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Abstract: The gravel packing completion method for horizontal wells has the advantages of main-
taining high oil production for a long time, maintaining wellbore stability, and preventing sand
production, so it has become the preferred completion method for horizontal wells. At present, this
technology still faces the problems of high sand bed height and poor gravel migration. In order
to improve the efficiency of gravel packing in horizontal wells, pulsed gravel packing technology
for horizontal wells is proposed for the first time. Based on the mechanism of hydraulic pulse, the
Eulerian-Eulerian model, k-¢ model based on the renormalization group theory (RNG k-e model),
and Fluent are used to simulate the solid-liquid two-phase flow. By optimizing the parameters such as
frequency and amplitude of pulse waveform, the optimal pulse waveform of pulsed gravel packing in
horizontal wells is determined. The effects of parameters such as sand-carrying fluid displacement,
sand-carrying fluid viscosity, sand-carrying ratio, gravel particle size, and string eccentricity on pulsed
gravel packing in horizontal wells are studied, and the distribution law of gravel migration velocity
and volume fraction in horizontal wells is obtained. According to the results, it can be seen that
with the increase of displacement and viscosity of carrier fluid, the volume fraction of fixed bed and
moving bed decreases gradually, while that of suspension bed increases gradually. With the increase
of sand-carrying ratio, gravel particle size, and string eccentricity, the volume fraction of fixed bed
and moving bed increases gradually, while that of suspended bed decreases gradually. Comparing
the effects of conventional gravel packing and pulsed gravel packing in horizontal wells, it can be
concluded that the efficiency of pulsed gravel packing in horizontal wells is higher. The volume
fraction of fixed bed and moving bed decreased by 30% and 40% respectively, while the volume
fraction of suspended bed increased by 20%. The migration velocity of moving bed and suspended
bed increased by 40% and 25%, respectively, and the migration ability of gravel improved obviously.

Keywords: horizontal well; pulsed gravel packing; completion; solid-liquid two-phase flow

1. Introduction

With the rapid development of the petroleum industry, the advantages and remarkable
economic benefits of using horizontal wells to exploit oil and gas fields have been paid
more attention by all countries in the world, especially the exploitation of offshore oil
fields with horizontal wells, which has a broader application prospect [1,2]. The gravel
packing completion method for horizontal wells has the advantages of maintaining high
production of oil wells, maintaining wellbore stability, and preventing sand production
from the formation for a long time [3]. Especially for unconsolidated sandstone reservoirs
with severe sand production, the gravel packing completion method for horizontal wells is
a sand control completion technology with good effect, which has become the preferred
completion method in modern oil wells [4]. However, the sand bed plugging problem
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still exists in gravel packing operation of horizontal wells, which hinders the large-scale
application of gravel packing technology in horizontal wells.

For the above problems, scholars have conducted a lot of research on the gravel
packing technology of horizontal wells. Forrest [5] established a gravel packing simulation
experiment device to carry out experiments on the gravel packing process in the annulus
of highly deviated wells and horizontal wells. Maly et al. [6] developed a gravel packing
tool that can be used for vertical wells and inclined wells through laboratory experiments.
A two-layer flow model of solid-liquid two-phase horizontal pipe flow was proposed by
Doron et al. [7,8], who considered that the lower part of the horizontal pipeline is flowing
sand bed and the upper part is suspension. However, the disadvantage of this model is
that the sand bed is supposed to be movable, which makes it hard to predict the formation
of stationary sand bed. In order to overcome the shortcomings of the two-layer flow
model, Doron and Barnea [9] proposed a three-layer flow model of solid-liquid two-phase
flow, which divided the pipe flow into three layers: suspension, flowing sand bed, and
stationary sand bed. This model could predict the formation of stationary sand bed and the
concentration distribution of solid particles in suspension. Gruesbeck et al. [10] proposed
the concept of “equilibrium bank” for the first time based on the results of laboratory gravel
packing experiments and established mathematical models for inclined and horizontal
wells under the condition of complete packing. This model can calculate the equilibrium
height of sand bed, but it is not suitable for the condition of premature plugging. Peden
et al. [11-13] used the semi-empirical formula to analyze the experimental data of gravel
packing in horizontal wells and found that the main factors affecting the packing efficiency
were the diameter of the wellbore annulus, the density of the sand-carrying fluid, and
the diameter of punching pipe. Since the calculation accuracy of the empirical formula
depended on experimental data and experimental conditions, the calculation results of
this model were not stable. Wahlmeier and Andrews [14] divided the wellbore into many
tiny units along the axis based on the finite difference method and proposed a quasi
three-dimensional mathematical model of gravel packing in horizontal wells. Chen [15]
compared three critical velocities according to the research results of Penberthy [16,17], and
obtained the height range of x wave during gravel packing process. Osisanya et al. [18]
studied the sensitivity factors of gravel packing in the horizontal well and proposed a
method for selecting parameters such as the diameter of wash pipe, solid concentration, the
viscosity of sand-carrying fluid, and the flow rate of sand-carrying fluid. Based on the finite
volume method, Nguyen et al. [19] described the flow process of solid-liquid two-phase
flow in the axial and radial direction by using three-dimensional numerical simulation.
Martins et al. [20] proposed a mathematical model to calculate the « wave deposition
height based on the two-layer flow model of solid-liquid two-phase flow. Based on the
solid-liquid two-phase flow theory, Pu [21] established an intelligent calculation system for
gravel packing in horizontal wells, which considered formation leakage. Ojo et al. [22,23]
established a three-dimensional mathematical model of gravel packing in horizontal wells
under the influence of multiple factors and predicted the balanced height of sand bed
during gravel packing process in horizontal wells. When Dong et al. [24-26] conducted a
numerical simulation study on the gravel packing process in horizontal wells, they took
into account the influences of sand-carrying fluid filtration to the formation and fluid mass
exchange between wellbore annulus and scrubber annulus on gravel packing. They not
only set up the mass conservation equation and momentum conservation equation of the
gravel and sand-carrying fluid for two independent flow systems of wellbore annulus and
scour annulus, but also set up the flow coupling equation of each system.

To sum up, the current research on gravel packing in horizontal wells mainly focuses
on laboratory tests and numerical simulation of conventional gravel packing. There
are no reports about research on pulsed gravel packing in horizontal wells. In the on-
site construction process of conventional gravel packing in horizontal wells, it is often
encountered that the height of the balance sand bank is too high, which causes the pipe



Energies 2021, 14, 292

30f18

string to be blocked. There is an urgent need for a new gravel packing method in horizontal
wells to improve gravel migration and increase the success rate of field operations.

In this paper, the pulsed gravel packing method for horizontal wells is proposed for the
first time. This method based on the mechanism of hydraulic pulse, the Eulerian-Eulerian
model, RNG k-e model, and Fluent are used to simulate the solid-liquid two-phase flow.
By optimizing the parameters such as frequency and amplitude of pulsed gravel packing
in horizontal wells, the best pulse waveform is obtained. Furthermore, the influences of
the sand-carrying fluid displacement, the sand-carrying fluid viscosity, sand-carrying ratio,
the gravel diameter and the string eccentricity on gravel packing in horizontals well are
studied. Comparing with conventional gravel packing, it is found that the pulsed gravel
packing method in horizontal wells reduces the volume fraction of fixed sand bed and
moving sand bed, and improves the transport velocity of moving sand bed and suspended
sand bed, which proves the superiority of pulsed gravel packing in horizontal wells.

2. Pulsed Gravel Packing Numerical Model
2.1. Solid-Liquid Two-Phase Flow Governing Equation

Based on the Eulerian—-Eulerian model [27], pulsed gravel packing in horizontal
wells is studied in this paper. The model assumes that liquid phase and solid phase are
continuous, the density of liquid phase and solid phase is constant, and there is no mass
transfer. The continuity equation can be expressed as follows [28,29]:

0
Liquid phase g(slpl) + V. (£1p1$1) =0 1)
Solid phase %(ssps) +V. (sspsgs> =0 ()

where ¢, & represent the concentration of the liquid phase and solid phase, dimensionless;

p1, ps represent the density of liquid phase and solid phase, kg/m?3; and 5)1, Vs represent
the velocity of the liquid phase and solid phase, m/s.
Assuming that there is no mass exchange between the solid phase and the liquid
phase, the momentum governing equations can be obtained as follows [30]:
] =
Liquid phase g (81()1?1) +V. (81‘015}1?})1) = €1V - T+ €1p1§ - 81Vp1 + ﬁ(?l — gs) (3)

d -
Solid phase 5 (esps?s> +V. (s,xp55>55>5> =&V Ts+ £5p5§ —esVps — ,3(31 - 52,) 4)

The liquid phase stress tensor ?1 was determined using Equation (5):

Ti=m {v?l + (v?lﬂ - 2/3;41(v?1)Y 5)

The solid phase stress tensor T, was determined using Equation (6):
= - T 2 -
T = (~ps+&VT) 1+ ys{ {v?s +(v3,) } -3(vdy)1 } ©)

where g is the acceleration of gravity, m/s?; p; is the liquid phase pressure, MPa; p; is the
solid phase pressure, MPa; f3 is the drag force coefficient between liquid phase and solid
phase, dimensionless; y is the shear viscosity of liquid phase, Pa-s; y; is the shear viscosity

=
of solid phase, Pa-s; s is the dynamic viscosity of solid phase, Pa-s; and I is the unit vector.
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In this paper, the turbulence model is the RNG k-¢ model [31,32]. The transport equa-
tions of the turbulent kinetic energy k and turbulence dissipation rate ¢ in the turbulence
model can be expressed as follows [33,34]:

ok
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where k is turbulent kinetic energy, m?/s2; ¢ is the dissipation rate of turbulent kinetic
energy, m?/s?; pp, is the mixed density of two phases, kg/m?; p; is the density of phase
i, kg/ m3; vy, is the mixed velocity of two phases, m/s; v; is the velocity of phase i, m/s;
«; is the volume fraction of phase i, dimensionless; ym is the mixed dynamic viscosity of
two phases, Pa-s; yim is the mixed turbulent viscosity of two phases, Pa-s; Gy , is the
increment of turbulent kinetic energy caused by the average velocity gradient; Cq.rngG is
the turbulent kinetic energy coefficient, dimensionless; and the constants in the equation as
follows: CuRNG =0.085, CZERNG =1.68, OKRNG = 0.7179, O ¢RNG = 0.7179, ,BRNG =0.012.

2.2. Physical Models and Boundary Conditions

During the pulsed gravel packing process in horizontal wells, the sand-carrying fluid
is transported to the horizontal section of the wellbore through the pipe string [35]. When
the sand-carrying fluid enters the annulus of the casing and sand control string, the gravel
is gradually transported and deposited in the annulus, while the fluid is returned to the
sand control string through the screen tube. The function of the screen tube is to prevent
gravel from entering the sand control string, so that the gravel is deposited in the annulus,
and to prevent sand in the formation from entering the wellbore during the production
process of the oil well. A physical model was established for the gravel packing process of
horizontal wells, as shown in Figure 1.
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Figure 1. Schematic diagram of pulsed gravel packing in horizontal wells.

By simplifying the physical model of the gravel packing process in horizontal wells, a
finite element numerical model was established for the horizontal well section. The string
diameter was 88.9 mm, the borehole diameter was 152.4 mm, and the model length was
20 m. The model is shown in Figure 2:

$152.4mm

Casing tubes

Gravel packing annulus j (DaR:Iimm

Sicve tube

Velocity inlet

Figure 2. Numerical model of pulsed gravel packing in horizontal wells.

In order to ensure the convergence and stability of the calculation results, the following
assumptions were made for the boundary conditions of the numerical model:

(1) Velocity inlet boundary was adopted and the user-defined function (UDF) was intro-
duced to realize the change of pulse waveform. At the same time, the influences of annulus
temperature and bottom hole gas and water seepage on the flow of sand-carrying fluid were
ignored, and the sand-carrying fluid was regarded as the incompressible fluid [36].

(2) The outlet boundary adopted the pressure boundary, and the boundary pressure
value was consistent with the environmental pressure.

(3) The string and wellbore were assumed to be smooth without slip boundary, and
the gravel diameter and density were the same in any wellbore section.
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3. Parameter Analysis of Pulsed Gravel Packing
3.1. Optimization of Pulsed Gravel Packing Parameters

In Fluent software, the sinusoidal pulse waveform was defined by embedding the
UDF program to change the inlet boundary velocity. According to the theory of sinusoidal
pulse wave, the frequency range of the selected pulse waveform is 2.5-10 Hz, the amplitude
range is 1.5-2.0 m/s. Numerical simulation is carried out by combination of frequency and
amplitude, where the simulation time is 60 s, the average amplitude is 1 m/s, the initial
sand-carrying ratio is 10%, the gravel diameter is 1 mm, the sand-carrying fluid viscosity
is 1.0 mPa-s, and the eccentricity of the string is 0. The evaluation criteria were fixed bed
volume fraction and gravel migration velocity. Pulse waveforms with different amplitudes
and frequencies are shown in Figures 3 and 4, respectively.

== U, =1.5mfs == U, =1.6m/s U, =L.65m/s == U, =1.70m/s
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Figure 3. Graph of the pulse waveform with different amplitudes.
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Figure 4. Graph of the pulse waveform with different frequencies.

In the pulsed gravel packing process of horizontal wells, three layers of hydraulic
flow may occur in annular flow field, which are fixed bed, moving bed, and suspended
bed as shown in Figure 5.
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Figure 5. Schematic diagram of the three-layer hydraulic flow pattern during gravel migration process.

3.2. Optimal Analysis of Pulsed Gravel Packing Waveform in Horizontal Wells

The numerical simulation of pulsed gravel packing horizontal wells was carried
out, with the frequency range of pulse waveform 2.5-10 Hz and the amplitude range
1.5-2.0 m/s. The results are shown in Figure 6. When the frequency was 10 Hz, the volume
fraction of the fixed bed increased from 2.78% to 11.85% with the increase of amplitude.
When the frequency was 5 Hz, the volume fraction of fixed bed decreased first and then
increased with the increase of amplitude, in which the minimum value was 1.14% and the
maximum value was 8.77%. When the frequency was 2.5 Hz, the volume fraction of the
fixed bed also decreased first and then increased with the increase of amplitude, in which
the minimum volume fraction was 2.06% and the maximum volume fraction was 9.35%.
Through comparative analysis, it was found that when the frequency was 5 Hz and the
amplitude was 1.65 m/s, the volume fraction of the fixed bed was the smallest and its value
was 1.14%. Under this combination of frequency and amplitude, the sand-carrying fluid
not only had strong sand-carrying performance but also had the best effect of reducing the
volume fraction of fixed bed. Therefore, the pulsed gravel packing method has less risk
and higher filling efficiency during the packing process.

3.3. Comparative Analysis of Pulsed Gravel Packing and Conventional Gravel Packing in
Horizontal Wells

When the transport law of pulsed gravel packing and conventional gravel packing in
horizontal wells was compared, the optimized pulse waveform parameters were added to
the inlet boundary, and other influencing factors were consistent with conventional gravel
packing. Gravel migration velocity and gravel volume fraction were used as evaluation
indexes. In order to explain the gravel migration for horizontal wells in detail, sections
were established at 3 m, 5m, 7 m, 10 m, 15 m, and 17 m from the inlet. These sections were
roughly evenly distributed in the annular flow, which can effectively reflect the numerical
simulation results. At the same time, we extracted the volume fraction and migration
velocity of pulsed gravel packing and conventional gravel packing in horizontal wells at
different locations at the time of 30 s, with results as shown in Figures 7-9. Under the
same conditions, the volume fraction of fixed bed and moving bed with pulsed gravel
packing in horizontal wells was smaller than that of conventional gravel packing, while
the volume fraction of suspended bed was larger than that of conventional gravel packing.
The gravel transport velocity of pulsed gravel packing in horizontal wells was faster. At
the position of section 15 m, the volume fractions of fixed, mobile, and suspended beds
with conventional gravel packing were 9.24%, 22.2%, and 68.56%, respectively. The volume
fractions of the fixed bed, moving bed, and suspended bed with pulsed gravel packing
were 5.35%, 16.1%, 78.55%, respectively. It can be seen that the fixed bed volume fraction
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and moving bed volume fraction of pulsed gravel packing in horizontal wells decreased by
42.1% and 27.5%, respectively, and the suspended bed volume fraction increased by 14.5%.
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Figure 6. Graph of gravel volume fraction for pulsed gravel packing in horizontal wells.
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Figure 7. Graph of volume fraction and migration velocity for pulsed gravel packs and convention’s
in horizontal wells.
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Figure 9. The contour of volume fraction for conventional gravel packing in horizontal wells.
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4. Analysis of Influencing Factors for the Pulsed Gravel Packing
4.1. Impact of Displacement on Pulsed Gravel Packing in Horizontal Wells

The optimized sinusoidal pulse waveform was added to the inlet boundary to make
the inlet displacement changes in pulse, and the influence of average inlet displacement
from 25 m3/h to 70 m3/h on gravel migration and volume fraction was studied. At 30s,
the volume fraction and velocity of the section at a distance of 10 m from the inlet was
extracted, and the results are shown in Figures 10 and 11. It can be seen from Figure 10
that, with the increase of displacement, the volume fraction of fixed bed decreased from
6.38% to 1.83%, when the displacement reached 50 mS3 /h, the reduction trend of fixed bed
volume fraction tended to be flat. The volume fraction of the mobile bed also decreased
gradually with the increase of displacement, and when the displacement reached 60 m? /h,
the reduction trend of the volume fraction of the mobile bed increased. The volume fraction
of the floating bed increased rapidly with the increase of displacement. The results indicate
that with the increase of displacement, the gravel migration ability increased, and after the
displacement reached a certain critical value, the gravel migration ability increased slowly.

84% - -1.2
0 -
Bl 0.9

(o —_
X 78% o

= —MB—Suspended Bed volume fraction
S 75% =[=Suspended Bed velocity =
— s >
S 28% 0.3 =
o= —8— Moving Bed volume fraction [ 0.8 &
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= Ok
S 14%1 F04 &
> ' »n
2 7 0 s -
= 7% o e 02 =
o
g 6% - —&—Fixed Bed volume fraction =
]
C -
4% g
2% - —— — ©

25 30 35 40 45 S0 S5 60 65 70
Rate of Pump (m®/h)

Figure 10. Graph of the effect of displacement on the volume fraction and migration velocity.
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Figure 11. The contour of the effect of displacement on the volume fraction.

4.2. Impact of the Viscosity of the Carrying Fluid on Pulsed Gravel Packing in Horizontal Wells

The optimized sinusoidal pulse waveform was added to the inlet boundary to make
the inlet displacement changes in pulse and to study the effect of viscosity change of sand-
carrying fluid on gravel migration and volume fraction. At 30 s, we extracted the volume
fraction and velocity of the section at a distance of 10 m from the inlet, and the results are
shown in Figures 12 and 13. It can be seen from Figure 12, with the increase of the viscosity
of the sand-carrying fluid, the volume fraction of the fixed bed gradually decreased, and
when the viscosity of the sand-carrying fluid was greater than 0.9 MPa-s, the reduction trend
of the volume fraction of the fixed bed was gentle. The volume fraction of the moving bed
gradually decreased with the increase of the viscosity of the sand-carrying fluid, and when
the viscosity of the sand-carrying fluid was greater than 0.6 MPa-s, the decreasing trend of
the volume fraction of the moving bed was gentle. The volume fraction of the suspended
bed increased from 50% to 92% with the increase of the viscosity of the sand-carrying fluid,
and the increase rate was the highest when the viscosity of the sand-carrying fluid was
0.6 MPa's. The velocity of the moving bed and suspended bed also increased with the
increasing of the viscosity of the sand-carrying fluid. The study shows that the viscosity
of the carrier fluid increased, the energy obtained by a single gravel increased, and the
transportability of gravel increased. When the viscosity of sand-carrying fluid reached a
certain critical value, the improvement of gravel transportability was relatively slow.
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Figure 12. Graph of the effect of carrying-fluid viscosity on the volume fraction and transport velocity.

Sand.Volume Fraction

0.61
I 0.58
0.55

- 0.51
0.48

- 045
0.42

- 0.39

Py
- 032 0.4mPa.s 0.6mPa.s 0.9mPa.s
0.29

- 026
0.22
- 0.19
- 0.16
0.13
0.10
0.06
0.03 S 4 = _—
0.00 : ‘ s

1.2mPa.s 1.5mPa.s 2.0mPa.s

Figure 13. The contour of the effect of carrying-fluid viscosity on the volume fraction.

4.3. Impact of Particle Size on Pulsed Gravel Packing in Horizontal Wells

The optimized sinusoidal pulse waveform was added to the inlet boundary to make
the inlet displacement changes in pulse and to study the effect of particle size on gravel
migration and volume fraction. At 30 s, extracting the volume fraction and velocity of
the section at a distance of 10 m from the inlet, and the results were shown in Figures
14 and 15. It can be seen from Figure 14 that, with the increase of gravel diameter, the
volume fraction of the fixed bed and moving bed showed an increasing trend. The fixed
bed volume fraction reached the minimum value of 2.74% when the gravel diameter was
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1 mm, and the maximum value of 7.10% when the gravel diameter was 6 mm. With the
increase of gravel diameter, the mobile bed volume fraction increased from 8.2% to 28%.
The volume fraction of the suspended bed decreased rapidly with the increase of gravel
diameter from 86% to 75%. The above results show that as the gravel diameter increased,
the mass of the single gravel increased, and the energy required for the gravel transition
from the static state to the mobile state increased. As the displacement of the sand-carrying
fluid did not change, with the increase of gravel diameter, there was insufficient energy for
the gravel to move forward. Therefore, the migration velocity of the suspended bed and
the moving bed decreased obviously, which is not conducive to gravel migration.
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——Suspended Bed volume fraction
90% —{—Suspended Bed velocity 2
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Figure 14. Graph of the effect of particle size on volume fraction and migration velocity.
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Figure 15. The contour of the effect of particle size on the volume fraction.

4.4. Impact of Sand Carrying Ratio on Pulsed Gravel Packing in Horizontal Wells

The optimized sinusoidal pulse waveform was added to the inlet boundary to make
the inlet displacement changes in pulse and to study the effect of sand carrying ratio on
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gravel migration and volume fraction. At 30 s, we extracted the volume fraction and
velocity of the section at a distance of 10 m from the inlet, and the results are shown in
Figures 16 and 17. It can be seen from Figure 16 that, with the increase of the sand carrying
ratio, the volume fraction of the fixed bed increased from 1.6% to 6.3%, and when the sand
carrying ratio reached 8%, the volume fraction increased significantly. The volume fraction
of the moving bed increased from 12% to 19.5% with the increase of the carrying ratio,
and the increase rate of the volume fraction increased significantly when the carrying ratio
reached 7%. The volume fraction of the suspended bed decreased with the increase of the
carrying ratio, and the rate of decrease increased when the carrying ratio was 7%. The
transport velocity of moving bed and suspended bed decreased with the increase of sand
carrying ratio. The above results show that with the increasing of the carrying ratio, the
volume fraction of the moving bed and the fixed bed increased continuously, while the
volume fraction of the suspended bed decreased continuously, and the transport velocity of
the moving bed and the suspended bed decreased continuously. Therefore, it is necessary
to strictly control the carrying ratio during pulsed gravel packing in horizontal wells.
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Figure 16. Graph of the effect of carrying ratio on the volume fraction and migration velocity.
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Figure 17. The contour of the effect of sand carrying ratio on the volume fraction.

4.5. Impact of String Eccentricity on Pulsed Gravel Packing in Horizontal Wells

The optimized sinusoidal pulse waveform was added to the inlet boundary to make
the inlet displacement changes in pulse and to study the effect of string eccentricity on
gravel migration and volume fraction. At 30 s, we extracted the volume fraction and veloc-
ity of the section at a distance of 10 m from the inlet, and the results are shown in Figures
18 and 19. It can be seen from Figure 18 that, as the eccentricity of the string increased,
the volume fraction of the fixed bed gradually increased, and when the eccentricity of the
string was 0.5, the maximum value of the volume fraction of the fixed bed was 5.70%. The
volume fraction of the moving bed increased gradually with the eccentricity of the string
increasing, and the maximum value was 22.5%. The volume fraction of the suspended
bed decreased with the increase of the eccentricity of the string. The results show that
with the increase of the eccentricity of the string, the volume fraction of fixed bed and
moving bed increased, the volume fraction of suspended bed decreased continuously, the
migration velocity of moving bed decreased continuously, and the migration ability of
gravel decreased.
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Figure 18. Graph of the effect of string eccentricity on volume fraction and migration velocity.
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Figure 19. The contour of the effect of string eccentricity on the volume fraction.

5. Conclusions

(1) By optimizing the pulsed gravel packing waveform of the horizontal well, the
best sinusoidal pulse waveform was obtained, in which the frequency was 5 Hz and the
amplitude was 1.65 m/s. Under this frequency and amplitude, the sand-carrying fluid has
good sand-carrying performance and the best effect of reducing the volume fraction of
the fixed bed, and the risk of plugging during the filling process is small and the filling
efficiency is high.

(2) A comparative analysis of the results of pulsed gravel packing and conventional
gravel packing in horizontal wells shows that pulsed gravel packing is more efficient than
conventional gravel packing. Pulsed gravel packing has a better effect in reducing sand
bed height and lengthening gravel migration distance.

(3) By analyzing the influences of the carrying fluid displacement, the carrying fluid
viscosity, the gravel diameter, the carrying ratio, and the string eccentricity on the pulsed
gravel packing in horizontal wells, the distribution rules of the gravel transport velocity and
the volume fraction were obtained. In the process of pulsed gravel packing in horizontal wells,
with the increase of displacement and viscosity of the sand-carrying fluid, the volume fraction
of fixed bed and moving bed decreases gradually, while the volume fraction of suspended
bed increases gradually, and the gravel transport velocity is improved. With the increase of
gravel particle size, sand carrying ratio, and string eccentricity, the volume fraction of fixed
bed and moving bed gradually increase, while that of suspended bed gradually decreases,
and when the gravel diameter is greater than 3 mm and the sand carrying ratio is greater than
8%, the volume fraction of fixed bed rapidly increases, which may lead to the over-high sand
bed. The string eccentricity has a great influence on pulsed gravel packing in horizontal wells,
so it is necessary to avoid pipe eccentricity during the operation.

(4) In order to verify the feasibility of the pulsed gravel packing technology for
horizontal wells proposed in this paper, laboratory experiments will be carried out for
further verification and, at the same time, field application will be carried out to improve
gravel packing efficiency of horizontal wells.
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