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Abstract: Faults in distribution networks can result in severe transients, equipment failure, and
power outages. The quick and accurate detection of the faulty section enables the operator to avoid
prolonged power outages and economic losses by quickly retrieving the network. However, the
occurrence of diverse fault types with various resistances and locations and the highly non-linear
nature of distribution networks make fault section detection challenging for numerous conventional
techniques. This study presents a cutting-edge deep learning-based algorithm to distinguish fault
sections in distribution networks to address these issues. The proposed gated recurrent unit model
utilizes only two samples of the angle between the voltage and current on either side of the feeders,
which record by smart feeder meters, to detect faulty sections in real time. When a network fault
occurs, the protection relays trigger the trip command for the breakers. Immediately, the angle data
are obtained from all smart feeder meters of the network, which comprises a pre-fault sample and a
post-fault sample. The data are then employed as an input to the pre-trained gated recurrent unit
model to determine the faulted line. The performance of this novel algorithm was validated through
simulations of various fault types in the IEEE-33 bus system. The model recognizes the faulty section
with competitive performance in terms of accuracy.

Keywords: fault section; deep learning; GRU; smart feeder meter; distribution network; real time

1. Introduction

Distribution networks, which are responsible for delivering electricity to consumers,
are essential parts of the electrical logistics chain. A resilient and stable distribution network
should transfer electrical energy to local light manufacturers, residential and commercial
customers with minor fluctuation and interruption [1]. However, unwanted events such
as equipment malfunction, unauthorized involvements (e.g., human disruptions), and
extreme weather conditions may lead the system to experience a fault and, as a result, a
shutdown. Hence, various faults with diverse resistances and situations may happen in
the distribution networks at numerous locations [2]. Line characteristics can change over
time and under different fault conditions, adversely affect fault location procedures and
result in erroneous results. On the other hand, financial losses and consumer discontent
will ensue if network recovery takes a substantial amount of time owing to incorrect fault
location results. Therefore, it is crucial to detect faults promptly and correctly, regardless
of their severity and line parameter variation [3]. There is a wide variety of fault location
methodologies, each with its own set of advantages. The most well-known fault location
strategies include Machine Learning (ML) techniques [4], impedance-based methods [5],
traveling wave-based algorithms [6], and state estimation-based approaches [7]. The
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authors of Ref. [8] provide a comprehensive review of the various types of fault location
methods and their associated benefits and drawbacks.

In impedance-based methods, low-resolution recorded data at the network’s substa-
tion are employed to locate fault points [9]. The primary drawback of impedance-based
strategies is that they cannot recognize the actual faulty section, requiring an additional
technique to distinguish the actual fault spot from the other candidates [10]. The authors
of Ref. [11] represent a fault location approach for locating the fault spot in a smart dis-
tribution network. To improve accuracy, the distributed line model is used. However,
the line parameters vary in real-world applications, owing to age and weather conditions.
One of the main limitations of this approach is that it requires exact line parameters to
perform correctly and accurately. A further disadvantage of impedance-based fault location
techniques is that they require the precise load value of each node to function efficiently,
which can be alleviated by deploying smart meters in all nodes. In [12], the collected fault
data of smart meters and Smart Feeder Meters (SFMs) have been used to pinpoint the
specific spot of the fault in a multi-branch distributed network. To cover complete sections
of the network, SFMs must be installed in all branches. An impedance-based approach is
utilized to discover probable fault spots, and, then, the genuine faulty section is identified
using the active power recorded by the SFM. One unpleasant aspect of this approach
is that it is reliant on the fault current. In vast distribution networks, this technique is
unable to distinguish high impedance fault points accurately. The authors of Ref. [13]
resolve the multi-response issue associated with impedance-based techniques by using the
frequency component analysis methodology. An innovative impedance-based prevention
technique for active distribution networks operating both in islanded and grid-connected
modes is suggested in [14]. The recorded data of protection relays and the measurements,
which are located at the end of each line, have been used in this methodology. A fault
identification index is then defined as a function of a pre-determined constant value and
the fault’s equivalent impedance. If the index is larger than the predetermined constant
value, the protection functions of relays are executed. The key concern of this technique
would be that it lacks a mechanism for locating faulty sections and is susceptible to load
uncertainties due to the use of a constant comparative factor in the construction of the
fault detection index. To locate the location of the fault in distribution networks, Ref. [15]
proposes a novel impedance-based fault localization approach. The modal transformation
matrix is employed in this method to mitigate the inherent influence of line parameters on
each phase, which creates a dependency in phase formulation. The voltage and current
of fault data recorded by the one-end feeding substation are utilized to locate the fault.
Although this method is immune to load variation, different fault resistances, time-varying
loads, and an unbalanced network operation, it requires precise line parameters for proper
functionality. It may acquire multiple fault point nominates utilizing an extra method to
specify the real faulty point.

Traveling wave techniques are among the most widely used methods for locating
fault points independent of line characteristics [16]. The authors of Ref. [17] present a
robust traveling wave-based fault location approach for determining the location of the
fault in multi-branch networks. The majority of traveling wave-based techniques include
arrival time inaccuracies, which might imperil the entire fault location operation. In this
paper, a novel optimization-based technique for mitigating the negative impact of arrival
time inaccuracy is given. The particle swarm optimization approach is implemented to
reduce the run time and improve precision. The primary drawback of this approach is
that it necessitates high sampling rate devices, which are not cost-effective for distribution
networks. The authors of [18] offer a new fault locating approach that uses a deviating
decomposition mode and an energy analysis of the recorded fault signal to locate the fault
spot. Before developing a fault, an intrinsic range variation matrix is generated based on the
traveling wave propagation characteristics and the distribution system structure. The fault
distance difference matrix is built utilizing all double-ended measurements of the network
arrival time of the traveling wave of all records. Finally, the fault distance can be calculated
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by comparing the two previously described matrices. This technique is not resistant to fault
signal arrival time error. Traditional traveling wave fault location approaches only examine
time or frequency characteristics, resulting in an incorrect response. The authors of Ref. [19]
propose a novel traveling wave time–frequency approach that overcomes the shortcomings
of existing methods. First, the arrival time of signals to nodes is identified using a quadratic
B-spline wavelet analysis modulus maximum detection technique with a denoising factor.
The appropriate velocity of the incident wave is then calculated employing the matrix
pencil technique, as well as the frequency of the traveling wave when it arrives at the
nodes. Finally, the fault location can be calculated using pre-determined equations and the
obtained data of the fault signal.

On active distribution networks with adequate data, state estimation-based fault
location methods are primarily employed. In [20], a new state estimation-based fault
location approach for active distribution networks is proposed. This work consists of
two steps: identifying and locating the fault. First of all, a framework is constructed to
distinguish network faults by utilizing the network’s line characteristics, the Jacobian
matrix of each section, and the state estimation paradigm. If the output of the least-squares-
error-based function is more significant than a pre-determined residual, the problem can
be recognized. Then, as a floating node, a new node is defined. Finally, several iterative
computations are used to identify the location of the floating point, which is the fault
spot. The authors of [21] introduce a new state estimation-based scheme for locating a
short circuit fault in active distribution networks. The classic state estimate technique is
changed in this aspect to be consistent with fault situations. Then, based on the updated
state estimation, a fault localization method is provided, which tends to detect the fault’s
location after distinguishing the faulty region. Current and voltage data recorded by
measurements, as well as pre-fault condition estimate findings, are employed for this
purpose, and the proper location of the fault is identified utilizing computed residual
measurement indices. The main weakness of the method is that it only applies to short
circuit faults. Because of the existence of various branches in the power distribution
network, the availability of only voltage and current data at the start of the line, and a lack
of access to information at the end of the network line, detecting the faulted segment in the
distribution system has become much more imperative. Two approaches were employed
in [22] to identify the network’s faulty section and fault position. At the beginning of the
line, the fault distance can be determined by calculating the current at the end of each
network line. As a result, in this work, it was attempted to practically approximate the
current and voltage at the start and end of each distribution system line by placing smart
meters in the network’s main branch and also using information derived from the power
flow in the network’s standard operation. More power flow is utilized in this approach to
compute the voltage drop of the lines and calculate the current and voltage at the network
lines’ ends, allowing the faulty section to be located.

Because of their versatility and performance, Machine Learning (ML) algorithms are
among the most promising approaches for locating faults in distribution networks [23].
Today, thanks to the development of ML and neural network techniques and their variety
of applications, acceptable results have been obtained in predicting and classifying most
power system [24] issues such as event classification and location [25], fault detection [26],
security assessment [27], state estimation [28], and load forecasting [29]. Building a proper
database for training artificial intelligence algorithms is very crucial. The authors of
Ref. [30] present an integrated system for fault classification and localization employing a
summation wavelet extreme learning machine. This technique functions by incorporating
feature extraction into the learning process. The significant advantage of this technique
is that no line parameters are required. The type of fault is identified in the first phase of
the method, followed by the location. Because of their varying current levels, distributed
generations (DGs) may have an unfavorable effect on the fault location method. In a faulty
circumstance, distributed generations respond differently depending on their power levels
at the fault time. To address this issue, the authors of [31] propose a new deep learning
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(DL)-based approach for locating faults in distribution networks equipped with distributed
generation. For the learning phase, a standard neural network is being explored. The fault
identification step is carried out with raw data of a three-phase voltage and current for
both faulty and non-faulty data classes. The performance of the approach is investigated in
a variety of fault scenarios. This method’s cross-validation accuracy is 99.52% for all sorts
of faults. The primary drawback of this approach is that it is incapable of detecting the
faulty section.

In this study, a highly accurate method, independent of the distribution network
topology and without the demand for line parameters, is developed employing a DL model
for detecting faulty sections in real time. Furthermore, the proposed Gated Recurrent Unit
(GRU) model requires only two samples of the angle between the voltage and current
on either side of the feeders. Employing the GRU model, feature extraction is conducted
hierarchically by the model itself and does not require feature engineering. Regardless
of the type of fault occurring in the network, such as a three-phase to ground, two-phase
to ground, two-phase, and single-phase to ground fault, the proposed framework can
determine the faulty section with highly competitive accuracy. The model’s performance
has been validated in various error conditions on the IEEE-33 bus system. The salient
contributions of this research are itemized as follows.

• A non-iterative and parameter-free model is introduced to detect faulty sections in
distribution networks in real time that uses only the angle between the voltage and
current on both sides of the feeder.

• The proposed GRU model can recognize the faulty section for various fault types and
does not demand fault type information.

• This approach takes advantage of SFMs’ recorded low-resolution data (a sample in
each period) compared to its competitors.

• The model’s performance has been validated on the IEEE-33 bus system, and the
results confirm excellent accuracy.

The rest of the paper is structured as follows. In the next Section, the proposed method-
ology to detect faulty sections is presented in four subsections. Section 3 demonstrates
the case study and simulation and the performance evaluation of the model. Finally, the
conclusion is reached in Section 4.

2. The Proposed Faulted Section Location Methodology
2.1. Database

Disturbances and faults in power grids cause immediate and fast changes in voltages,
currents, and angles throughout the system; these changes are usually more pronounced
and have higher amplitude fluctuations near the fault location. However, due to the highly
nonlinear nature of power networks, especially distribution networks, caused by abundant
power electronics equipment and renewable energy sources, short line lengths, and similar
fluctuations in voltage and current quantities of lines during faults, the performance of
model-based techniques to identify the fault location has almost been associated with
various difficulties and challenges, so that many model-based methods are not able to
recognize the faulty line with high accuracy. In contrast, data-driven techniques are not
dependent on network structure.

One of the variables affected after a fault in distribution networks is the angle between
voltage and current on both sides of the fault section. The proposed method employs the
angle between voltage and current on both sides of each section to distinguish the fault
section in distribution networks. In Figure 1, a 3-phase to the ground fault occurred in
the distribution line. When a fault occurs in the distribution network, the relays detect it
and trigger the trip signal. Instantly, angles between the voltage and current of all three
phases on both sides of the section were collected. Angles were sampled from SFMs with a
sampling frequency of 50 Hz, which the data window included a pre-fault and a post-fault
sample. Finally, applying Equation (4), the difference of the angle between the voltage and
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current on both sides of the section was calculated and used as the input variable to the
proposed GRU model. How to achieve this variable is represented in Equations (1)–(4).

Figure 1. A three-phase-to-ground fault in a section of a distribution network.

VS =

 VSa]δSa
VSb]δSb
VSc]δSc

, VR =

 VRa]δRa
VRb]δRb
VRc]δRc

, IS =

 ISa]θSa
ISb]θSb
ISc]θSc

, IR =

 IRa]θRa
IRb]θRb
IRc]θRc

 (1)

where VS, VR, δS, and δR are voltages of the sender and receiver busbars and their angles,
respectively. IS, IR, θS, and θR are also the currents of the sides of the section and their
angles, respectively. a, b, and c also represent phases A, B, and C.

αS =

 δSa − θSa
δSb − θba
δSc − θSc

, αR =

 δRa − θRa
δRb − θRa
δRc − θRc

 (2)

βi =
[
|αSa − αRa| |αSa − αRa| |αSa − αRa|

]
(3)

where αS and αR are the angles between voltage and current on both sides of the section,
respectively, and βi is the section i variable used for the proposed section detection frame-
work. Since the data window contains two samples, the βi value was calculated for the
pre-fault and post-fault samples separately, so, for each section, the βi matrix contains six
elements. Eventually, to determine the exact section where the fault occurred, the βi values
must be calculated for all sections (Equation (4)). For example, for the IEEE-33 bus system,
which has 32 sections, the β matrix will have dimensions of 32× 6. Accordingly, when a
fault occurs in the network, a matrix with dimensions n× 6 will be formed, where n is the
number of sections in the network. This matrix is then given as input to the pre-trained
GRU model to determine where the fault occurred. The more severe the fault and the more
phases involved, the easier it will be to find the faulty section in this algorithm; because
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the difference in angles in Equation (3) for the faulty line will be accompanied by more
variations, it will help the DL model to find that section more easily.

β =


β1
β2
...

βn

 (4)

2.2. Recurrent Neural Networks

As one of the most advanced and state-of-the-art ML algorithms, DL has improved
the performance of data-driven methods by producing a big hypothesis space. Recurrent
Neural Network (RNN) is one of the robust DL algorithms widely utilized to deal with
sequences such as time series. The RNN model employs previous information in the
sequence to generate the current output using the memory embedded in it, distinguishing
RNN from other data-driven approaches.

By increasing the number of hidden layers in a DL model, the model can distinguish
more complex functions. The back-propagation algorithm was employed in DL to fine-tune
network weights and parameters. In the back-propagation algorithm, for a model with
n hidden layers, n derivatives were multiplied by each other. Now, if these derivatives
were large, the gradients increased exponentially to the point that they caused an explosion
and the model weights tend to be infinite or NAN. In contrast, if the derivatives were
small, the gradient decreased exponentially to the point that the gradient disappeared or
became zero in deep networks. Vanishing gradient and exploding gradient issues in the
back-propagation algorithm can afford slow convergence and significant and undesirable
changes in the values of weights, respectively.

RNN method usually encounters vanishing gradient and exploding gradient issues
in the back-propagation algorithm. Hence, Long Short-Term Memory (LSTM) and GRU
methods, which are subsets of RNN, were developed to address these problems. These two
algorithms use internal mechanisms called gates to regulate the flow of information in the
network. Gates learn the essential inputs of the sequence and store them in a memory unit.
Consequently, they are able to convey information well in long sequences and increase the
accuracy of prediction and classification.

2.2.1. LSTM Model

Cell state is the core concept behind the LSTM, also known as the long-term memory
unit. The cell state (ct) updates in every step of the sequence according to input xt to
create a temporal feature vector ht. LSTM regulates the flow of information through three
gates called forget gate ( ft), input gate (it), and output gate (ot). Forget gate decides what
information should be removed or kept. Forget gate value is a number between 0 and 1;
if this value is closer to 0, it means forgetting, and if it is closer to 1, it means keeping
information. The sigmoid activation function (σ) does this. The input gate determines
new information additions from the current time step and then updated the cell state
by gt. Eventually, the output gate specifies the extent of the previous step information
carried over to the subsequent step, including the current time step information. The LSTM
equations were as follows:

ft = σ
(

Wi f xt + Wh f ht−1 + b f

)
(5)

it = σ(Wiixt + Whiht−1 + bi) (6)

gt = tanh
(

Wigxt + Whght−1 + bg

)
(7)

ot = σ(Wioxt + Whoht−1 + bo) (8)

ct = ftct−1 + g′tct (9)
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ht = ottanh(ct) (10)

where W and b are weights and biases values of the LSTM in every gate. The LSTM
structure is presented in Figure 2.

Figure 2. Illustration of LSTM structure.

2.2.2. GRU Model

GRU is a simpler type of LSTM consisting of only two gates, Update and Reset, which
reduce the number of parameters of the model compared to LSTM. Dissimilar to LSTM,
which employs the cell state to store and transfer information, GRU utilizes the hidden
state (ht). The update gate (zt) has a similar function to both forget and input gates in the
LSTM model. Additionally, the reset gate (rt) determines how much past information is
not required in the current step and should be forgotten. The GRU model was defined by
Equations (11)–(14) [32].

zt = σ(Wizxt + Whzht−1 + bz) (11)

rt = σ(Wirxt + Whrht−1 + br) (12)

h′t = tanh(Wixt + rtWhht−1 + bh) (13)

ht = (1− zt)ht−1 + zth′t (14)

where W and b are weights and biases values of the GRU. The GRU structure is shown in
Figure 3.

Due to the comparable performance of GRU and LSTM, employing both models will
usually have the same outcomes. However, because the GRU has fewer parameters and is
more straightforward to implement than the LSTM, it is faster to train and performs better
on small amounts of training data and a lesser data size is required to capture the properties
of the data. Consequently, in this study, the same method was utilized to develop the
proposed algorithm for determining faulty lines in distribution networks.

2.3. Layers

In the proposed DL model structure, besides the GRU layers, there are other successive
layers. These layers comprise the drop-out layer, batch normalization (BN) layer, flatten,
dense layer, and softmax layer, which together can develop a DL network. Dense and
softmax layers are usually utilized at the end of a structure for classification. Each of these
layers is described below:
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Figure 3. Illustration of GRU structure.

Drop-out layer: DL networks utilize regularization strategies to avoid overfitting
and alleviate the gradient vanishing problem. The most popular and influential of which
are dropout [33] and BN [34]. The dropout, which is only applied throughout training,
randomly excludes some neurons with p probability, which reduces the overfitting issue.

BN layer: In a DL model, since the parameters of each layer change while training, it
changes the distribution of input data to the subsequent layers, which reduces the speed
of model training. To tackle this issue, BN was introduced, which is a way of accelerating
training. This state-of-the-art strategy normalizes each layer’s input data with a mean of 0
and a variance of 1 [34].

Flatten layer: Flatten layer was proposed to reshape the input tensor into a shape
(batch dimension, features). For instance, if the layer has an input with dimensions (batch
dimension,3,3), by applying the flatten layer, it transforms the tensor to dimensions (batch
dimension,9). This layer was utilized before the dense layer.

Dense layer: In a dense layer, all the input neurons are connected to every output by
weights. This means that each output is the result of function on all input neurons. This
layer is also known as the fully connected layer.

Softmax layer: The softmax mathematical function transforms the input vector to the
probability vector. This probability vector estimates the probability that the data relates to a
specific class. Thus, softmax has the equivalent function as the sigmoid function; moreover,
the sum of all classes’ probabilities are 1. Equation (15) shows the softmax function, where
x is the input vector to the layer with length j [35].

Si =
exi

∑
j
i=1 exi

(15)

2.4. Architecture of the Proposed GRU Model

The structure of the proposed GRU model to recognize faulty lines is demonstrated
in Figure 4. The proposed model was able to identify faulty sections for various faults,
including three-phase to ground fault, two-phase to ground fault, two-phase, and single-
phase fault. Four GRU layers were employed in the model, and, following each layer, two
regularization strategies (dropout and BN) were used to prevent overfitting. The dropout
value for all layers was set to 0.1. The simulation data in DIgSILENT PowerFactory software
were applied in various scenarios of faults to create the database. The number of outputs
of the softmax layer was equal to the number of classes or, more precisely, the number of
sections in the network. For illustration, for the IEEE-33 bus system, there were 32 sections,
and the model had to ultimately estimate which section the fault occurred in.
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Figure 4. The architecture of the proposed GRU model.

To tune the models’ parameter and hyperparameters values, an Adam optimizer with
learning rate, weight decay, and momentum as 0.001, 10−6, and 0.9, respectively, was
employed to catch the best and most accurate results. Additionally, the sparse_categorical_
crossentropy loss function was chosen in this study.

The free parameter proposed model evaluated and detected fault sections in real time.
The framework of the proposed method is demonstrated in Figure 5. When a fault occurred
in the distribution network, the protection relays issued a trip command and triggered the
proposed GRU model. Voltage and current angles were then measured and collected from
all SFMs installed on either side of all sections. Each time series of voltage and current
angles consisted of two samples, a pre-fault, and a post-fault sample. For all SFMs, the
angle between the voltage and current of both samples was calculated. Considering two
SFMs were embedded per section, the vector introduced in Equation (3) could be formed.
Ultimately, for all sections, the vector was constructed to achieve matrix Equation (4). The
matrix was given as input to the pre-trained GRU model to estimate the faulty section.

Figure 5. The proposed framework to recognize the faulty line.
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3. Case Study
3.1. Distribution Network without the Presence of DGs

The angle between the voltage and current in each SFM varied according to the
fault type, location in the line, fault resistance, and fault inception angle. Hence, various
scenarios were simulated in the DIgSILENT PowerFactory software on the IEEE-33 bus
system (Figure 6) to generate a proper database. Simulated scenarios are given in Table 1,
including a total of 17,280 cases. In all scenarios, a matrix with dimensions of 32× 6 was
formed as the β matrix. Out of 17,280 scenarios created, 52.5% of the data were utilized for
training, 17.5% for validation data, and the rest for testing. The proposed GRU model was
trained in Python 3.8.3 on a personal workstation in Python 3.8.3 with 16 GB of RAM and
an Intel i7-3820QM CPU working at 2.7 GHz.

Figure 6. Single-line diagram of the IEEE-33 bus system.

Table 1. Proposed method effectiveness under Different fault resistances.

Parameters Details Count

Topology Radial 1
Line section All lines of the IEEE-33 bus system 32
Fault type All types 10
Fault location 10%, 50%, and 90% of every line section 3
Fault inception angle 0◦, 90◦, 180◦ 3
Fault resistance 0, 5, 15, 30, 50, and 100 Ω 6
Total scenarios - 17,280

Once the proposed GRU model and its parameters and hyper-parameters fitted, it was
vital to assess the model’s performance on the test data. Hence, in this study, the accuracy
criterion was utilized. A total of 5184 scenarios were considered for the test set, including
three-phase to ground, two-phase to ground, two-phase, and single-phase to ground faults
in various circumstances mentioned in Table 1, on all network lines with equal proportions.

Figure 7 demonstrated the relationship between accuracy and loss on training data
and validation data while training the GRU model. As shown in Figure 7, the model was
well trained and the training and validation data converge around the 30th epoch. After
about epoch 30, the model found its final and desired weight values and parameters, and
further training of the model did not help improve the model’s performance. During
the training of the model, the running time in each epoch was approximately 25 s. The
model’s accuracy on training data became 99.04% during training, and validation data
reached 99.64%. In contrast, the training and validation loss tended to be zero. All of this
demonstrated the excellent ability of the proposed GRU model to solve the problem of
fault section detection in distribution networks. The trained model was, now, applied to
predict test data. The accuracy of the proposed model on the test set was 99.56%. Out of
5184 new scenarios given to the model, the fault section in 5161 scenarios was accurately
classified.

A confusion matrix could be employed to assess the performance of a classification
model on test data more accurately. This matrix had N × N dimensions, in which N is the
number of target classes. The matrix compared the actual targets with the targets predicted
by the DL and gave an intuitive view that determined how well the proposed classification
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model had performed. The confusion matrix also specified which classes were not correctly
identified by the trained model. Figure 8 demonstrated the confusion matrix for the test
data. The proposed model detected most of the fault sections with 100% accuracy. The
most misdiagnosis was in Class 8, which, out of 177 scenarios for this class, miscategorized
10 scenarios in Class 7. This very high accuracy is very desirable and competitive for the
distribution network, where the length of the lines is very short, and the lines have similar
functions at the time of fault conditions. In the “Total” column of Figure 8, the ratio of
faulty sections to the total of scenarios correctly detected by the model is shown; the model
correctly identified the faulty section related to 5161 scenarios out of 5184 created scenarios.
Therefore, the faulty section was detected in 99.56% of the total scenarios.

Figure 7. Accuracy and loss on train and validation sets without DGs penetration in the network.

The timeline of the proposed model for detecting the faulty section, from the moment
the fault occurred to the moment the section was determined, is presented in Figure 9. A
pre-fault sample and a post-fault sample were required to distinguish the faulty section.
It took 100 milliseconds to delay sending data from SFMs to the data aggregation center.
After collecting the data, the proposed GRU model specified the faulty section for the
operator in just 55 milliseconds. This figure demonstrated how quickly this algorithm can
locate the damaged portion of the network. However, in real-world applications, there is
more time to fix the damaged part. On the other hand, this article discusses the issue of
fault location and assumes that the fault was completely detected. As a result, the required
relays were activated, and the network was cleared of the fault. It was expected in this
system that each fault was identified independently and eliminated through relays. As
a consequence, the time required to find the fault was 0.56 s, which was different from
the time required to detect the fault, and the relays had to respond extremely quickly to
prevent possible risks of fault in the network.

3.2. Distribution Network with the Presence of DGs

To investigate the impact of DG penetration in the distribution network, five identical
DGs with an active generating power of 200 kW and a reactive generating power of 100 kvar
were added to the IEEE-33 bus system; DGs were installed in busbars 04, 06, 16, 22, and
31. The scenarios listed in Table 1 were, then, re-generated for this network. After that, the
proposed GRU model was trained again with generated data. Figure 10 demonstrates how
the proposed GRU model was trained for a distribution network with DGs penetration.
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As shown in Figure 10, in this case, the GRU model needed more epochs to learn its
parameters, and after about 150 epochs, it had almost reached the ideal parameters to find
the faulty section, and the amount of loss was minimized. However, the model’s accuracy
on training data reached 99.55%, and the accuracy on validation data reached 97.92%.

Figure 8. Confusion matrix for the test data.

Figure 9. Fault section detection timeline.
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Figure 10. Accuracy and loss on train and validation sets with DGs penetration in the network.

4. Conclusions

A real-time and accurate detection of faulty lines in distribution networks is crucial
to supply consumers’ demand and prevent long-term power outages and financial losses.
This study introduced a cutting-edge method for diagnosing faulty sections in distribution
networks utilizing the GRU model that does not require network line impedance parame-
ters. The trained GRU model focused on the angle between the voltage and current of each
feeder before and after the fault for the specified purpose. The data window consisted of
only two samples obtained with the sampling frequency of 50 Hz from the SFMs installed
in the busbars. Since the proposed method was non-iterative, it can be implemented in real
time. This state-of-the-art model appeared robust in detecting faulty sections in various
fault scenarios, including three-phase to ground, two-phase to ground, two-phase, and
single-phase faults with diverse fault inception angles and a variety of resistance, including
high impedance faults. The model was validated on the IEEE 33-bus system, and the model
reached a very desirable accuracy of 99.56% for the network without DGs penetration and
97.98% with DGs penetration.
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