridge, MA, USA, 2010; ISBN 0521761255. [Google Scholar]
- Clark, S.A.; Glorstad-Clark, E.; Faleide, J.I.; Schmid, D.; Hartz, E.H.; Fjeldskaar, W. Southwest Barents Sea rift basin evolution: Comparing results from backstripping and timeforward modelling. Basin Res. 2014, 26, 550–566. [Google Scholar] [CrossRef]
- Theissen, S.; Rüpke, L.H. Feedbacks of sedimentation on crustal heat flow: New insights from the Voring Basin, Norwegian Sea. Basin Res. 2010, 22, 976–990. [Google Scholar] [CrossRef]
- Peshkov, G.A.; Chekhonin, E.M.; Rüpke, L.H.; Musikhin, K.A.; Bogdanov, O.A.; Myasnikov, A.V. Impact of differing heat flow solutions on hydrocarbon generation predictions: A case study from West Siberian Basin. Mar. Petrol. Geol. 2021, 124, 104807. [Google Scholar] [CrossRef]
- Rüpke, L.H.; Schmalholz, S.M.; Schmid, D.W.; Podladchikov, Y.Y. Automated thermotectonostratigraphic basin reconstruction: Viking Graben case study. AAPG Bull. 2008, 92, 309–326. [Google Scholar] [CrossRef]
- Athy, L.F. Density, porosity, and compaction of sedimentary rocks. AAPG Bull. 1930, 14, 1–24. [Google Scholar] [CrossRef]
- Peshkov, G.A.; Ibragimov, I.; Yarushina, V.; Myasnikov, A. Basin modelling as a predictive tool for potential zones of chimney presence. In Proceedings of the EGU General Assembly Conference Abstracts, Online. 4–8 May 2020; p. 18689. [Google Scholar]
- Fjeldskaar, W. BMTTM—Exploration tool combining tectonic and temperature modeling: Business Briefing: Exploration & Production. Oil Gas Rev. 2003, 1–4. [Google Scholar]
- Allen, P.A.; Allen, J.R. Basin Analysis: Principles and Application to Petroleum Play Assessment, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Galushkin, Y.I. Sedimentary Basin Modeling and Estimation of Its Hydrocarbon Potential; Nauchnyi Mir: Moscow, Russia, 2007. [Google Scholar]
- Woodside, W.; Messmer, J.H. Thermal conductivity of porous media. I. Unconsolidated sands. J. Appl. Phys. 1961, 32, 1688–1699. [Google Scholar] [CrossRef]
- Deming, D.; Chapman, D.S. Thermal histories and hydrocarbon generation: Example from Utah-Wyoming thrust belt. AAPG Bull. 1989, 73, 1455–1471. [Google Scholar] [CrossRef]
- Sekiguchi, K. A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics 1984, 103, 67–79. [Google Scholar] [CrossRef]
- Waples, D.W.; Waples, J.S. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks. Nat. Resour. Res. 2004, 13, 97–122. [Google Scholar] [CrossRef]
- Somerton, W.H. Thermal Properties and Temperature-Related Behavior of Rock/Fluid Systems; Elsevier: Amsterdam, Netherlands, 1992; ISBN 0080868959. [Google Scholar]
- Räss, L.; Yarushina, V.M.; Simon, N.S.C.; Podladchikov, Y.Y. Chimneys, channels, pathway flow or water conducting features—An explanation from numerical modelling and implications for CO2 storage. Energy Proc. 2014, 63, 3761–3774. [Google Scholar] [CrossRef] [Green Version]
- Minakov, A.V.; Yarushina, V.M.; Faleide, J.I.; Krupnova, N.; Sakoulina, T.; Dergunov, N.; Glebovsky, V. Dyke Emplacement and Crustal Structure within a Continental Large Igneous Province—Northern Barents Sea; Special Publications; Geological Society: London, UK, 2017. [Google Scholar]
- Connolly, J.A.D.; Podladchikov, Y.Y. Decompaction weakening and channeling instability in ductile porous media: Implications for asthenospheric melt segregation. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Omlin, S.; Rass, L.; Podladchikov, Y.Y. Simulation of three-dimensional viscoelastic deformation coupled to porous fluid flow. Tectonophysics 2018, 746, 695–701. [Google Scholar] [CrossRef]
- Sabitova, A.I.; Yarushina, V.M.; Stanchits, S.; Stukachev, V.; Khakimova, L.; Myasnikov, A. V Experimental compaction and dilation of porous rocks during triaxial creep and stress relaxation. Rock Mech. Rock Eng. 2021. [Google Scholar] [CrossRef]
- Connolly, J.A.D.; Podladchikov, Y.Y. Compaction-driven fluid flow in viscoelastic rock. Geodin. Acta 1998, 11, 55–84. [Google Scholar] [CrossRef]
- Connolly, J.; Podladchikov, Y.Y. Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins. Tectonophysics 2000, 324, 137–168. [Google Scholar] [CrossRef]
- Appold, M.S.; Nunn, J.A. Numerical models of petroleum migration via buoyancy-driven porosity waves in viscously deformable sediments. Geofluids 2002, 2, 233–247. [Google Scholar] [CrossRef]
- Yarushina, V.M.; Podladchikov, Y.Y.; Connolly, J.A.D. (De) compaction of porous viscoelastoplastic media: Solitary porosity waves. J. Geophys. Res. Solid Earth 2015, 120, 4843–4862. [Google Scholar] [CrossRef] [Green Version]
- Vasilyev, O.V.; Podladchikov, Y.Y.; Yuen, D.A. Modeling of compaction driven flow in poro-viscoelastic medium using adaptive wavelet collocation method. Geophys. Res. Lett. 1998, 25, 3239–3242. [Google Scholar] [CrossRef] [Green Version]
- Skogseid, J.; Planke, S.; Faleide, J.I.; Pedersen, T.; Eldholm, O.; Neverdal, F. NE Atlantic Continental Rifting and Volcanic Margin Formation; Special Publications; Geological Society: London, UK, 2000; Volume 167, pp. 295–326. [Google Scholar]
- McKenzie, D.P. Some remarks on heat flow and gravity anomalies. J. Geophys. Res. 1967, 72, 6261–6273. [Google Scholar] [CrossRef]
- Parsons, B.; Sclater, J.G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 1977, 82, 803–827. [Google Scholar] [CrossRef]
- Wygrala, B. Integrated Study of an Oil Field in the Southern Po Basin, Northern Italy; Publikationen vor 2000; Kernforschungsanlage Jülich GmbH: Jülich, Germany, 1989. [Google Scholar]
- Archer, D.; Martin, P.; Buffett, B.; Brovkin, V.; Rahmstorf, S.; Ganopolski, A. The importance of ocean temperature to global biogeochemistry. Earth Planet. Sci. Lett. 2004, 222, 333–348. [Google Scholar] [CrossRef]
- Siegert, M.J.; Marsiat, I. Numerical reconstructions of LGM climate across the Eurasian Arctic. Quat. Sci. Rev. 2001, 20, 1595–1605. [Google Scholar] [CrossRef]
- Mienert, J.; Vanneste, M.; Bünz, S.; Andreassen, K.; Haflidason, H.; Sejrup, H.P. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Mar. Petrol. Geol. 2005, 22, 233–244. [Google Scholar] [CrossRef]
- Poplavskii, K.N.; Podladchikov, Y.Y.; Stephenson, R.A. Two-dimensional inverse modeling of sedimentary basin subsidence. J. Geophys. Res. Solid Earth 2001, 106, 6657–6671. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, J.J.; Burnham, A.K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull. 1990, 74, 1559–1570. [Google Scholar] [CrossRef]
- Dieckmann, V.; Schenk, H.J.; Horsfield, B.; Welte, D.H. Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian Shales. Fuel 1998, 77, 23–31. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurence; Springer: Berlin, Germany, 1978. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer: Berlin, Germany, 1984; ISBN 364287813X. [Google Scholar]
- Räss, L.; Makhnenko, R.Y.; Podladchikov, Y.; Laloui, L. Quantification of viscous creep influence on storage capacity of caprock. Energy Proc. 2017, 114, 3237–3246. [Google Scholar] [CrossRef]
- Wangen, M. The blanketing effect in sedimentary basins. Basin Res. 1995, 7, 283–298. [Google Scholar] [CrossRef]
- Lucazeau, F.; Le Douaran, S. The blanketing effect of sediments in basins formed by extension: A numerical model. Application to the Gulf of Lion and Viking graben. Earth Planet. Sci. Lett. 1985, 74, 92–102. [Google Scholar] [CrossRef]
- Kinnaird, T.C.; Prave, A.R.; Kirkland, C.L.; Horstwood, M.; Parrish, R.; Batchelor, R.A. The late Mesoproterozoic–early Neoproterozoic tectonostratigraphic evolution of NW Scotland: The Torridonian revisited. J. Geol. Soc. 2007, 164, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Ostanin, I.; Anka, Z.; di Primio, R.; Bernal, A. Identification of a large Upper Cretaceous polygonal fault network in the Hammerfest basin: Implications on the reactivation of regional faulting and gas leakage dynamics, SW Barents Sea. Mar. Geol. 2012, 332, 109–125. [Google Scholar] [CrossRef]
- Morris, A.; Ferrill, D.A.; Henderson, D.B. Slip-tendency analysis and fault reactivation. Geology 1996, 24, 275–278. [Google Scholar] [CrossRef]
- Freeman, B.; Yielding, G.; Needham, D.T.; Badley, M.E. Fault Seal Prediction: The Gouge Ratio Method; Special Publications; Geological Society: London, UK, 1998; Volume 127, pp. 19–25. [Google Scholar]
- Knipe, R.J. The Influence of Fault Zone Processes and Diagenesis on Fluid Flow; Chapter 10: Diagenesis and Faults; American Association of Petroleum Geologists: Tulsa, OK, USA, 1993. [Google Scholar]
- Singh, D.; Kumar, P.C.; Sain, K. Interpretation of gas chimney from seismic data using artificialneural network: A study from Maari 3D prospect in the Taranakibasin, New Zealand. J. Nat. Gas Sci. Eng. 2016, 36, 339–357. [Google Scholar] [CrossRef]
- Gay, A.; Lopez, M.; Berndt, C.; Séranne, M. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Mar. Geol. 2007, 244, 68–92. [Google Scholar] [CrossRef]
- Kim, G.Y.; Yi, B.Y.; Yoo, D.G.; Ryu, B.J.; Riedel, M. Evidence of gas hydrate from downhole logging data in the Ulleung Basin, East Sea. Mar. Petrol. Geol. 2011, 28, 1979–1985. [Google Scholar] [CrossRef]
- Plaza-Faverola, A.; Pecher, I.; Crutchley, G.; Barnes, P.M.; Bünz, S.; Golding, T.; Klaeschen, D.; Papenberg, C.; Bialas, J. Submarine gas seepage in a mixed contractional and shear deformation regime: Cases from the Hikurangi oblique-subduction margin. Geochem. Geophys. Geosyst. 2014, 15, 416–433. [Google Scholar] [CrossRef] [Green Version]
- Uchupi, E.; Swift, S.A.; Ross, D.A. Gas venting and late Quaternary sedimentation in the Persian (Arabian) Gulf. Mar. Geol. 1996, 129, 237–269. [Google Scholar] [CrossRef]
- Aminzadeh, F.; Connolly, D.; De Groot, P. Interpretation of gas chimney volumes. In SEG Technical Program Expanded Abstracts 2002; Society of Exploration Geophysicists: Tulsa, OK, USA, 2002; pp. 440–443. ISBN 1052-3812. [Google Scholar]
- Henning, A.; Rollins, F.; Martin, R. Investigation of near-vertical fluid escape feature above the Frampton anticline in the south-central Gulf of Mexico utilizing improved seismic imaging and 3D geobody extraction. In SEG Technical Program Expanded Abstracts 2013; Society of Exploration Geophysicists: Tulsa, OK, USA, 2013; pp. 1293–1297. [Google Scholar] [CrossRef]
Parameter | Description | Value | Unit |
---|---|---|---|
ϕ | Porosity | ||
ϕ0 | Initial porosity | ||
z | Burial depth | km | |
B | Compaction length scale | km | |
ρ | Density | kg/m3 | |
ρm | Density of rock matrix | kg/m3 | |
ρw | Density of water at 20 °C | 1000 | kg/m3 |
ρeff | Bulk density | kg/m3 | |
Cρ | Specific heat capacity | J/kg/K | |
Cρeff | Bulk specific heat capacity | J/kg/K | |
Cρm | Specific heat capacity of rock matrix at 20 °C | J/kg/K | |
Cρw | Specific heat capacity of water | 4182 | J/kg/K |
k | Thermal conductivity | W/m/K | |
keff | Bulk thermal conductivity | W/m/K | |
kr | Thermal conductivity of rock matrix | W/m/K | |
kw | Thermal conductivity of fluids | W/m/K | |
Q | Radiogenic heat production | W/m3 | |
T | Temperature | K | |
t | Time | Ma or yr | |
Pore-fluid density | 1020 | ||
Solid density | 2040 | ||
Fluid shear viscosity | |||
Effective solid bulk viscosity | |||
Permeability | |||
Compaction length | m | ||
Viscous compaction time | yr | ||
Gravity constant | 9.8 | ||
Dynamic permeability | |||
Solid shear viscosity | |||
Solid velocity | |||
Fluid velocity | |||
Darcy flux | |||
Total porosity averaged density | |||
Fluid pressure | |||
Total pressure | |||
Stress deviator | |||
Kronecker delta |
No. of Layer | Lithology | Porosity | Dynamic Permeability | Effective Solid Bulk Viscosity |
---|---|---|---|---|
(%) | ||||
1 | Shale | 15–18 | ||
2 | Sandstone | 18–22 | ||
3 | Shale | 9–13 | ||
4 | Siltstone | 18–60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peshkov, G.A.; Khakimova, L.A.; Grishko, E.V.; Wangen, M.; Yarushina, V.M. Coupled Basin and Hydro-Mechanical Modeling of Gas Chimney Formation: The SW Barents Sea. Energies 2021, 14, 6345. https://doi.org/10.3390/en14196345
Peshkov GA, Khakimova LA, Grishko EV, Wangen M, Yarushina VM. Coupled Basin and Hydro-Mechanical Modeling of Gas Chimney Formation: The SW Barents Sea. Energies. 2021; 14(19):6345. https://doi.org/10.3390/en14196345
Chicago/Turabian StylePeshkov, Georgy A., Lyudmila A. Khakimova, Elena V. Grishko, Magnus Wangen, and Viktoria M. Yarushina. 2021. "Coupled Basin and Hydro-Mechanical Modeling of Gas Chimney Formation: The SW Barents Sea" Energies 14, no. 19: 6345. https://doi.org/10.3390/en14196345
APA StylePeshkov, G. A., Khakimova, L. A., Grishko, E. V., Wangen, M., & Yarushina, V. M. (2021). Coupled Basin and Hydro-Mechanical Modeling of Gas Chimney Formation: The SW Barents Sea. Energies, 14(19), 6345. https://doi.org/10.3390/en14196345