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Abstract: The dynamic development of transport in recent decades reflects the level of economic
development in the world. The transport sector today is one of the main barriers to the achievement
of the European Union’s climate protection objectives. More and more restrictive legal regulations
define permissible emission limits for the amounts of toxic substances emitted into the atmosphere.
Numerical CO2 modeling tools are one way to replace costly on-road testing. Driving cycles,
which are an approximation of the vehicle’s on-road operating conditions, are the basis of any
vehicle approval procedure. The paper presents a computer tool that uses neural networks to
simulate driving tests. Data obtained from tests on the Mercedes E350 chassis dynamometer were
used for the construction of the neural model. All the collected operational parameters of the
vehicle, which are the input data for the built model, were used to create simulation control runs
for driving tests: Environmental Protection Agency, Supplemental Federal Test Procedure, Highway
Fuel Economy Driving Schedule, Federal Test Procedure, New European Driving Cycle, Random
Cycle Low, Random Cycle High, Mobile Air Conditioning Test Procedure, Common Artemis Driving
Cycles, Worldwide Harmonized Light-Duty Vehicle Test Procedure. Using the developed computer
simulation tool, the impact on CO2 emissions was analyzed in the context of driving tests of four
types of fuels: Diesel, Fatty Acid Methyl Esters, rapeseed oil, butanol (butyl alcohol). As a result
of the processing of this same computer tool, mass consumption of fuels and CO2 emissions were
analyzed in driving tests for the given analyzed vehicle.

Keywords: computer simulation; vehicle; engine; biofuel; neural network

1. Introduction

The list below contains a set of the most important quantities used in the calculations
with the appropriate symbols and units (Table 1). The table below also lists the most
important abbreviations used in the manuscript.

The main idea conveyed in the concept of sustainable transport is to minimize the
harmful impact of transport means on the environment—both natural and that of large
urban agglomerations [1–3]. Taking into account the fact that the number of vehicles
travelling on roads increases every year, air pollution also increases [4–6]. It is the com-
position of the air-fuel mixture [7–10] that is one of the most important factors that affect
the content level of the three most dangerous substances in exhaust gases, i.e., carbon
dioxide, hydrocarbons, and nitrogen oxides. The automotive industry is facing enormous
challenges [11–15]. Market forecasts show that although combustion-engine cars are being
ousted by vehicles with electric motors, they are still leading in the sales results of large
automotive corporations [16–19]. As internal combustion engines have a huge share among
the emitters of pollutants to the atmosphere, a downward trend can be observed for the
volumes of diesel cars, which are being replaced by electric, petrol, and hybrid cars [20–22].
These tendencies result from increasingly restrictive exhaust emission standards [23–25].
The lowered exhaust emission limits are a challenge for motor designers and significantly
influence the development of internal combustion engines and their accessories. An addi-
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tional issue is the migration of car brands in the world and the standards that cars must
meet in a given region of the world [26–30].

Table 1. Abbreviations, symbols and units used in the manuscript.

Symbol Description Unit

EPA Environmental Protection Agency
FTP Federal Test Procedure

SFTP Supplemental Federal Test Procedure
HWFET Highway Fuel Economy Test Driving Schedule
MAC TP Mobile Air Conditioning Test Procedure
NEDC New European Driving Cycle
CADC Common Artemis Driving Cycles
WLTP Worldwide Harmonized Light-Duty Vehicle Test Procedure
FAME Fatty Acid Methyl Esters

ARTEMIS Assessment and Reliability of Transport Emission Models and Inventory Systems
UDC Urban Driving Cycle

EUDC Extra Urban Driving Cycle
EU European Union

RDE Real Driving Emissions
WLTC Worldwide Harmonized Light-Duty Vehicles Test Cycles
PSA Peugeot Société Anonyme
FCA Fiat Chrysler Automobiles

VECTO Vehicle Energy Consumption Calculation Tool
HDV Heavy Duty Vehicles

ASTM American Society for Testing and Material
nengine Engine rotational speed for the given gear number min–1

vvehicle Vehicle speed for the given gear number km/h
xi Input signals for the neuron

wi, ui, vi Weight values of neurons in individual layers
bi Polarity values of neurons in individual layers
yi Given learning values
di Values of network responses in the learning process

nengine Measured value of the engine rotational speed min–1
.

Fuel Measured value of the fuel flow g/s

Fueli real cycle
Mass of fuel consumed in the ith real road test

carried out by EPA (tests: US 06, US highway, FTP 75) kg

Fueli simul cycle
Mass of fuel consumed in the ith road test from

the developed simulation (tests: US 06, US highway, FTP 75) kg

Tengine The torque produced by the motor N·m
Cali Calorific value for i fuel J/kg
wi Mass fraction of ith fuel in the mixture kg/kg

CalDiesel Calorific value for diesel fuel J/kg
Cal Calorific value for other fuel J/kg
Ci Mass fraction of carbon in ith fuel kg/kg
wi Mass fraction of ith fuel in the mixture kg/kg

In its transport policy, the European Union has been trying for many years to find
a compromise between environmental, economic, and social priorities [31–34]. Vehicle
emissions to the atmosphere are controlled by increasingly stringent standards [35,36].
The introduced regulations allow to control the amount of emitted substances and are an
impulse for the development of low emission technologies [37–40].

The driving cycle is used to measure fuel consumption and CO2 and pollutant emis-
sions from passenger cars and light commercial vehicles in a standardized manner [41,42].
Currently, from a regulatory point of view, it is the only standardized way to analyze the
amount of pollutant emissions from vehicles. For this type of testing, chassis test bench
(a roller dynamometer station) are used. During the test, the exhaust gases are taken
from the vehicle’s exhaust pipe. The emission factors are then evaluated [43,44]. In the
case of commercial vehicles, only tests of the engine alone with the power transmission
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system are applied on an engine dynamometer [45,46]. A set of engine torque and speed
points are used for driving cycle analysis [47,48]. Modal tests are used (e.g., NEDC—New
European Driving Cycle) and transient driving cycles (e.g. FTP75—Federal Test Procedure,
ARTEMIS—Assessment and Reliability of Transport Emission Models and Inventory Sys-
tems). Modal cycles, as opposed to transition cycles, are defined by a set of accelerations
and constant velocities [49,50].

The driving tests and emission standards introduced concern new passenger cars.
They are subject to obligatory type-approval tests, including the determination of road
emissions of the vehicle [51,52]. Fuel consumption and pollutant emissions are affected
by, inter alia, driving patterns, traffic conditions, and weather conditions, which vary
from one geographical region to another. This makes it necessary to differentiate between
the existing driving tests worldwide [53,54]. The procedures in place take into account
the use of on-board systems (e.g., air conditioning) and urban and non-urban driving
patterns [55,56]. These cycles are mostly intended for light vehicles, passenger cars, and
those intended for heavy goods vehicles contain only information about engine operation
times at a given load [57–61].

In 1992, fuel consumption and exhaust emissions in the EU for light vehicles (with a
reference mass not exceeding 2610 kg) were measured using the New European Driving
Cycle that consisted of the UDC (Urban Driving Cycle) and the EUDC (Extra Urban
Driving Cycle) [62–64]. In the urban cycle, the car was accelerated (on the rollers of the
dynamometer) to an average speed of about 18 kph and the maximum speed did not exceed
50 kph. In the extra-urban cycle, the average speed was about 62 kph, and the maximum
speed was 120 kph, or 90 kph in the case of low capacity vehicles [65,66]. In the case of the
NEDC standard, the exhaust gas analysis was performed according to the constant volume
technique with the use of special measuring equipment [67–69].

Laboratory conditions turned out to be unsuitable for calculating the real values of
fuel consumption and exhaust emissions. Therefore, from September 2018, all exhaust
emissions of all new cars sold in the EU are measured according to the WLTP (World-
wide Harmonized Light Vehicles Test Procedure) and RDE (Real Driving Emissions) stan-
dards [70–74]. The WLTP was responsible for measurements in laboratory conditions,
and RDE for measurements of harmful substances directly on the road [75,76].

The WLTP uses the new Worldwide Harmonized Light-Duty Vehicles Test Cycles to
measure fuel consumption, CO2 emissions and pollutant emissions from passenger cars
and light commercial vehicles. It provides more realistic data, which better reflects the
daily use of the vehicle [77,78].

In the case of the WLTP standard, four speed ranges are measured on the dynamometer
after a cold start: up to 60 kph, up to 80 kph, up to 100 kph and above 130 kph. Within
each phase, accelerations and decelerations occur. The top speed is 10 kph higher than
that of the NEDC. The entire WLTP cycle takes approximately 30 min and the distance
covered is 23 km. Unlike the NEDC procedure, the WLTP takes into account additional
accessories that may affect weight, aerodynamics and electric energy consumption (idle
current) [79,80].

The MAC TP (Mobile Air Conditioning Test Procedure) cycle test procedure is used to
measure any additional fuel consumption and pollutant emissions caused by the operation
of the mobile air conditioning system (MAC) in a passenger car. The procedure was
developed for the needs of the European Commission in 2010 and involves physical testing
of the whole vehicle on a chassis dynamometer in an emission laboratory. The MAC test
cycle has a total of 6 phases [81,82].

The CADC (Common Artemis Driving Cycles) includes measurement procedures
performed on a chassis dynamometer, developed on the basis of real on-road runs by
ARTEMIS [83–85]. The CADC consists of three driving cycles: urban, extra-urban, and mo-
torway. The motorway test is divided into two variants: with maximum speeds of 130
and 150 kph. Artemis driving cycles assume appropriate gearshift sequences on the test
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vehicle [86–88]. The study was based on a statistical analysis of a database of real European
driving patterns [89,90].

In the USA, exhaust emissions from passenger cars and light trucks with diesel engines
are determined for a given vehicle in accordance with the Supplementary Federal Test
Procedure (SFTP) [91,92]. The SFTP consists of three test cycles: part of the FTP-75 (Federal
Test Procedure) chassis dynamometer cycle, the SFTP US06 aggressive high speed driving
cycle, and the SFTP SC03 high ambient temperature tests with air conditioning load [93–95].
The main feature of the FTP-75 cycle is the 17.77 km distance that the car must cover in
1874 s, with an average speed of 34.1 kph [96,97]. In turn, the SC03 procedure involves
testing the vehicle on a chassis dynamometer at an ambient temperature of 35 ◦C in order
to determine the emissions from the vehicle with the air conditioning device turned on
inside it. The vehicle covers the distance of 5.8 km [98,99] with an average speed of
34.8 kph within the 595 s of the test duration. The US06 SFTP procedure was developed to
supplement the FTP-75 test with car drive simulation (duration 595 s) in a more dynamic
manner (12.8 km distance) and at a higher speed (average speed 77.9 kph, top speed
129.2 kph) [100–102]. The HWFET (Highway Federal Extra Test) developed by the US
EPA (United States Environmental Protection Agency) is used to assess fuel consumption.
The entire test lasts 765 s, during which the vehicle covers a distance of 16.45 km, with an
average speed of 77.7 kph [103–105].

Last year, the maximum permissible average emission intensity of cars sold in the EU
was still 130 gCO2/km. Manufacturers did meet these requirements without any problems
(by reaching as low as 123 gCO2/km) [106,107]. On 1 January 2020, new regulations on
exhaust emission standards for new passenger cars came into force in the European Union.
Initially, only new cars (with a new type-approval) will have to comply with the new
standards, and from 2021 all vehicles sold will have to comply. The aim of those standards
is to eliminate cars emitting more than 95 g/km of CO2. This means that each passenger
car will not be able to burn more than 3.5 liters of fuel for every hundred kilometers
travelled. These will be the most stringent limits in the world. For comparison, in 2021
the US will have a limit of 125 gCO2/km, Japan will have 122 gCO2/km, and China
117 gCO2/km [108]. Diesel engines, on the other hand, will be completely banned from
passenger cars.

The above-mentioned goal is slightly different for each of the automakers—Daimler,
which traditionally produces larger and heavier cars, must meet the limit of 103 gCO2/km,
BMW has a 2 g lower limit, while concerns like PSA (Peugeot Société Anonyme ) (including
Peugeot) and FCA (Fiat Chrysler Automobiles) (e.g., Fiat), which traditionally produce
smaller cars, cannot exceed 91 gCO2/km.

Just two years ago, the EU decided to take the next steps—lowering the emission
targets for 2021 by 15% by 2025 and by 37.5% by 2030. If MEPs and member states follow
the Commission’s proposal, the 2030 target will be tightened to a 50% reduction compared
to the 2021 target, which would mean an average of 42.5 gCO2/km in 2030.

From the point of view of CO2 emissions, the use of biofuels is also important [109,110].
In Polish climatic conditions, the main source of plant esters is rapeseed oil [111].

The high cetane number theoretically allows it to be used directly as a fuel for diesel engines.
However, the modern diesel engine has been designed and improved for combustion of
mineral diesel fuel, which has different physicochemical properties. The use of crude
rapeseed oil (a mixture of triacylglycerols) requires a special adjustment of injection systems
and combustion chambers [112].

For many years, methyl esters of higher fatty acids (FAME) have also been used to
reduce the consumption of fuels from non-renewable sources in motor vehicles [113,114].
This kind of fuel is used in the form of a few percent solutions with conventional fuel or as
a standalone B100 fuel. Higher fatty acid methyl esters (FAME) are mainly obtained from
oils from various oil plants. However, both for environmental protection and economic
improvement purposes, used vegetable oils and some animal fats are also used in the
production of higher fatty acid methyl esters (FAME). Like conventional fuel, FAME is
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characterized by a tendency to solidify (crystallize) at low temperatures. This process
causes the fuel to lose its fluidity and become solidified.

Decreasing reserves of crude oil, increasing consumption of liquid fuels used in
transport, and increasing emissions of harmful components of exhaust gases into the
atmosphere force an intensive search for alternative sources of energy to be used in road
transport. Apart from bioethanol and rapeseed oil methyl esters, research is being carried
out on the possibilities of producing fuels from biomass (biobutanol), waste, and non-
food agricultural products of other bio-components. Biobutanol is obtained by anaerobic
fermentation similar to that of ethanol, but with the use of different microorganisms in
the process. Butanol is more energy-efficient than ethanol because it contains more carbon.
This alcohol can be obtained from by-products of the food industry and the pulp and paper
industry [115,116].

It should be emphasized that commonly used biocomponents such as bioethanol
and fatty acid methyl esters (FAME) are called first generation biofuels. According to
the EU policy, the emphasis in recent years has been placed on the development of new
technologies for the conversion of inedible and waste materials to second-generation
biofuels (e.g., from lignocellulosic waste) as well as third-generation biofuels from raw
materials derived from dedicated biological processes [117,118].

An example of a tool introduced by the European Commission to calculate CO2 emis-
sions and fuel consumption of HDVs (Heavy Duty Vehicles) is the VECTO (Vehicle Energy
Consumption Calculation Tool) simulation program [119]. The developed program uses
the results of measurements of the vehicle’s components influencing energy consumption
(the input data) and the results of the vehicle simulation under different driving condi-
tions [120]. Parameters constituting the input data of the program are, among others:
aerodynamic resistance, engine performance, torque losses in the powertrain, engine fuel
map, axle and transmission efficiency, power demand of auxiliary equipment, tire rolling
resistance. VECTO computes the fuel consumption in liters per 100 kilometers and the fuel
consumption per transported tonne kilometer, as well as the CO2 emissions.

The manuscript [121] proposes an integrated methodology for estimating bus emis-
sions from the fleet of vehicles of the Municipal Transport Company in Madrid. The
proposed solution uses both measured transport activity data and vehicle activity data
with specific emission models to calculate consumption and emissions for the bus fleet in
an urban area.

In the manuscript [122] biharmonic maps were used to predict the emission of NOx
(nitrogen oxides) and the relative fuel-air ratio of a city bus. The instrumented city bus
has been tested during actual passenger transport. The experimental results were con-
sistent with biharmonic maps predictions. Important parameters for prediction of NOx
concentration were vehicle speed and relative fuel-air ratio.

The aim of the paper was to build a computer tool that uses neural networks to
simulate drive tests. The constructed driving test simulator determines the amount of CO2
emissions and fuel demand for given input parameters and fuel type. There were 12 drive
tests analyzed in the paper, which are valid in different parts of the world.

2. Materials and Methods

As part of the project, a quantitative model of specific fuel consumption was prepared
as a function of rotational speed and torque of a diesel engine, based on data published
by EPA. Error backpropagation neural networks with the Levenberg–Marquardt learning
algorithm were used to build the quantitative model. Then, the input data for the driving
tests were prepared using the “Gearshift Calculation Tool” programme for the selected
vehicle [123].

The above activities were necessary to simulate the operation of the selected vehicle
in driving tests, in order to obtain the amount of CO2 emissions and fuel demand for the
fuels used (diesel oil, FAME, rapeseed oil, and butanol).

Table 2 below summarizes the basic properties of the fuels used [124–126].
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Table 2. Basic properties of fuels used in computer simulation.

Property Test Methods Diesel FAME Rapeseed Oil Butanol

Carbon content [%] 86.5 78.0 77.4 64.8
Hydrogen content [%] 13.4 12.0 11.4 13.5

Oxygen content [%] 0.0 10.0 11.2 21.6
Air demand [gair/gfuel] 14.5 12.5 12.5 11.2

Lower heating value [MJ/kg] ASTM D-240 44.0 37.1 37.5 33.0
Cinematic viscosity at 40 ◦C [mm2/s] ASTM D-445 2.8 3.8 36 3.6

Particulate matter content [mg/kg] DIN 51419 24 25 <25 22
Ash content [mg/kg] DIN ISO 6245 0.01 0.01 <0.01 0.01

Sulphur content [mg/kg] ASTM D5453 10 6.5 10 10
Water content [mg/kg] ASTM D1744 190 500 <1000 500

Phosphorus content [mg/kg] DIN 51 363T1 - 8.7 12 0.2

2.1. The Vehicle Used in Driving Tests

The development of the simulation model for driving tests was based on the 2013
Mercedes E350 BlueTEC vehicle research [127]. Table 3 below presents the most important
technical parameters of the vehicle and the factors necessary to be used in driving tests and
programs generating the required runs: vehicle speed, gear number, clutch engagement,
and pedal position.

Table 3. Parameters of the vehicle used in the tests for drive tests.

Parameter Description Unit

Vehicle (MY, Make, Model) 2013 Mercedes E350 -
Equivalent test mass 2041 kg

Rated power (declared) 195 kW
Rated engine speed (declared) 3800 min–1

Idling engine speed (declared) 600 min–1

Max vehicle speed(declared) 250 km/h
Number of gears 7 -

Ratio n/v_1, gear 1 87.72 h/(km·min)
Ratio n/v_2, gear 2 57.47 h/(km·min)
Ratio n/v_3, gear 3 38.61 h/(km·min)
Ratio n/v_4, gear 4 27.47 h/(km·min)
Ratio n/v_5, gear 5 20.08 h/(km·min)
Ratio n/v_6, gear 6 16.47 h/(km·min)
Ratio n/v_7, gear 7 14.62 h/(km·min)

Target Coeff f0 161.9 N
Target Coeff f1 0.8485 N/(km/h)
Target Coeff f2 0.02696 N/(km/h)2

The values of the Ratio n/v coefficient for individual gears were calculated on the
basis of the relationship allowing for data contained in [128]:

Ratio n/v = nengine/vvehicle [h/(km·min)] (1)

2.2. Neural Networks

The structures of the “Multilayer Feedforward Backpropagation Network” neural
network with approximating properties were used to build the neural model. The structure
of the neural network included non-linear activating functions f1(x) and f2(x) determined
by the dependencies in the hidden layers, and the output layer included a linear activating
function f3(x) in the form:

f1(x) =
2

1 + exp(−2 ∑n
i=1 wixi + bi)

(2)

f2(x) =
2

1 + exp(−2 ∑n
i=1 uixi + bi)

(3)
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f3(x) =
n

∑
i=1

vixi + bi (4)

The network learning process employed the Levenberg–Marquardt algorithm whose
basis is the optimization process by finding the minimum value of the objective function
defined as the mean value of the sum of squared differences between the current values of
the network output signals and the set values in the form:

∆ e2 =
1
m

m

∑
i=1

(di − yi)
2 (5)

Figure 1 shows a general schematic of the neural network structure that meets the
above dependencies. The “Neural Network Module Version 3.0” library in the Scilab 6.1.0
numerical software [129,130] was used to build the neural model.
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Figure 1. General schematic of the applied structure of the neural network.

2.3. Data for Building the Neural Model

The published data obtained during the 2013 Mercedes E350 vehicle tests on a chassis
dynamometer were used in the building of the neural model that enables the calculation of
the instantaneous value of the fuel flow as functions of: engine rotational speed, engine-
generated torque, gear number in the transmission, and vehicle speed [127]. In order to
remove from the measurement data the influence of rotational speed on the data values,
further calculations used the parameter of the amount of injected fuel per 1 work cycle,
which was calculated on the basis of the dependence:

Fuelcycle =
.

Fuel·0.12/nengine [kg/cycle] (6)

Figure 2 shows the set of points obtained during vehicle tests on a chassis dynamome-
ter, converted to the value of the amount of injected fuel per one injection cycle.
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2.4. Optimization of the Selection of the Structure of the Neural Network

In order to obtain a neural model characterized by the best degree of adjustment to the
research data published by EPA [127], a process of optimizing the selection of the neural
network structure was carried out, taking into account the change in the number of input
parameters: engine speed, engine torque, vehicle gear number, vehicle speed, and change
the number of hidden neurons. In the optimization process, a scalar objective function was
used in accordance with the dependence:

minimum

∑n
i=1

∣∣∣Fueli real cycle − Fueli simul cycle

∣∣∣
∑n

i=1 Fueli real cycle

 [kg] (7)

Figure 3 presents selected results of the optimization process for various tested net-
work structures which differ in the number of input parameters and the number of neurons
in the hidden layer, and which obtained the greatest degree of matching to the research
data in many iterations.
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Figure 3. Summary of learning results for the best-adjusted neural networks for the characteristic of
specific fuel consumption. The calculated relative error between the model and actual data: 2 inputs:
engine rotational speed, engine torque; 3rd input: vehicle gear number; 4th input: vehicle speed.
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The relative error was 4.7% for the selected neural network structure.
For the further stages of building a vehicle simulation in road tests, it was decided to

select a neural network structure with two inputs for the input signals: engine rotational
speed, engine torque, and 3 neurons in the hidden layer.

2.5. Theoretical Assumptions of the Model

The published test results on the chassis dynamometer were achieved using standard,
commercially available diesel fuel. The assumptions of the work done on the simulation of
the vehicle in driving tests included the introduction of a functionality that enabled the
determination of the consumption of other fuels used to power diesel engines. It is with the
use of the neural model, on the basis of the instantaneous values of the engine-generated
torque and the engine rotational speed, that the instantaneous values of the fuel stream for
diesel are obtained from the dependence:

.
FuelDiesel = fNet

(
nengine, Tengine

)
[kg/s] (8)

Then, the calorific value is calculated in the simulation, in the case of using a fuel other
than diesel or mixtures thereof, from the dependence:

Cal =
n

∑
i=1

wi·Cali [J/kg] (9)

The calculations assumed that, for the instantaneous load resulting from the rotational
engine speed and the engine-generated torque, a stream of another fuel must provide the
same amount of energy over time as in the case of diesel, and the efficiency of operation
in the case of an engine powered by other fuels is the same as for diesel fuel, for a given
calculation point. In this case, the instantaneous stream of fuels other than diesel is
calculated from the dependence:

.
Fuel =

.
FuelDiesel

CalDiesel
Cal

[kg/s] (10)

Figure 4 presents the flow of the instantaneous values of the specific fuel consumption
as a function of the engine rotational speed and the engine-generated torque for 4 types of
fuels used in the simulation (diesel, FAME, rapeseed oil, butanol).
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Figure 4. Model of specific fuel consumption characteristics built with the use of a neural network
and used in further simulations.

For the calculation of carbon dioxide emissivity, it was possible to calculate the mass
content of carbon in the analyzed fuel, based on the available information on the chemical
compositions of the individual components of the mixture, the mass content of the fuel
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in the mixture and the instantaneous fuel stream resulting from the engine operating
conditions using the dependence:

.
CO2 = 3.664

.
·Fuel·

n

∑
i=1

wi·Ci [kg/s] (11)

2.6. Driving Test Generator

Based on the collected data of operational parameters of the vehicle in question and
using the “Gearshift calculation tool” [123] application, runs for simulation control were
created for the following drive tests:

• US 06—The US06 (SFTP) [131,132]
• US highway—Highway Fuel Economy Driving Schedule (HWFET) [133,134]
• FTP 75—EPA Federal Test Procedure [135,136]
• NEDC—New European Driving Cycle (NEDC) [137,138]
• US SC03—The SC03 (SFTP) [139,140]
• Random Cycle Low (x05)—a test generated from a procedure in the WLTP Random

Cycle Generator tool [141,142]
• Random Cycle High (x95)—a test generated from a procedure in the WLTP Random

Cycle Generator tool [143,144]
• MAC TP cycle—mobile air conditioning (MAC) [145]
• CADC—Artemis cycle definitions, includes the following cycles: Urban, Rural Road,

Motorway [146,147]
• CADC without MOT (Motorway) —Artemis cycle definitions, includes the following

cycles: Urban, Rural Road. Does not include: Motorway [146,147]
• CADC abridged—Same as Artemis cycle definitions, includes the following cycles:

Urban, Rural Road, Motorway. The duration time has been shortened, similar to
CADC without MOT [146,147]

• WLTC 3b random (Worldwide Harmonized Light-duty Vehicles Test Cycles) —WLTP
for class 3 vehicles with the engine power above 34 W/kg [41,148].

After the complete information about the vehicle has been entered, the program
enables the generation of the necessary waveforms in the time domain, which enable the
determination of the instantaneous operating parameters of the analyzed programme.
Then, these waveforms were exported to the Excel file format. For further stages of the
simulation, the instantaneous waveforms of the following quantities were used: simulation
time [s]; engine rotational speed [rpm]; power generated by the engine [kW]; torque
generated by the engine [Nm]—a value calculated on the basis of engine rotational speed
and engine power; gear number [-]; vehicle speed [kph].

2.7. Simulator

Based on the analysis of the data created with the use of the “Gearshift Calculation
Tool” programme, the results of the process of optimization of the neural network structures
and the properties of the biofuels in question, a driving test simulator was developed in
Scilab 6.1.0. The simulator consists of blocks responsible for individual functionalities,
whose connection schematic is presented in Figure 5:

• Driving test generator from Excel files—responsible for loading files with data con-
trolling the selected driving test process from the spreadsheet created with the use
of the “Gearshift Calculation Tool” programme and for converting the read data to
formats compatible with Scilab 6.1.0. The following parameters are transferred to the
calculation modules of the simulation: engine speed, engine torque, vehicle speed,
simulation time;

• Model of specific Diesel consumption (neural)—this block calculates the instantaneous
values of Diesel mass flow and transfers this parameter to the next block, based on
the quantities characterizing the engine’s operating parameters: engine speed, engine
torque and the prepared neural network structure;
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• Calculations of fuel and CO2 mass flows—this block is responsible for calculating the
streams of the biofuels in question necessary to power the engine in the driving test,
using the diesel mass flow parameter and the fuel calorific value characteristic for the
given fuel in question, calculated in the previous block. This block also calculates the
carbon dioxide emission stream using the carbon mass content in the fuel and the
instantaneous fuel stream;

• Calculation of driving test parameters—on the basis of the driving test parameters,
this block calculates the distance travelled by the vehicle during the test, the power
generated by the engine and the mechanical energy generated during the test.

Energies 2021, 14, x FOR PEER REVIEW 11 of 31 
 

 

determination of the instantaneous operating parameters of the analyzed programme. 

Then, these waveforms were exported to the Excel file format. For further stages of the 

simulation, the instantaneous waveforms of the following quantities were used: simula-

tion time [s]; engine rotational speed [rpm]; power generated by the engine [kW]; torque 

generated by the engine [Nm]—a value calculated on the basis of engine rotational speed 

and engine power; gear number [-]; vehicle speed [kph]. 

2.7. Simulator 

Based on the analysis of the data created with the use of the “Gearshift Calculation 

Tool” programme, the results of the process of optimization of the neural network struc-

tures and the properties of the biofuels in question, a driving test simulator was developed 

in Scilab 6.1.0. The simulator consists of blocks responsible for individual functionalities, 

whose connection schematic is presented in Figure 5: 

 Driving test generator from Excel files—responsible for loading files with data con-

trolling the selected driving test process from the spreadsheet created with the use of 

the “Gearshift Calculation Tool” programme and for converting the read data to for-

mats compatible with Scilab 6.1.0. The following parameters are transferred to the 

calculation modules of the simulation: engine speed, engine torque, vehicle speed, 

simulation time; 

 Model of specific Diesel consumption (neural)—this block calculates the instantane-

ous values of Diesel mass flow and transfers this parameter to the next block, based 

on the quantities characterizing the engine’s operating parameters: engine speed, en-

gine torque and the prepared neural network structure; 

 Calculations of fuel and CO2 mass flows—this block is responsible for calculating the 

streams of the biofuels in question necessary to power the engine in the driving test, 

using the diesel mass flow parameter and the fuel calorific value characteristic for the 

given fuel in question, calculated in the previous block. This block also calculates the 

carbon dioxide emission stream using the carbon mass content in the fuel and the 

instantaneous fuel stream; 

 Calculation of driving test parameters—on the basis of the driving test parameters, 

this block calculates the distance travelled by the vehicle during the test, the power 

generated by the engine and the mechanical energy generated during the test. 

 

Figure 5. General schematic of the driving tests, including biofuels. 
 

Figure 5. General schematic of the driving tests, including biofuels.

3. Results

The following are the processes of independent simulations of a selected 2013 Mer-
cedes E350 vehicle in the applied driving tests with fuels changing (Diesel, FAME, rapeseed
oil, butanol):

• the results of the simulation work for the processed data from EPA tests, which are
learning models for the neural network

• the results of the driving test simulator for the prepared drive tests (the “Gearshift
Calculation Tool” programme) in the form of graphs of the vehicle speed, distance
travelled, engine rotational speed, engine torque, engine power, and mechanical
energy consumed during the test

• the simulation results for the stream and final fuel consumption
• the simulation results for the stream and carbon dioxide emissions for selected driving

tests and selected fuels for the 2013 Mercedes E350 vehicle
• the results of the fuel consumption and CO2 emissivity per 1 km of the distance

travelled by the vehicle in the tests and per 1 kWh of the generated mechanical energy
power in the test.

3.1. Simulation Work Results for Processed EPA Test

In order to verify the correct operation of the drive test simulator, the published data
were used from actual vehicle tests carried out by EPA. The input data was transformed
in such a way that they can be entered into the simulator. As a result of the simulator’s
work, the instantaneous values of the key simulation parameters were obtained, which are
presented in the figures below (Figure 6) [122].
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Figure 6. The results of the simulation work for the processed data from EPA tests for the 2013 Mercedes E350 vehicle:
(a) Waveforms of the instantaneous vehicle speed values; (b) Waveforms of the instantaneous values of the distance travelled
by the vehicle; (c) Waveforms of the instantaneous vehicle engine speed values; (d) Waveforms of the instantaneous values
of torque generated by the vehicle engine; (e) Waveforms of the instantaneous values of the fuel stream powering the vehicle
engine; (f) Waveforms of the instantaneous fuel consumption values for the vehicle; (g) Waveforms of the instantaneous
values of power generated by the vehicle’s engine; (h) Waveforms of the instantaneous values of mechanical energy
generated by the vehicle engine.

3.2. Simulation Work Results for the Introduced Driving Tests

On the basis of the prepared input data, using the “Gearshift Calculation Tool” pro-
gramme, simulations were carried out of selected driving tests for the vehicle in question.
Figure 7 below shows the waveforms of the instantaneous vehicle speed values in the test.
These waveforms indicate large variability of this parameter in simulated tests, including
the mean values, the dynamics of changes and the distribution of the values over time. The
simulated tests were also characterized by high variability of the time of execution.
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Figure 7. Results obtained in the simulation of selected road tests for the 2013 Mercedes E350 vehicle: (a) Waveforms of the
instantaneous vehicle speed values; (b) Waveforms of the instantaneous values of the distance travelled by the vehicle.

Figure 8 below shows the waveforms of the instantaneous values of the travelled
distance in the tests considered in the simulation.

Energies 2021, 14, x FOR PEER REVIEW 14 of 31 
 

 

Figure 7. Results obtained in the simulation of selected road tests for the 2013 Mercedes E350 vehicle: (a) Waveforms of 

the instantaneous vehicle speed values; (b) Waveforms of the instantaneous values of the distance travelled by the vehicle. 

Figure 8 below shows the waveforms of the instantaneous values of the travelled 

distance in the tests considered in the simulation.  

Other input parameters for the driving test simulator were the instantaneous values 

of the engine rotational speed and the torque generated by the engine, whose waveforms 

are presented below. 

 

(a) 

 

(b) 

Figure 8. Results obtained in the simulation of selected road tests for the 2013 Mercedes E350 vehicle: (a) Waveforms of 

the instantaneous values of the vehicle engine rotational speed; (b) Waveforms of the instantaneous values of the torque 

generated by the vehicle engine. 

In the developed driving test simulator, the instantaneous values of the power gen-

erated by the engine and the mechanical energy consumed during the test were calcu-

lated. Figure 9 shows the waveforms of these parameters. 

 

(a) 

 

(b) 

Figure 9. Results obtained in the simulation of selected road tests for the 2013 Mercedes E350 vehicle: (a) Waveforms of 

the instantaneous values of power generated by the engine; (b) Waveforms of the instantaneous values of mechanical 

energy generated by the vehicle engine. 

3.3. Simulation Results for the Stream and Final Fuel Consumption for Selected Driving Tests 

and Fuels 

On the basis of the diesel oil stream values calculated in the simulator, including the 

calorific values of the fuels in question, the instantaneous values of these fuels’ streams 

Figure 8. Results obtained in the simulation of selected road tests for the 2013 Mercedes E350 vehicle: (a) Waveforms of
the instantaneous values of the vehicle engine rotational speed; (b) Waveforms of the instantaneous values of the torque
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Other input parameters for the driving test simulator were the instantaneous values
of the engine rotational speed and the torque generated by the engine, whose waveforms
are presented below.

In the developed driving test simulator, the instantaneous values of the power gener-
ated by the engine and the mechanical energy consumed during the test were calculated.
Figure 9 shows the waveforms of these parameters.
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3.3. Simulation Results for the Stream and Final Fuel Consumption for Selected Driving Tests
and Fuels

On the basis of the diesel oil stream values calculated in the simulator, including the
calorific values of the fuels in question, the instantaneous values of these fuels’ streams
and their mass consumption were calculated for the tests in question. The figures below
summarize the obtained waveforms of the instantaneous values of fuel streams and the
mass consumption of fuels in a given driving test in question (Figure 10).
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Figure 10. Results of the simulation of the stream and final fuel consumption for selected driving tests and selected fuels
for the 2013 Mercedes E350 vehicle: (a) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s
engine, obtained in the simulation of the US 06 road test; (b) Waveforms of the instantaneous values of fuel consumption
for the vehicle, obtained in the simulation of the US 06 road test; (c) Waveforms of the instantaneous values of the fuel
stream powering the vehicle’s engine, obtained in the simulation of the US highway road test; (d) Waveforms of the
instantaneous values fuel consumption values for the vehicle, obtained in the US highway test simulation; (e) Waveforms of
the instantaneous values of the fuel stream powering the vehicle’s engine, obtained in the simulation of the FTP 75 road test;
(f) Waveforms of the instantaneous values of fuel consumption for the vehicle, obtained in the simulation of the FTP 75 road
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test; (g) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s engine, obtained in the simulation
of the NEDC road test; (h) Waveforms of the instantaneous values of fuel consumption for the vehicle, obtained in the
simulation of the NEDC road test; (i) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s
engine, obtained in the simulation of the US SC03 road test; (j) Waveforms of the instantaneous values of fuel consumption
for the vehicle, obtained in the simulation of the US SC03 road test; (k) Waveforms of the instantaneous values of the fuel
stream powering the vehicle’s engine, obtained in the simulation of the Random Cycle Low (x05) road test; (l) Waveforms
of the instantaneous values of fuel consumption for the vehicle, obtained in the simulation of the Random Cycle Low (x05)
road test; (m) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s engine, obtained in the
simulation of the Random Cycle High (x95) road test; (n) Waveforms of the instantaneous values of the fuel consumption for
the vehicle, obtained in the simulation of the Random Cycle High (x95) road test; (o) Waveforms of the instantaneous values
of the fuel stream powering the vehicle’s engine, obtained in the simulation of the MAC TP cycle road test; (p) Waveforms
of the instantaneous values of fuel consumption for the vehicle, obtained in the simulation of the MAC TP cycle road test;
(q) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s engine, obtained in the simulation
of the CADC road test; (r) Waveforms of the instantaneous values of fuel consumption for the vehicle, obtained in the
simulation of the CADC road test; (s) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s
engine, obtained in the simulation of the CADC without MOT road test; (t) Waveforms of the instantaneous values of
fuel consumption for the vehicle, obtained in the simulation of the CADC without MOT road test; (u) Waveforms of the
instantaneous values of the fuel stream powering the vehicle’s engine, obtained in the simulation of the CADC shortened
road test; (v) Waveforms of the instantaneous values of fuel consumption for the vehicle, obtained in the simulation of the
CADC shortened road test; (w) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s engine,
obtained in the simulation of the WLTC 3b random road test; (x) Waveforms of the instantaneous values of fuel consumption
for the vehicle, obtained in the simulation of the WLTC 3b random road test.

3.4. The Results of the Simulation of Carbon Dioxide Flux and Emission for Selected Driving Tests
and Fuels

As a result of the vehicle simulation processes carried out for selected driving tests,
taking into account various fuels, the instantaneous values of the carbon dioxide flux and
its emissivity during the test were obtained. The figures below (Figure 11) show the results
of the simulator’s work in the form of carbon dioxide streams and its emissivity, taking
into account the fuels considered for individual simulated tests.

Energies 2021, 14, x FOR PEER REVIEW 18 of 31 
 

 

stream powering the vehicle’s engine, obtained in the simulation of the US highway road test; (d) Waveforms of the in-

stantaneous values fuel consumption values for the vehicle, obtained in the US highway test simulation; (e) Waveforms 

of the instantaneous values of the fuel stream powering the vehicle’s engine, obtained in the simulation of the FTP 75 road 

test; (f) Waveforms of the instantaneous values of fuel consumption for the vehicle, obtained in the simulation of the FTP 

75 road test; (g) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s engine, obtained in the 

simulation of the NEDC road test; (h) Waveforms of the instantaneous values of fuel consumption for the vehicle, obtained 

in the simulation of the NEDC road test; (i) Waveforms of the instantaneous values of the fuel stream powering the vehi-

cle’s engine, obtained in the simulation of the US SC03 road test; (j) Waveforms of the instantaneous values of fuel con-

sumption for the vehicle, obtained in the simulation of the US SC03 road test; (k) Waveforms of the instantaneous values 

of the fuel stream powering the vehicle’s engine, obtained in the simulation of the Random Cycle Low (x05) road test; (l) 

Waveforms of the instantaneous values of fuel consumption for the vehicle, obtained in the simulation of the Random 

Cycle Low (x05) road test; (m) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s engine, 

obtained in the simulation of the Random Cycle High (x95) road test; (n) Waveforms of the instantaneous values of the 

fuel consumption for the vehicle, obtained in the simulation of the Random Cycle High (x95) road test; (o) Waveforms of 

the instantaneous values of the fuel stream powering the vehicle’s engine, obtained in the simulation of the MAC TP cycle 

road test; (p) Waveforms of the instantaneous values of fuel consumption for the vehicle, obtained in the simulation of the 

MAC TP cycle road test; (q) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s engine, 

obtained in the simulation of the CADC road test; (r) Waveforms of the instantaneous values of fuel consumption for the 

vehicle, obtained in the simulation of the CADC road test; (s) Waveforms of the instantaneous values of the fuel stream 

powering the vehicle’s engine, obtained in the simulation of the CADC without MOT road test; (t) Waveforms of the 

instantaneous values of fuel consumption for the vehicle, obtained in the simulation of the CADC without MOT road test; 

(u) Waveforms of the instantaneous values of the fuel stream powering the vehicle’s engine, obtained in the simulation of 

the CADC shortened road test; (v) Waveforms of the instantaneous values of fuel consumption for the vehicle, obtained 

in the simulation of the CADC shortened road test; (w) Waveforms of the instantaneous values of the fuel stream powering 

the vehicle’s engine, obtained in the simulation of the WLTC 3b random road test; (x) Waveforms of the instantaneous 

values of fuel consumption for the vehicle, obtained in the simulation of the WLTC 3b random road test. 

3.4. The Results of the Simulation of Carbon Dioxide Flux and Emission for Selected Driving 

Tests and Fuels 

As a result of the vehicle simulation processes carried out for selected driving tests, 

taking into account various fuels, the instantaneous values of the carbon dioxide flux and 

its emissivity during the test were obtained. The figures below (Figure 11) show the results 

of the simulator’s work in the form of carbon dioxide streams and its emissivity, taking 

into account the fuels considered for individual simulated tests. 

 

(a) 

 

(b) 

Figure 11. Cont.



Energies 2021, 14, 266 18 of 30
Energies 2021, 14, x FOR PEER REVIEW 19 of 31 
 

 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

Figure 11. Cont.



Energies 2021, 14, 266 19 of 30
Energies 2021, 14, x FOR PEER REVIEW 20 of 31 
 

 

 

(k) 

 

(l) 

 

(m) 

 

(n) 

 

(o) 

 

(p) 

 

(q) 

 

(r) 

Figure 11. Cont.



Energies 2021, 14, 266 20 of 30Energies 2021, 14, x FOR PEER REVIEW 21 of 31 
 

 

 

(s) 

 

(t) 

 

(u) 

 

(v) 

 

(w) 

 

(x) 

Figure 11. The results of the simulation of the carbon dioxide stream and emission for selected driving tests and fuels for 

the 2013 Mercedes E350 vehicle: (a) Waveforms of the instantaneous values of the carbon dioxide emission stream pro-

duced by the vehicle engine, obtained in the simulation of the US 06 road test; (b) Waveforms of the instantaneous values 

of the carbon dioxide emission produced by the vehicle engine, obtained in the simulation of the US 06 road test; (c) 

Waveforms of the instantaneous values of the carbon dioxide emission stream produced by the vehicle engine, obtained 

in the simulation of the US Highway road test; (d) Waveforms of the instantaneous values of the carbon dioxide emission 

produced by the vehicle engine, obtained in the simulation of the US Highway road test; (e) Waveforms of the instanta-

neous values of the carbon dioxide emission stream produced by the vehicle engine, obtained in the simulation of the FTP 

75 road test; (f) Waveforms of the instantaneous values of the carbon dioxide emission produced by the vehicle engine, 

obtained in the simulation of the FTP 75 road test; (g) Waveforms of the instantaneous values of the carbon dioxide emis-

sion stream produced by the vehicle engine, obtained in the simulation of the NEDC road test; (h) Waveforms of the 

instantaneous values of the carbon dioxide emission produced by the vehicle engine, obtained in the simulation of the US 

06 road test; (i) Waveforms of the instantaneous values of the carbon dioxide emission stream produced by the vehicle 

engine, obtained in the simulation of the US SC03 road test; (j) Waveforms of the instantaneous values of the carbon 

dioxide emission produced by the vehicle engine, obtained in the simulation of the US SC03 road test; (k) Waveforms of 

the instantaneous values of the carbon dioxide emission stream produced by the vehicle engine, obtained in the simulation 

of the Random Cycle Low road test (x05); (l) Waveforms of the instantaneous values of the carbon dioxide emission pro-

duced by the vehicle engine, obtained in the simulation of the Random Cycle Low road test (x05); (m) Waveforms of the 

Figure 11. The results of the simulation of the carbon dioxide stream and emission for selected driving tests and fuels for
the 2013 Mercedes E350 vehicle: (a) Waveforms of the instantaneous values of the carbon dioxide emission stream produced
by the vehicle engine, obtained in the simulation of the US 06 road test; (b) Waveforms of the instantaneous values of the
carbon dioxide emission produced by the vehicle engine, obtained in the simulation of the US 06 road test; (c) Waveforms of
the instantaneous values of the carbon dioxide emission stream produced by the vehicle engine, obtained in the simulation
of the US Highway road test; (d) Waveforms of the instantaneous values of the carbon dioxide emission produced by the
vehicle engine, obtained in the simulation of the US Highway road test; (e) Waveforms of the instantaneous values of
the carbon dioxide emission stream produced by the vehicle engine, obtained in the simulation of the FTP 75 road test;
(f) Waveforms of the instantaneous values of the carbon dioxide emission produced by the vehicle engine, obtained in
the simulation of the FTP 75 road test; (g) Waveforms of the instantaneous values of the carbon dioxide emission stream
produced by the vehicle engine, obtained in the simulation of the NEDC road test; (h) Waveforms of the instantaneous
values of the carbon dioxide emission produced by the vehicle engine, obtained in the simulation of the US 06 road test;
(i) Waveforms of the instantaneous values of the carbon dioxide emission stream produced by the vehicle engine, obtained in
the simulation of the US SC03 road test; (j) Waveforms of the instantaneous values of the carbon dioxide emission produced
by the vehicle engine, obtained in the simulation of the US SC03 road test; (k) Waveforms of the instantaneous values of the
carbon dioxide emission stream produced by the vehicle engine, obtained in the simulation of the Random Cycle Low road
test (x05); (l) Waveforms of the instantaneous values of the carbon dioxide emission produced by the vehicle engine, obtained
in the simulation of the Random Cycle Low road test (x05); (m) Waveforms of the instantaneous values of the carbon dioxide
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emission stream produced by the vehicle engine, obtained in the simulation of the Random Cycle High road test (x95);
(n) Waveforms of the instantaneous values of the carbon dioxide emission produced by the vehicle engine, obtained in the
simulation of the Random Cycle High (x95) road test; (o) Waveforms of the instantaneous values of the carbon dioxide
emission stream produced by the vehicle engine, obtained in the simulation of the MAC TP road test; (p) Waveforms of
the instantaneous values of the carbon dioxide emission produced by the vehicle engine, obtained in the simulation of
the MAC TP road test; (q) Waveforms of the instantaneous values of the carbon dioxide emission stream produced by the
vehicle engine, obtained in the simulation of the CADC road test; (r) Waveforms of the instantaneous values of the carbon
dioxide emission produced by the vehicle engine, obtained in the simulation of the CADC road test; (s) Waveforms of the
instantaneous values of the carbon dioxide emission stream produced by the vehicle engine, obtained in the simulation of
the CADC without MOT road test; (t) Waveforms of the instantaneous values of the carbon dioxide emission produced by
the vehicle engine, obtained in the simulation of the CADC without MOT road test; (u) Waveforms of the instantaneous
values of the carbon dioxide emission stream produced by the vehicle engine, obtained in the simulation of the CADC
shortened road test; (v) Waveforms of the instantaneous values of the carbon dioxide emission produced by the vehicle
engine, obtained in the simulation of the CADC shortened road test; (w) Waveforms of the instantaneous values of the
carbon dioxide emission stream produced by the vehicle engine, obtained in the simulation of the WLTC 3b random road
test; (x) Waveforms of the instantaneous values of the carbon dioxide emission produced by the vehicle engine, obtained in
the simulation of the WLTC 3b road test.

4. Discussion

A computer simulation is an economical and time-effective alternative to replace costly
road tests. It is especially important in the early stages of the product line development
cycle. The driving cycle is only an approximation of the vehicle operating conditions on the
road. It is performed on a chassis dynamometer. The vehicle is immobilized throughout
the test. By applying a load by means of rollers, usually connected to electrical machines,
the axles of the vehicle are driven. Road loads (aerodynamics, inertia) must be simulated
by a dynamometer.

The developed computer tool is used to analyze fuel consumption and CO2 emissions
in the context of driving tests and the fuels used.

Figure 12 presents the results of the simulator work for the fuels in question and
driving tests in the form of the fuel consumption parameter per one kilometer travelled
in the test. For diesel, the minimum value was reached at the level of 44 g/km for the
US highway driving test, while the maximum value was obtained at the Random Cycle
High (x95) test (69.8 g/km). In the case of the biofuels in question, this parameter indicates
an increase in the biofuel demand in the simulated tests in relation to diesel fuel. For
these biofuels, the increase in relation to diesel fuel approximately amounted to: rapeseed
oil—16%, FAME—19%, butanol—33%. The main reason for the increase in the engine’s
demand for biofuels is their much lower calorific value in relation to diesel oil.

Figure 13 presents the results of the simulator work for the fuels and driving tests in
question, in the form of the carbon dioxide emission parameter per one kilometer travelled
in the test. For diesel, the minimum value was achieved at the level of 140 g/km for the
US highway test, while the maximum value was obtained at the Random Cycle High (x95)
test (221 g/km). In the case of the biofuels in question, the changes in the values of carbon
dioxide emissions per one kilometer of the distance travelled in relation to diesel oil were
approximately: rapeseed oil—4%, FAME—7.2%, butanol—–0.2%. The main reason for
the changes in the carbon dioxide emissivity of these fuels in relation to diesel oil is their
chemical composition.
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Figure 12. Summary of fuel mass consumption in tests per 1 kilometer: 1—Random Cycle High (x95); 2—FTP 75; 3—US
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Figure 13. Summary of carbon dioxide emissions in tests per 1 kilometer: 1—Random Cycle High (x95); 2—FTP 75; 3—US
SC03; 4—US 06; 5—NEDC; 6—CADC; 7—WLTC 3b random; 8—CADC without MOT; 9—CADC shortened; 10—Random
Cycle Low (x05); 11—MAC TP cycle; 12—US highway.

Figure 14 shows the data obtained from the simulations of driving tests, including
biofuels, in the form of the mass consumption parameter of a given fuel per unit of me-
chanical energy produced (1 kilowatt hour). For diesel, the minimum value was achieved
at the level of 297 g/kWh for the Random Cycle High (x95) driving test, while the maxi-
mum value was obtained for the FTP 75 test (434 g/kWh). In the case of the biofuels in
question, the changes in the values of carbon dioxide emissions per one kilometer of the
distance travelled in relation to diesel fuel approximately amounted to: rapeseed oil—16%,
FAME—19%, butanol—33%.
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Figure 14. Summary of fuel mass consumption in tests per 1 kilowatt hour: 1—FTP 75; 2—NEDC; 3—Random Cycle Low
(x05); 4—US SC03; 5—CADC without MOT; 6—WLTC 3b random; 7—MAC TP cycle; 8—US highway; 9—CADC shortened;
10—CADC; 11—US 06; 12—Random Cycle High (x95).

Figure 15 presents the results of the simulator work for the considered fuels and
driving tests in the form of the carbon dioxide emission parameter per unit of mechanical
energy produced (1 kilowatt hour). For diesel, the minimum value was achieved at
942 g/kWh for the Random Cycle High (x95) driving test, while the maximum value
was obtained for the FTP 75 (x95) test (g/kWh). In the case of the biofuels in question,
the changes in the values of carbon dioxide emissions per one kilometer of the distance
travelled in relation to diesel oil were approximately: rapeseed oil—4%, FAME—7.2%,
butanol—–0.2%.

Energies 2021, 14, x FOR PEER REVIEW 24 of 31 
 

 

 

Figure 14. Summary of fuel mass consumption in tests per 1 kilowatt hour: 1—FTP 75; 2—NEDC; 3—Random Cycle Low 

(x05); 4—US SC03; 5—CADC without MOT; 6—WLTC 3b random; 7—MAC TP cycle; 8—US highway; 9—CADC short-

ened; 10—CADC; 11—US 06; 12—Random Cycle High (x95). 

Figure 15 presents the results of the simulator work for the considered fuels and driv-

ing tests in the form of the carbon dioxide emission parameter per unit of mechanical en-

ergy produced (1 kilowatt hour). For diesel, the minimum value was achieved at 942 

g/kWh for the Random Cycle High (x95) driving test, while the maximum value was ob-

tained for the FTP 75 (x95) test (g/kWh). In the case of the biofuels in question, the changes 

in the values of carbon dioxide emissions per one kilometer of the distance travelled in 

relation to diesel oil were approximately: rapeseed oil—4%, FAME—7.2%, butanol—–0.2%. 

 

Figure 15. Summary of carbon dioxide emissions in tests for 1 kilowatt hour: 1—FTP 75; 2—NEDC; 3—Random Cycle 

Low (x05); 4—US SC03; 5—CADC without MOT; 6—WLTC 3b random; 7—MAC TP cycle; 8—US highway; 9—CADC 

shortened; 10—CADC; 11—US 06; 12—Random Cycle High (x95). 

5. Conclusions 

The paper presents a computer tool for simulating driving tests valid in the European 

Union and outside it (e.g., in the USA), developed in the Scilab 6.1.0 program. The devel-

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

F
u

el
 [

g
/k

W
h

]

Diesel Rapeseed Oil FAME Butanol

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12

C
O

2
[g

/k
W

h
]

Diesel Rapeseed Oil FAME Butanol

Figure 15. Summary of carbon dioxide emissions in tests for 1 kilowatt hour: 1—FTP 75; 2—NEDC; 3—Random Cycle Low
(x05); 4—US SC03; 5—CADC without MOT; 6—WLTC 3b random; 7—MAC TP cycle; 8—US highway; 9—CADC shortened;
10—CADC; 11—US 06; 12—Random Cycle High (x95).

5. Conclusions

The paper presents a computer tool for simulating driving tests valid in the European
Union and outside it (e.g., in the USA), developed in the Scilab 6.1.0 program. The
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developed simulator uses the data created with the use of the “Gearshift Calculation Tool”
programme, the results from the process of optimization of the neural network structures
and the properties of the biofuels in question.

• There were 12 drive tests analyzed in this study. These tests differed from one another
in terms of the distance required to be covered by the car during the test and the
speed achieved. An additional parameter was the inclusion of the additional fuel
consumption and pollutant emissions caused by the operation of the mobile air
conditioning system.

• The neural model used in the developed computer tool made it possible to calculate
the instantaneous value of the fuel stream as a function of the engine rotational speed,
the torque generated by the engine, the gear number in the transmission and the
vehicle speed. The data obtained during the 2013 Mercedes E350 vehicle tests on a
chassis dynamometer were used for its construction.

• Multilayer Feedforward Backpropagation Neural Networks with approximating prop-
erties were used to build the neural model. The Levenberg–Marquardt algorithm
was used in the network learning process. The relative error for the selected neural
network structure was 4.7%.

• Taking into account the consumption of a given fuel per kilometer in the test for diesel
fuel, the minimum value was achieved at the level of 44 g/km for the US Highway
driving test. The diesel maximum value was achieved in the Random Cycle High
(x95) driving test (69.8 g/km). In the case of the biofuels used, the demand was higher
in relation to diesel oil: rapeseed oil—16%, FAME—19%, butanol—33%. This was due
to the generally lower calorific value of biofuels.

• When analyzing the emission of carbon dioxide per kilometer for diesel fuel, the
minimum value was achieved at 140 g/km for the US Highway driving test, while
the maximum value was achieved in the Random Cycle High (x95) test (221 g/km).
In the case of the analyzed biofuels, the emission of carbon dioxide per one kilometer
of the distance travelled in relation to diesel fuel was as follows: rapeseed oil—4%,
FAME—7.2%, butanol—–0.2%.

• From the point of view of the parameter of the mass consumption of fuel per unit of
mechanical energy generated (1 kilowatt hour) for diesel fuel, the minimum value
achieved in the simulation test was 297 g/kWh for the Random Cycle High drive test
(x95), while the maximum value was obtained for the FTP 75 test (434 g/kWh).

• However, when analyzing the emission of carbon dioxide per unit of mechanical
energy generated (1 kilowatt hour) for diesel, the minimum value was 942 g/kWh for
the Random Cycle High driving test (x95) and the maximum value was obtained for
the FTP 75 (x95) test (g/kWh). The changes in the values of carbon dioxide emissions
per one kilometer of the distance travelled in relation to diesel fuel were as follows:
rapeseed oil—4%, FAME—7.2%, butanol—–0.2%.

The aim of the research was to obtain information, generated by a constructed com-
puter tool using neural networks to simulate driving tests, about CO2 emissions when
using different fuels. Therefore, in the manuscript, the author focused on building a so-
lution which is a computer simulation that would allow to estimate the instantaneous
consumption of the various fuels used so as to provide an equal amount of chemical
energy contained in the fuels at later stages, in which part of this energy is converted into
work. Taking into account the chemical composition of the fuel (including the share of
carbon, hydrogen, oxygen) and according to the chemical reactions of the fuel combustion
processes, the momentary values of the CO2 stream are calculated.

The manuscript uses the test results of the Mercedes E350 published by the EPA as a
basis for building a computer simulation. Analyses of the work of the developed ALPHA
EPA solution made it possible to put forward a hypothesis that it is possible to obtain
a quantitative model of specific fuel consumption as a function of engine speed, torque
generated by the engine, transmission ratio using neural networks with a reverse error
propagation algorithm Levenberg–Marquardt learning algorithm characterized by a high
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degree of matching to research data. The proposed solution will enable in future research
work to develop simplified models for many vehicles and to build large structures to
simulate the emissivity and fuel consumption of many vehicles in urban and extra-urban
driving conditions, which could affect critical areas of roads with high traffic intensity and
its impact on the environment. Learning processes of many neural network structures were
carried out, resulting in satisfactory accuracy of quantitative models, comparable to other
research projects.

The developed neural model is only a part of the simulation, the results of which are
presented in the manuscript. The simulation also has elements that allow for engine calcu-
lations based on vehicle dynamics, calculations based on loads corresponding to rolling
losses and aerodynamic loads of a moving vehicle in accordance with the assumptions
made by the EPA in real driving tests.
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