Scenario Analysis for Selecting Sewage Sludge-to-Energy/Matter Recovery Processes
Abstract
:1. Introduction
- To convert the undesirable constituents into less dangerous substances (e.g., dead microorganisms, precipitates, or inorganic carbon);
- To recover energy/matter from sewage sludge;
- To reduce or eliminate the water in raw SS. Unprocessed sludge contains about 85–95% water; this leads to higher costs of raw SS processing, handling, and transportation [11].
- Which key drivers affect the choice of the SSTP configuration to be adopted?
- Is it possible to provide a preliminary evaluation of the technological options of the SSTP to ensure a more efficient SS management from an economic and environmental perspective?
2. A Literature Review on Sludge-to-Energy/Matter Recovery Processes
2.1. Literature Review on Sludge-to-Energy (StE) Processes
2.2. Performance Measures of Energy Recovery
2.3. Literature Review on Sludge-to-Matter (StM) Processes
2.4. Performance Measures of Matter Recovery
3. Selecting Technological Options in a Sewage Sludge Treatment Plant
3.1. The Sewage Sludge Treatment System (SSTS)
3.2. Economic and Environmental Background of SSTS
3.3. Technological Options
3.4. Scenario Analysis for Selecting Technological Options for a SSTP
Input Variables to the Scenario Analysis for the Selection of Treatments of a SSTP
- Plant capacity (PC): it represents the number of equivalent inhabitants to be served by the plant. Five classes of PE are identified.
- Secondary WWT (SWWT) performed in WWTP: it represents the type of secondary treatment adopted in the WWTP (upstream process for SSTPs), which affects the quality and quantity of SS to be treated. The first wastewater treatment considered (SWWT1) is the chemical treatment; the second possible treatment (SWWT2) is the activated sludges treatment.
- Lime utilization (LIME): it represents the adoption of lime as the main reagent within the secondary chemical treatment. The first option considered is the use of other reagents instead of lime within the secondary chemical treatment (LIME1), while the second option is represented by lime within the same phase (LIME2).
- WWT plant (WWTP): this variable represents the configuration of the sludge line. Two configurations are considered: the first one is on a “single line” (option WWTP1) where the primary and the secondary SS are processed together on the same plant. The second one is identified as “separated lines” (option WWTP2); in this case, two different lines are adopted to treat the primary and secondary SS;
- Organic load from the WWTP (OL): the variable represents the content of the soluble and particulate organic matter in water treated from the WWTP. It is given by the ratio between the amount of the load of BOD5 (F, kg BOD5) over the total mass of the mixed liquor volatile suspended solids (MLVSS, kg), per unit time (T, day)
4. Results and Discussions
4.1. Plant Capacity #1 (Max 5000 PE)
- a secondary treatment by activated sludges, i.e., SWWT = SWWT2.
- OL ≤ 0.1 (kg BOD5/(kg MLVSS × d), i.e., OL = OL1.
4.2. Plant Capacity #2 (5000 < PE ≤ 10,000)
- a chemical secondary treatment (SWWT = SWWT1).
- the use of lime in the secondary treatment (LIME = LIME2).
- LIME = LIME1, i.e., lime was not used as the main reagent during the secondary treatment.
- an activated sludges secondary treatment, i.e., SWWT = SWWT2.
- OL ≤ 0.1 (kg BOD5)/(kg MLVSS × d), i.e., OL = OL1.
- OL > 0.1 (kg BOD5)/(kg MLVSS × d), i.e., OL = OL2.
4.3. Plant Capacity #3 (10,000 < PE ≤ 20,000)
- a chemical secondary treatment (SWWT = SWWT1).
- the use of lime within the secondary treatment (LIME = LIME2).
- LIME = LIME1, i.e., lime was not used as the main reagent during the secondary treatment.
- an activated sludges secondary treatment, i.e., SWWT = SWWT2.
- OL ≤ 0.1 (kg BOD5)/(kg MLVSS × d), i.e., OL = OL1.
- a single sludge line configuration (WWTP = WWTP1).
- an activated sludges secondary treatment, i.e., SWWT = SWWT2.
- OL ≤ 0.1 (kg BOD5)/(kg MLVSS × d), i.e., OL = OL1.
- a separated sludge line configuration (WWTP = WWTP2).
4.4. Plant Capacity #4 (20,000 < PE < 100,000)
4.5. Plant Capacity #5 (PE ≥ 100,000)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | Meaning |
---|---|
#1 | Plant capacity [0, 5000] PE |
#2 | Plant capacity [5000, 10,000] PE |
#3 | Plant capacity [10,000, 20,000] PE |
#4 | Plant capacity [20,000, 100,000] PE |
#5 | Plant capacity [100,000, +∞] PE |
AD | Anaerobic digestion |
Al | Aluminum |
ALWA | Artificial lightweight aggregates |
As | Arsenic |
Ca | Calcium |
Cd | Cadmium |
CE | Circular economy |
CH4 | Methane |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
Comp | Composting |
Cr | Chromium |
CRM | Critical raw material |
Cu | Copper |
Dew1 | Drying beds dewatering |
Dew2 | Filter press dewatering |
Dew3 | Belt press dewatering |
Dewi | Dewatering |
DM | Dry matter |
ERA | Environmental risk assessment |
Fe | Iron |
FeCl3 | Ferric chloride |
Fin1 | Spreading of not dewatered sludge on agricultural land |
Fin2 | Spreading of dewatered sludge on agricultural land |
Fin3 | Incineration |
Fini | Final recovery |
GHG | Greenhouse gas |
H2S | Hydrogen sulfide |
HTC | Hydrothermal carbonization |
ISSA | Incineration sewage sludge ash |
K | Potassium |
LCA | Life cycle assessment |
LCC | Life cycle costing |
LIME | Lime utilization |
LIME1 | Not lime utilization during chemical secondary treatment |
LIME2 | Lime utilization during chemical secondary treatment |
Mg | Magnesium |
Mn | Manganese |
N | Nitrogen |
N2 | Dinitrogen |
N2O | Nitrous oxide |
NEW | Nutrients-energy-water |
Ni | Nickel |
O2 | Dioxygen |
OL | Organic load |
OL1 | Organic load 0.1 |
OL2 | Organic load 0.1 |
P | Phosphorus |
Pb | Plumbum |
PC | Plant capacity |
PE | Population equivalent |
PSSC | Pyrolysis sewage sludge char |
S | Sulfur |
SBAs | Sewage sludge-based adsorbents |
SS | Sewage sludge |
SSTP | Sewage Sludge treatment plant |
SSTS | Sewage sludge treatment system |
Sta1 | Lime stabilization |
Sta2 | Aerobic digestion |
Sta3 | Anaerobic digestion |
Sta4 | Anaerobic digestion for primary sludge, aerobic digestion for secondary sludge |
Stai | Stabilization |
StE | Sludge-to-energy |
StM | Sludge-to-matter |
SWOT | Strengths, weaknesses, opportunities, and threats |
SWWT | Secondary wastewater treatment |
SWWT1 | Chemical secondary treatment |
SWWT2 | Activated sludges secondary treatment |
ThDry | Thermal drying |
Thick1 | Thickening in sedimentation |
Thick2 | Gravity thickening |
Thick3 | Dissolved air flotation |
Thick4 | Gravity thickening for primary sludge, Gravity belt thickening for secondary sludge |
Thicki | Thickening |
WWT | Wastewater treatment |
WWTP | Wastewater treatment plant |
WWTP1 | Single sludge line configuration |
WWTP2 | Separated sludge line configuration |
Z | Zinc |
Element | ISSA Composition [mg/kg] |
---|---|
P | 53 |
N | 400.5 |
K | 8252.5 |
Ca | 101.3 |
Mg | 13.7 |
Mn | 675.5 |
Fe | 44 |
Ni | 117.5 |
Cu | 1593.5 |
As | 30 |
Cd | 4 |
Cr | 115 |
Pb | 672.5 |
Al | 33.6 |
References
- Rorat, A.; Courtois, P.; Vandenbulcke, F.; Lemiere, S. Sanitary and environmental aspects of sewage sludge management. In Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery, 1st ed.; Prasad, M.N.V., de Campos Favas, P.J., Vithanage, M., Mohan, S.V., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 155–180. [Google Scholar]
- European Commission. Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Smol, M.; Adam, C.; Preisner, M. Circular economy model framework in the European water and wastewater sector. J. Mater. Cycles Waste Manag. 2020, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gherghel, A.; Teodosiu, C.; de Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, A.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Karaca, C.; Sözen, S.; Orhon, D.; Okutan, H. High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery. Waste Manag. 2018, 78, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Oladejo, J.; Shi, K.; Luo, X.; Yang, G.; Wu, T. A review of sludge-to-energy recovery methods. Energies 2019, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Maslon, A.; Czarnota, J.; Szaja, A.; Szulzyk-Cieplak, J.; Lagod, G. The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies 2020, 13, 6056. [Google Scholar] [CrossRef]
- Świechowski, K.; Hnat, M.; Stępień, P.; Stegenta-Dąbrowska, S.; Kugler, S.; Koziel, J.A.; Białowiec, A. Waste to energy: Solid fuel production from biogas plant digestate and sewage sludge by torrefaction-process kinetics, fuel properties, and energy balance. Energies 2020, 13, 3161. [Google Scholar] [CrossRef]
- Sfez, S.; de Meester, S.; Vlaeminck, S.E.; Dewulf, J. Improving the resource footprint evaluation of products recovered from wastewater: A discussion on appropriate allocation in the context of circular economy. Resour. Conserv. Recycl. 2019, 148, 132–144. [Google Scholar] [CrossRef]
- Bratina, B.; Sorgo, A.; Kramberger, J.; Ajdnik, U.; Zemljic, L.F.; Ekart, J.; Safaric, R. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management. J. Environ. Manag. 2016, 183, 1009–1025. [Google Scholar] [CrossRef]
- Li, H.; Jin, C.; Zhang, Z.; O’Hara, I.; Mundree, S. Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways. Energy 2017, 126, 649–657. [Google Scholar] [CrossRef]
- Bień, J.D.; Bień, B. Sludge Thermal Utilization, and the Circular Economy. Civ. Environ. Eng. Rep. 2019, 29, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Tsybina, A.; Wuensch, C. Analysis of sewage sludge thermal treatment methods in the context of circular economy. Detritus 2018, 2, 3–15. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Werle, S.; Sobek, S. Gasification of sewage sludge within a circular economy perspective: A Polish case study. Environ. Sci. Pollut. Res. 2019, 26, 35422–35432. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, S.; Bernardi, G.; Callegari, A.; Dondi, D.; Capodaglio, A.G. Biochar production from sewage sludge and microalgae mixtures: Properties, sustainability and possible role in circular economy. Biomass Convers. Biorefinery 2019, 1–11. [Google Scholar] [CrossRef]
- Thorin, E.; Olsson, J.; Schwede, S.; Nehrenheim, E. Co-digestion of sewage sludge and microalgae—Biogas production investigations. Appl. Energy 2018, 227, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Gaur, R.Z.; Khoury, O.; Zhoar, M.; Poverenov, E.; Darzi, R.; Laor, Y.; Posmanik, R. Hydrothermal carbonization of sewage sludge coupled with anaerobic digestion: Integrated approach for sludge management and energy recycling. Energy Convers. Manag. 2020, 224, 113353. [Google Scholar] [CrossRef]
- Shen, Y.; He, C.; Chen, X.; Lapkin, A.A.; Xiao, W.; Wang, C.H. Nitrogen Removal and Energy Recovery from Sewage Sludge by Combined Hydrothermal Pretreatment and CO2 Gasification. ACS Sustain. Chem. Eng. 2018, 6, 16629–16636. [Google Scholar] [CrossRef]
- Zhai, Y.; Peng, C.; Xu, B.; Wang, T.; Li, C.; Zeng, G.; Zhu, Y. Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling. Energy 2017, 127, 167–174. [Google Scholar] [CrossRef]
- Wang, R.; Wang, C.; Zhao, Z.; Jia, J.; Jin, Q. Energy recovery from high-ash municipal sewage sludge by hydrothermal carbonization: Fuel characteristics of biosolid products. Energy 2019, 186, 115848. [Google Scholar] [CrossRef]
- Singh, V.; Phuleria, H.C.; Chandel, M.K. Estimation of energy recovery potential of sewage sludge in India: Waste to watt approach. J. Clean. Prod. 2020, 276, 122538. [Google Scholar] [CrossRef]
- Paolini, V.; Petracchini, F.; Carnevale, M.; Gallucci, F.; Perilli, M.; Esposito, G.; Segreto, M.; Garanti Occulti, L.; Scaglione, D.; Ianniello, A.; et al. Characterisation and cleaning of biogas from sewage sludge for biomethane production. J. Environ. Manag. 2018, 217, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, A.; Magaril, E.; Magaril, R.; Panepinto, D.; Ravina, M.; Zanetti, M.C. Towards circular economy: Evaluation of sewage sludge biogas solutions. Resources 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Nsair, A.; Cinar, S.O.; Alassali, A.; Qdais, H.A.; Kuchta, K. Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies 2020, 13, 3761. [Google Scholar] [CrossRef]
- Almomani, F. Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network. Fuel 2020, 280, 118573. [Google Scholar] [CrossRef]
- Varol, A.; Ugurlu, A. Comparative evaluation of biogas production from dairy manure and co-digestion with maize silage by CSTR and new anaerobic hybrid reactor. Eng. Life Sci. 2017, 17, 402–412. [Google Scholar] [CrossRef]
- van der Merwe-Botha, M.; Juncker, K.; Visser, A. Guiding Principles in the Design and Operation of a Wastewater Sludge Digestion Plant with Biogas and Power Generation: Report to the Water Research Commission, 16 of WRC; Water Research Commission: Pretoria, South Africa, 2016. [Google Scholar]
- Hao, X.; Chen, Q.; van Loosdrecht, M.C.M.; Li, J.; Jiang, H. Sustainable disposal of excess sludge: Incineration without anaerobic digestion. Water Res. 2020, 170, 115298. [Google Scholar] [CrossRef]
- Karagiannidis, A.; Samaras, P.; Kasampalis, T.; Perkoulidis, G.; Ziogas, P.; Zorpas, A. Evaluation of sewage sludge production and utilization in Greece in the frame of integrated energy recovery. Desalination Water Treat. 2011, 33, 185–193. [Google Scholar] [CrossRef]
- Metcalf, W. Metcalf and Eddy Wastewater Engineering: Treatment and Reuse. In Wastewater Engineering: Treatment and Reuse; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Havukainen, J.; Nguyen, M.T.; Hermann, L.; Horttanainen, M.; Mikkila, M.; Deviatkin, I.; Linnanen, L. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Manag. 2016, 49, 221–229. [Google Scholar] [CrossRef]
- Kleemann, R.; Chenoweth, J.; Clift, R.; Morse, S.; Pearce, P.; Saroj, D. Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC). Waste Manag. 2017, 60, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Cieślik, B.; Konieczka, P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of ‘no solid waste generation’ and analytical methods. J. Clean. Prod. 2017, 42, 1728–1740. [Google Scholar] [CrossRef]
- Shaddel, S.; Bakhtiary-Davijany, H.; Kabbe, C.; Dadgar, F.; Østerhus, S.W. Sustainable sewage sludge management: From current practices to emerging nutrient recovery technologies. Sustainability 2019, 11, 3435. [Google Scholar] [CrossRef] [Green Version]
- Gorazda, K.; Tarko, B.; Werle, S.; Wzorek, Z. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction. Waste Manag. 2018, 73, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Guedes, P.; Couto, N.; Mateus, E.P.; Ribeiro, A.B. Phosphorus Recovery in Sewage Sludge by Electrokinetic Based Technologies: A Multivariate and Circular Economy View. Waste Biomass Valorization 2017, 8, 1587–1596. [Google Scholar] [CrossRef]
- Horttanainen, M.; Deviatkin, I.; Havukainen, J. Nitrogen release from mechanically dewatered sewage sludge during thermal drying and potential for recovery. J. Clean. Prod. 2017, 142, 1819–1826. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Exploring technological alternatives of nutrient recovery from digestate as a secondary resource. Renew. Sustain. Energy Rev. 2020, 134, 110379. [Google Scholar] [CrossRef]
- Lu, W.; Ye, R.; Ming, Z.; Pan, C.; Abbas, Y.; Stegmann, R.; Wang, H. Performance Evaluation in Composting of Sewage Sludge with Different Bulking Agents. J. Environ. Eng. 2020, 146, 05020002. [Google Scholar] [CrossRef]
- Rehana, M.R.; Joseph, B.; Gladis, R. Heavy Metal Stabilization in Sewage Sludge Composting Process. Curr. J. Appl. Sci. Technol. 2020, 39, 38–48. [Google Scholar] [CrossRef]
- Gorazda, K.; Tarko, B.; Wzorek, Z.; Kominko, H.; Nowak, A.K.; Kulczycka, J.; Henclick, A.; Smol, M. Fertilisers production from ashes after sewage sludge combustion—A strategy towards sustainable development. Environ. Res. 2017, 154, 171–180. [Google Scholar] [CrossRef]
- Kasina, M.; Wendorff-Belon, M.; Kowalski, P.R.; Michalik, M. Characterization of incineration residues from wastewater treatment plant in Polish city: A future waste based source of valuable elements? J. Mater. Cycles Waste Manag. 2019, 21, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Romero-Güiza, M.S.; Mata-Alvarez, J.; Rivera, J.M.C.; Garcia, S.A. Nutrient recovery technologies for anaerobic digestion systems: An overview. Revista Ion 2016, 29, 7–26. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Matsumoto, T.; Zhang, L.; Liu, B. Study on the Quantitative Evaluation of Greenhouse Gas (GHG) Emissions in Sewage-Sludge Treatment System. In EcoDesign and Sustainability II. Sustainable Production, Life Cycle Engineering and Management; Kishita, Y., Matsumoto, M., Inoue, M., Fukushige, S., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Buonocore, E.; Mellino, S.; de Angelis, G.; Liu, G.; Ulgiati, S. Life cycle assessment indicators of urban wastewater and sewage sludge treatment. Ecol. Indic. 2018, 94, 13–23. [Google Scholar] [CrossRef]
- Harder, R.; Peters, G.M.; Molander, S.; Ashbolt, N.J.; Svanström, M. Including pathogen risk in life cycle assessment: The effect of modelling choices in the context of sewage sludge management. Int. J. Life Cycle Assess. 2016, 21, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Gourdet, C.; Girault, R.; Berthault, S.; Richard, M.; Tosoni, J.; Pradel, M. In quest of environmental hotspots of sewage sludge treatment combining anaerobic digestion and mechanical dewatering: A life cycle assessment approach. J. Clean. Prod. 2017, 143, 1123–1136. [Google Scholar] [CrossRef]
- Lombardi, L.; Nocita, C.; Bettazzi, E.; Fibbi, D.; Carnevale, E. Environmental comparison of alternative treatments for sewage sludge: An Italian case study. Waste Manag. 2017, 69, 365–376. [Google Scholar] [CrossRef]
- Gretzschel, O.; Schmitt, T.G.; Hansen, J.; Siekmann, K.; Jakob, J. Sludge digestion instead of aerobic stabilization—A cost benefit analysis based on experiences in Germany. Water Sci. Technol. 2014, 69, 430–437. [Google Scholar] [CrossRef]
- Jenicek, P.; Bartacek, J.; Kutil, J.; Zabranska, J.; Dohanyos, M. Potentials and limits of anaerobic digestion of sewage sludge: Energy self-sufficient municipal wastewater treatment plant? Water Sci. Technol. 2012, 66, 1277–1281. [Google Scholar] [CrossRef]
StE Treatment | Energy Product | References |
---|---|---|
Anaerobic Digestion | Biogas | Gherghel et al. [4] Li et al. [12] Oladejo et al. [7] Singh et al. [23] |
Co-digestion of SS with non-sludge organic wastes | Biogas | Gherghel et al. [4] Thorin et al. [18] |
Co-pyrolysis of SS and microalgae | Biochar | Bolognesi et al. [17] |
Gasification | Biochar Syngas | Bien and Bien [13] Gao et al. [15] Gherghel et al. [4] Oladejo et al. [7] Tsybina and Wuensch [14] Werle and Sobek [16] |
Hydrothermal carbonization (HTC) of sewage sludge coupled with AD | Biogas | Gaur et al. [19] |
Hydrothermal carbonization (HTC) with CO2 gasification | Syngas | Shen et al. [20] |
Hydrothermal carbonization of high-ash | Hydrochar | Wang et al. [22] |
Hydrothermal carbonization of SS with other biomass | Hydrochar | Zhai et al. [21] |
Incineration | Flue gases | Bien and Bien [13] Gao et al. [15] Oladejo et al. [7] Singh et al. [23] Tsybina and Wuensch [14] |
Pyrolysis | Biochar Bio-oil Biogas | Bien and Bien [13] Gao et al. [15] Karaca et al. [6] Oladejo et al. [7] Tsybina and Wuensch [14] |
Supercritical water processing | Heat self-consumed in the process Electricity | Gherghel et al. [4] |
Thermal pre-treatments to enhance energy recovery in AD | Biogas | Gherghel et al. [4] |
StM Treatment | Matter Recovered/ Product Obtained | References |
---|---|---|
AD | Nutrients | Barampouti et al. [40] |
AirPrex ® | P | Gherghel et al. [4] |
AshDec ® | P | Gherghel et al. [4] Havukainen et al. [33] |
Calcium phosphate precipitation | P | Shaddel et al. [36] |
Composting | Nutrients | Lu et al. [41] Rehana et al. [42] |
Co-pyrolysis of SS and microalgae | Biochar | Bolognesi et al. [17] |
Electro dialysis from incineration SS ash (ISSA) | P | Cieslik et al. [35] |
Electrokinetic based processes | P | Guedes et al. [38] |
Extraction using mineral or organic acids from ISSA | P | Cieslik et al. [35] |
Gasification | P Heavy metals | Gherghel et al. [4] Gorazda et al. [37] Tsybina and Wuensch [14] Werle and Sobek [16] |
Hydrothermal treatments | Protein | Gherghel et al. [4] |
Incineration | P | Gorazda et al. [43] Kleemann et al. [34] Tsybina and Wuensch [14] |
Microwave treatment | Heavy metals SBAs | Gherghel et al. [4] |
PHOSPAQ ® | P | Gherghel et al. [4] |
Phosphiric acid production | P | Shaddel et al. [36] |
Precipitation of phosphoric minerals from SS and leachates | P | Cieslik et al. [35] |
Pyrolysis | SBAs Nutrients Heavy metals | Gherghel et al. [4] Kleemann et al. [34] Tsybina and Wuensch [14] |
Seaborne ® | P | Gherghel et al. [4] |
Struvite precipitation | P | Shaddel et al. [36] |
Thermal drying | N | Horttananinen et al. [39] |
Thermal solidification-artificial lightweight aggregates (ALWA) | Building materials | Gherghel et al. [4] |
Ultrasonication | Heavy metals Protein Enzymes | Gherghel et al. [4] |
Vitrification-GlassPack | Glass | Gherghel et al. [4] |
Input Variables [Unit of Measurement] | Range of Variability |
---|---|
PC [PE] | #1: [0, 5000] PE #2: [5000, 10,000] PE #3: [10,000, 20,000] PE #4: [20,000, 100,000] PE #5: [100,000, +∞] PE |
SWWT [#] | SWWT1: chemical treatment SWWT2: activated sludges |
LIME [#] | LIME1: not Lime LIME2: Lime |
WWTP [#] | WWTP1: single line WWTP2: separated lines |
OL [] | OL1: OL 0.1 OL2: OL 0.1 |
ID Scenario | Initial Scenario | Sewage Sludge Treatment Plant Configuration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC [PE] | SWWT [#] | LIME [#] | OL | WWTP | Thick | Sta | Dew | Comp | ThDry | Fin | StE | StM | |
1 | #1 | SWWT2 | - | OL1 | - | Thick1 | no | no | no | no | Fin1 | no | yes |
2 | #1 | SWWT2 | - | OL2 | - | Thick1 | Sta2 | no | no | no | Fin1 | no | yes |
3 | #1 | SWWT1 | LIME2 | - | - | Thick1 | Sta1 | no | no | no | Fin1 | no | yes |
4 | #1 | SWWT1 | LIME1 | - | - | Thick1 | Sta2 | no | no | no | Fin1 | no | yes |
5 | #2 | SWWT1 | LIME2 | - | - | Thick2 | Sta1 | Dew1 | no | no | Fin2 | no | yes |
6 | #2 | SWWT1 | LIME1 | - | - | Thick2 | Sta2 | Dew1 | yes | no | Fin2 | no | yes |
7 | #2 | SWWT2 | - | OL1 | - | Thick2 | no | Dew1 | yes | no | Fin2 | no | yes |
8 | #2 | SWWT2 | - | OL2 | - | Thick2 | Sta2 | Dew1 | yes | no | Fin2 | no | yes |
9 | #3 | SWWT1 | LIME2 | - | - | Thick3 | Sta1 | Dew2 | no | no | Fin2 | no | yes |
10 | #3 | SWWT1 | LIME1 | - | - | Thick3 | Sta2 | Dew2 | yes | no | Fin2 | no | yes |
11 | #3 | SWWT2 | - | OL1 | WWTP1 | Thick2 | no | Dew3 | yes | no | Fin2 | no | yes |
12 | #3 | SWWT2 | - | OL2 | WWTP1 | Thick2 | Sta2 | Dew3 | yes | no | Fin2 | no | yes |
13 | #3 | SWWT2 | - | OL1 | WWTP2 | Thick4 | no | Dew3 | yes | no | Fin2 | no | yes |
14 | #3 | SWWT2 | - | OL2 | WWTP2 | Thick4 | Sta2 | Dew3 | yes | no | Fin2 | no | yes |
15 | #4 | SWWT1 | LIME2 | - | - | Thick3 | Sta1 | Dew2 | no | no | Fin2 | yes | yes |
16 | #4 | SWWT1 | LIME1 | - | - | Thick3 | Sta3 | Dew2 | yes | no | Fin2 | yes | yes |
17 | #4 | SWWT2 | - | OL1 | WWTP1 | Thick2 | no | Dew3 | yes | no | Fin2 | yes | yes |
18 | #4 | SWWT2 | - | OL2 | WWTP1 | Thick2 | Sta3 | Dew3 | yes | no | Fin2 | yes | yes |
19 | #4 | SWWT2 | - | OL1 | WWTP2 | Thick4 | no | Dew3 | yes | no | Fin2 | yes | yes |
20 | #4 | SWWT2 | - | OL2 | WWTP2 | Thick4 | Sta4 | Dew3 | yes | no | Fin2 | yes | yes |
21 | #5 | SWWT1 | LIME2 | - | - | Thick3 | Sta1 | Dew2 | no | yes | Fin3 | yes | yes |
22 | #5 | SWWT1 | LIME1 | - | - | Thick3 | Sta3 | Dew2 | no | yes | Fin3 | yes | yes |
23 | #5 | SWWT2 | - | OL1 | WWTP1 | Thick2 | no | Dew2 | no | yes | Fin3 | yes | yes |
24 | #5 | SWWT2 | - | OL2 | WWTP1 | Thick2 | Sta3 | Dew2 | no | yes | Fin3 | yes | yes |
25 | #5 | SWWT2 | - | OL1 | WWTP2 | Thick4 | no | Dew2 | no | yes | Fin3 | yes | yes |
26 | #5 | SWWT2 | - | OL2 | WWTP2 | Thick4 | Sta4 | Dew2 | no | yes | Fin3 | yes | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facchini, F.; Mummolo, G.; Vitti, M. Scenario Analysis for Selecting Sewage Sludge-to-Energy/Matter Recovery Processes. Energies 2021, 14, 276. https://doi.org/10.3390/en14020276
Facchini F, Mummolo G, Vitti M. Scenario Analysis for Selecting Sewage Sludge-to-Energy/Matter Recovery Processes. Energies. 2021; 14(2):276. https://doi.org/10.3390/en14020276
Chicago/Turabian StyleFacchini, Francesco, Giovanni Mummolo, and Micaela Vitti. 2021. "Scenario Analysis for Selecting Sewage Sludge-to-Energy/Matter Recovery Processes" Energies 14, no. 2: 276. https://doi.org/10.3390/en14020276
APA StyleFacchini, F., Mummolo, G., & Vitti, M. (2021). Scenario Analysis for Selecting Sewage Sludge-to-Energy/Matter Recovery Processes. Energies, 14(2), 276. https://doi.org/10.3390/en14020276