Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant
Abstract
:1. Introduction
2. Study Area and Methodology
2.1. Study Area
2.2. Methodology
2.2.1. Proposed Equations for Energy Production
2.2.2. K-Mean Cluster Analysis
2.2.3. C4.5 Algorithm
2.2.4. Chi-Squared Automatic Interaction Detection (CHAID) Algorithm
- Merging
- The merging finds the best split predictor. The non-significant categories are merged for every predictor variable “S”. If “S” is used to split the node, every final category of “S” will give one child node as outcome. The adjusted value of p is calculated in the merging step that is further used in splitting.
- If X has only one category, then the process should be stopped, and the p-value needs to be adjusted as 1.
- If X has two categories, then go to step vii; otherwise, determine the pair of S that is the most similar. The most similar pair is the pair that gives the largest value with respect to dependent variable W.
- If the largest p-value of the pair is greater than alpha-level merge, which specifies the user, then this pair is substituted in a single compound l and the new set of S category is formed. If its p-value is not greater than the alpha-level merge, then merge any category with a smaller number of observations with the most similar category that is measured based on the largest p-value and follow step vi.
- If the compound category consists of three or more original categories based on the smallest p-value within the compound category, then find the best binary split.
- If the best binary split is not obtained, then again go to step ii.
- Merge the category with the smaller number of observations with the most similar category, which is measured on the basis of the largest p-value.
- Finally, use Bonferroni adjustments to compute the adjusted p-value.
- Splitting
- The merging step contains the best split for each predictor. The predictor is chosen in the splitting step for selecting the best split node. From the merging step, the p-value is obtained, and this value is then compared with each predictor. Further, the predictor with the smaller p-value is selected. If the adjusted p-value is less than or equal to the user-specified alpha-level, then split the node; if not, then do not split the node and this node is considered as a terminal node.
- Stopping
- In the stopping step, there are some rules that check if the tree growing process should be stopped or not according to the following rules:
- In the node, if all the values of the dependent variables are the same, then it will not split.
- If the values of each predictor are the same, then the node will not split.
- If the depth of the current tree is more than the depth of the user-specified tree, then the tree should stop growing.
- If the size of the node is less than the user-specified minimum node size, then the node will not split.
- If the number of the child node is 1, then also the node will not split.
2.2.5. ID3-IV Algorithm
- First, select the calculation of entropy attribute and target attribute.
- Then, the attribute with the highest information gain is measured.
- The node is created by using that attribute. The above steps are applied iteratively to new branches of the tree and, after satisfying the stopping criterion, the growth of the tree needs to be stopped.
2.2.6. Improved C4.5
- First, the initialization of the data sample set is required.
- Then, the simplification of the data set’s principal component analysis is performed.
- For each principal component, calculate the information gain rate.
- Splitting node is selected based on the largest information gain rate of the principal component and generates the subset of the data.
- Repeat step iii and step iv till all the components of the decision tree are utilized.
- Pruning is carried out to generate the decision tree.
2.3. Data Set
3. Results and Analysis
3.1. K-Mean Cluster Analysis and Typical Generation Profiles
3.2. C4.5 Outcomes
3.3. CHAID Findings
3.4. ID3-IV Results
3.5. Improved C4.5
3.6. Generation Profile of Tianshengqiao Cascaded Hydropower Plants
3.7. Comparison of Different Algorithms
4. Discussion
5. Conclusions
- The values of energy production are found by using the multiple regression analysis for both winter and summer seasons of the Tianshengqiao cascaded hydropower plant. The energy production increases with increase in discharge.
- The K-mean cluster analysis technique is used for the generation curves based on historical data, and the cluster analysis identified the most similar generation curves for each season of each hydropower plant.
- The case study of the Tianshengqiao cascaded hydropower plants is considered, which is on the mainstream of Hongshui River. Data sets are established for both winter and summer seasons for upstream and downstream power stations. The data sets consist of water level, load, discharge, inflow, energy production and the generation schedules of each hour.
- The results obtained from the ID3-IV algorithm showed the best performance on the data set of Tianshengqiao 1 (winter season) because of the good number of splits, but for the other three types of data sets, the power of prediction is weaker because of its high percentage error.
- The CHAID algorithm depicts overall reasonable classification except for the winter season of Tianshengqiao plant 2 with 4.1% error rate.
- The results exhibited by improved C4.5 are not satisfactory for three cases; however, it precisely predicts the outcome of the summer season of Tianshengqiao plant 2 with 12% error.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms and Abbreviations
ID3 | Iterative Dichotomiser 3 |
CHAID | Chi-Squared Automatic Interaction Detection |
CART | Classification and Regression Tree |
Zup | Water level |
N | Power generation |
Eigenvector vector of generation curve in time t | |
Power value of generation curve in time t | |
Maximum generation of hydropower plant within one day | |
X | Set of observations spanning up to “n” observations |
W | Sum of square errors of all generation curves in historical data set |
Generation curve of a group of cluster vectors | |
A cluster vector, which is the center of cluster | |
Rate of samples with generation schedule number and i is the number of samples | |
F | Samples |
Number of samples of kth element included in attribute B |
References
- Zamfir, A.; Colesca, S.E.; Corbos, R.-A. Public policies to support the development of renewable energy in Romania: A review. Renew. Sustain. Energy Rev. 2016, 58, 87–106. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Efstratiadis, A.; Karavokiros, G. A Decision support tool for the management of multi-reservoir systems. JAWRA J. Am. Water Resour. Assoc. 2002, 38, 945–958. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, X.; Wang, J.; Cao, R.; Wang, S.; Zhang, J. Optimal operation of interprovincial hydropower system including Xiluodu and local plants in multiple recipient regions. Energies 2019, 12, 144. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.-J.; Shen, Q.-Q.; Wang, S.; Lu, J.-Y.; Meng, Q.-X. Generation scheduling of a hydrothermal system considering multiple provincial peak-shaving demands. IEEE Access 2019, 7, 46225–46239. [Google Scholar] [CrossRef]
- Suwal, N.; Huang, X.; Kuriqi, A.; Chen, Y.; Pandey, K.P.; Bhattarai, K.P. Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes. Renew. Energy 2020, 158, 453–464. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic—Ecohydraulic approach. Energy Convers. Manag. 2020, 223, 113267. [Google Scholar] [CrossRef]
- Hammid, A.T.; Sulaiman, M.H.B.; Abdalla, A.N. Prediction of small hydropower plant power production in Himreen Lake dam (HLD) using artificial neural network. Alex. Eng. J. 2018, 57, 211–221. [Google Scholar] [CrossRef]
- Liu, D.; Guo, S.; Shao, Q.; Liu, P.; Xiong, L.; Wang, L.; Hong, X.; Xu, Y.; Wang, Z. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions. J. Hydrol. 2018, 556, 759–774. [Google Scholar] [CrossRef]
- Séguin, S.; Côté, P.; Audet, C. Self-scheduling short-term unit commitment and loading problem. IEEE Trans. Power Syst. 2015, 31, 133–142. [Google Scholar] [CrossRef]
- Hechme-Doukopoulos, G.; Brignol-Charousset, S.; Malick, J.; Lemaréchal, C. The short-term electricity production management problem at EDF. Optima Newsl. 2010, 84, 2–6. [Google Scholar]
- Zheng, Q.P.; Wang, J.; Pardalos, P.M.; Guan, Y. A decomposition approach to the two-stage stochastic unit commitment problem. Annals Oper. Res. 2013, 210, 387–410. [Google Scholar] [CrossRef]
- Carøe, C.C.; Schultz, R. A Two-Stage Stochastic Program for Unit Commitment under Uncertainty in a Hydro-Thermal Power System. 1998. Available online: https://www.semanticscholar.org/paper/A-Two-Stage-Stochastic-Program-for-Unit-Commitment-Car%C3%B8e-Schultz/2c2620b14608f8fcb52e3c47c0d50ee35cfa9b7c (accessed on 28 December 2020).
- Carrión, M.; Arroyo, J.M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 2006, 21, 1371–1378. [Google Scholar] [CrossRef]
- Shen, J.J.; Shen, Q.Q.; Cheng, C.T.; Zhang, X.F.; Wang, J. Large-Scale Unit Commitment for Cascaded Hydropower Plants with Hydraulic Coupling and Head-Sensitive Forbidden Zones: Case of the Xiluodu and Xiangjiaba Hydropower System. J. Water Resour. Plan. Manag. 2020, 146, 05020023. [Google Scholar] [CrossRef]
- Razavi, S.-E.; Nezhad, A.-E.; Mavalizadeh, H.; Raeisi, F.; Ahmadi, A. Robust hydrothermal unit commitment: A mixed-integer linear framework. Energy 2018, 165, 593–602. [Google Scholar] [CrossRef]
- Wang, J.; Guo, M.; Liu, Y. Hydropower unit commitment with nonlinearity decoupled from mixed integer nonlinear problem. Energy 2018, 150, 839–846. [Google Scholar] [CrossRef]
- Przychodzen, W.; Przychodzen, J. Determinants of renewable energy production in transition economies: A panel data approach. Energy 2020, 191, 116583. [Google Scholar] [CrossRef]
- Fernández-Muñoz, D.; Pérez-Díaz, J.I. Contribution of non-conventional pumped-storage hydropower plant configurations in an isolated power system with an increasing share of renewable energy. IET Renew. Power Gener. 2019, 14, 658–670. [Google Scholar] [CrossRef]
- Ahmad, S.K.; Hossain, F. Maximizing energy production from hydropower dams using short-term weather forecasts. Renew. Energy 2020, 146, 1560–1577. [Google Scholar] [CrossRef]
- Hussain, A.; Sarangi, G.P.; Pandit, A.; Ishaq, S.; Mamnun, N.; Ahmad, B.; Jamil, M.K. Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities. Renew. Sustain. Energy Rev. 2019, 107, 446–461. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, W.; Zhuang, S.; Zhang, Q. Competition or complementarity? The hydropower and thermal power nexus in China. Renew. Energy 2019, 138, 531–541. [Google Scholar] [CrossRef]
- Wagner, B.; Hauer, C.; Habersack, H. Current hydropower developments in Europe. Curr. Opin. Environ. Sustain. 2019, 37, 41–49. [Google Scholar] [CrossRef]
- Mahmud, M.P.; Huda, N.; Farjana, S.H.; Lang, C. A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe. Appl. Energy 2019, 250, 198–214. [Google Scholar] [CrossRef]
- Ikura, Y.; Gross, G. Efficient large-scale hydro system scheduling with forced spill conditions. IEEE Trans. Power Appar. Syst. 1984, 3502–3520. [Google Scholar] [CrossRef]
- Catalão, J.P.D.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. Nonlinear optimization method for short-term hydro scheduling considering head-dependency. Eur. Trans. Electr. Power 2010, 20, 172–183. [Google Scholar] [CrossRef]
- Håberg, M. Fundamentals and recent developments in stochastic unit commitment. Int. J. Electr. Power Energy Syst. 2019, 109, 38–48. [Google Scholar] [CrossRef]
- Feng, Z.K.; Niu, W.J.; Cheng, C.T.; Wu, X.Y. Optimization of large-scale hydropower system peak operation with hybrid dynamic programming and domain knowledge. J. Clean. Prod. 2018, 171, 390–402. [Google Scholar] [CrossRef]
- Feng, Z.K.; Niu, W.J.; Cheng, C.T.; Wu, X.Y. Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction. Energy 2017, 134, 718–730. [Google Scholar] [CrossRef]
- Feng, Z.; Niu, W.; Wang, S.; Cheng, C.; Song, Z. Mixed integer linear programming model for peak operation of gas-fired generating units with disjoint-prohibited operating zones. Energies 2019, 12, 2179. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Cheng, C.; Shen, Q.; Lu, J.; Zhang, J. Overview of China’s hydropower absorption: Evolution, problems, and suggested solutions. IET Renew. Power Gener. 2019, 13, 2491–2501. [Google Scholar] [CrossRef]
- Ghaddar, B.; Naoum-Sawaya, J.; Kishimoto, A.; Taheri, N.; Eck, B. A Lagrangian decomposition approach for the pump scheduling problem in water networks. Eur. J. Oper. Res. 2015, 241, 490–501. [Google Scholar] [CrossRef]
- Rachunok, B.; Staid, A.; Watson, J.P.; Woodruff, D.L.; Yang, D. Stochastic unit commitment performance considering Monte Carlo wind power scenarios. In Proceedings of the 2018 IEEE international conference on probabilistic methods applied to power systems (PMAPS), Boise, ID, USA, 24–28 June 2018; pp. 1–6. [Google Scholar]
- Gade, D.; Hackebeil, G.; Ryan, S.M.; Watson, J.P.; Wets, R.J.B.; Woodruff, D.L. Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs. Math. Program. 2016, 157, 47–67. [Google Scholar] [CrossRef] [Green Version]
- Papavasiliou, A.; Oren, S.S.; Rountree, B. Applying high performance computing to transmission-constrained stochastic unit commitment for renewable energy integration. IEEE Trans. Power Syst. 2014, 30, 1109–1120. [Google Scholar] [CrossRef]
- López-Salgado, C.J.; Añó, O.; Ojeda-Esteybar, D.M. Stochastic unit commitment and optimal allocation of reserves: A hybrid decomposition approach. IEEE Trans. Power Syst. 2018, 33, 5542–5552. [Google Scholar] [CrossRef]
- Scuzziato, M.R.; Finardi, E.C.; Frangioni, A. Comparing spatial and scenario decomposition for stochastic hydrothermal unit commitment problems. IEEE Trans. Sustain. Energy 2017, 9, 1307–1317. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Guan, Y.; Watson, Y.-P. Cutting planes for the multistage stochastic unit commitment problem. Math. Program. 2016, 157, 121–151. [Google Scholar] [CrossRef]
- Analui, B.; Scaglione, A. A dynamic multistage stochastic unit commitment formulation for intraday markets. IEEE Trans. Power Syst. 2017, 33, 3653–3663. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Liao, X.; Qin, H. Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm. Appl. Energy 2017, 187, 612–626. [Google Scholar] [CrossRef]
- Shahbazitabar, M.; Abdi, H. A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation. Energy 2018, 161, 308–324. [Google Scholar] [CrossRef]
- Perez-Ortega, J.; Almanza-Ortega, N.N.; Romero, D. Balancing effort and benefit of K-means clustering algorithms in Big Data realms. PLoS ONE 2018, 13, e0201874. [Google Scholar] [CrossRef]
- Jo, K.-H.; Kim, M.-K. Stochastic unit commitment based on multi-scenario tree method considering uncertainty. Energies 2018, 11, 740. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.-H.; Chu, P.-H.; Hsiao, P.-Y. Data mining techniques and applications–A decade review from 2000 to 2011. Expert Syst. Appl. 2012, 39, 11303–11311. [Google Scholar] [CrossRef]
- Bharati, M.; Ramageri, M. Data mining techniques and applications. Indian J. Comput. Sci. Eng. 2010, 1, 301–305. [Google Scholar]
- White, I.R. Bayesian network meta-analysis. Stata J. 2019, 15, 951–985. [Google Scholar] [CrossRef] [Green Version]
- El Jerjawi, N.S.; Abu-Naser, S.S. Diabetes prediction using artificial neural network. Int. J. Adv. Sci. Technol. 2018, 121, 54–64. [Google Scholar]
- Chain, P.; Arunyanart, S. Using cluster analysis for location decision problem. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Schroeder, L.D.; Sjoquist, D.L.; Stephan, P.E. Understanding Regression Analysis: An Introductory Guide; Sage Publications: Newcastle, UK, 2016. [Google Scholar]
- Brodny, J.; Tutak, M. Analyzing similarities between the European Union countries in terms of the structure and volume of energy production from renewable energy sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef] [Green Version]
- Romesburg, C. Cluster Analysis for Researchers; Lily Press: Morrisville, NC, USA, 2004. [Google Scholar]
- Zhou, Y.; Lai, C.; Wang, Z.; Chen, X.; Zeng, Z.; Chen, J.; Bai, X. Quantitative evaluation of the impact of climate change and human activity on runoff change in the Dongjiang River Basin, China. Water 2018, 10, 571. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ning, B.; Shi, D. Application of improved decision tree C4. 5 algorithms in the judgment of diabetes diagnostic effectiveness. J. Phys. Conf. Ser. 2019. [Google Scholar] [CrossRef] [Green Version]
- Wahbeh, A.H.; Al-Radaideh, Q.A.; Al-Kabi, M.N.; Al-Shawakfa, E.M. A comparison study between data mining tools over some classification methods. Int. J. Adv. Comput. Sci. Appl. 2011, 8, 18–26. [Google Scholar]
- Milanović, M.; Stamenković, M. CHAID decision tree: Methodological frame and application. Econ. Themes 2016, 54, 563–586. [Google Scholar] [CrossRef] [Green Version]
- Ren, N.; Zargham, M.; Rahimi, S. A decision tree-based classification approach to rule extraction for security analysis. Int. J. Inf. Technol. Decis. Mak. 2006, 5, 227–240. [Google Scholar] [CrossRef]
- Dai, Q.-Y.; Zhang, C.-P.; Wu, H. Research of decision tree classification algorithm in data mining. Int. J. Database Theory Appl. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Shen, J.; Cheng, C.; Zhang, X.; Zhou, B. Coordinated operations of multiple-reservoir cascaded hydropower plants with cooperation benefit allocation. Energy 2018, 153, 509–518. [Google Scholar] [CrossRef]
- Report by Mitsue Mishima (OPMAC), Tianshengqiao First Hydropower Project (1)–(4) September 2004: China main Contractor, South China Hydropower Construction Association. Japan International Cooperation Agency (JICA). Available online: https://www.jica.go.jp/english/our_work/evaluation/oda_loan/post/2005/pdf/2-21_full.pdf (accessed on 28 December 2020).
- Report on Field survey of Tianshengqiao Hydro Electric Power Generation Project (1)-(6) 2002: China. Japan International Cooperation Agency (JICA). Available online: https://www.jica.go.jp/english/our_work/evaluation/oda_loan/post/2002/pdf/003_full.pdf (accessed on 28 December 2020).
- Reddan, T.; Corness, J.; Harden, F.; Mengersen, K. Analysis of the predictive value of clinical and sonographic variables in children with suspected acute appendicitis using decision tree algorithms. Sonography 2018, 5, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Ru-Ping, L. Research of Decision Tree Classification Algorithm in Data Mining. J. East China Inst. Technol. Nat. Sci. 2010, 2. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-HDDZ201002018.htm (accessed on 28 December 2020).
- Wang, S.J.; Shahidehpour, S.M.; Kirschen, D.S.; Mokhtari, S.; Irisarri, G.D. Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation. IEEE Trans. Power Syst. 1995, 10, 1294–1301. [Google Scholar] [CrossRef]
- Frangioni, A.; Gentile, C.; Lacalandra, F. Sequential Lagrangian-MILP approaches for unit commitment problems. Int. J. Electr. Power Energy Syst. 2011, 33, 585–593. [Google Scholar] [CrossRef]
- Orero, S.; Irving, M. A combination of the genetic algorithm and Lagrangian relaxation decomposition techniques for the generation unit commitment problem. Electr. Power Syst. Res. 1997, 43, 149–156. [Google Scholar] [CrossRef]
- Beltran, C.; Heredia, F.J. Unit commitment by augmented lagrangian relaxation: Testing two decomposition approaches. J. Optim. Theory Appl. 2002, 112, 295–314. [Google Scholar] [CrossRef]
- Virmani, S.; Adrian, E.C.; Imhof, K.; Mukherjee, S. Implementation of a Lagrangian relaxation based unit commitment problem. IEEE Trans. Power Syst. 1989, 4, 1373–1380. [Google Scholar] [CrossRef]
- Gröwe-Kuska, N.; Kiwiel, K.C.; Nowak, M.P.; Römisch, W.; Wegner, I. Power management under uncertainty by Lagrangian relaxation. In Proceedings of the 16th International Conference Probabilistic Methods Applied to Power Systems PMAPS, Liege, Belgium, 18–21 August 2020; Volume 2. [Google Scholar]
- Catalão, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. Scheduling of head-sensitive cascaded hydro systems: A nonlinear approach. IEEE Trans. Power Syst. 2008, 24, 337–346. [Google Scholar] [CrossRef]
- Patra, S.; Goswami, S.; Goswami, B. Fuzzy and simulated annealing based dynamic programming for the unit commitment problem. Expert Syst. Appl. 2009, 36, 5081–5086. [Google Scholar] [CrossRef]
- Esmaeily, A.; Ahmadi, A.; Raeisi, F.; Ahmadi, M.R.; Nezhad, A.E.; Janghorbani, M. Evaluating the effectiveness of mixed-integer linear programming for day-ahead hydro-thermal self-scheduling considering price uncertainty and forced outage rate. Energy 2017, 122, 182–193. [Google Scholar] [CrossRef]
- Wong, S.Y.W. An enhanced simulated annealing approach to unit commitment. Int. J. Electr. Power Energy Syst. 1998, 20, 359–368. [Google Scholar] [CrossRef]
Time (h) | Inflow (m3/s) | Discharge (m3/s) | Load (MW) | Water Level (m) | Energy Production (MW) | Percentage Energy Production | Target (Schedule) |
---|---|---|---|---|---|---|---|
T1 | 377 | 509 | 589 | 771.51 | 707 | 120 | Schedule 6 |
T2 | 312 | 508 | 587 | 771.49 | 708 | 121 | Schedule 6 |
T3 | 415 | 315 | 404 | 771.50 | 435 | 108 | Schedule 4 |
T4 | 295 | 259 | 301 | 771.50 | 352 | 117 | Schedule 3 |
T5 | 112 | 258 | 302 | 771.48 | 351 | 116 | Schedule 3 |
T6 | 140 | 256 | 299 | 771.48 | 354 | 118 | Schedule 3 |
T7 | 178 | 317 | 302 | 771.48 | 440 | 146 | Schedule 4 |
T8 | 248 | 508 | 564 | 771.48 | 714 | 127 | Schedule 6 |
T9 | 140 | 507 | 591 | 771.47 | 713 | 121 | Schedule 6 |
T10 | 119 | 554 | 587 | 771.46 | 783 | 133 | Schedule 7 |
T11 | 308 | 551 | 590 | 771.46 | 780 | 132 | Schedule 7 |
T12 | 351 | 512 | 403 | 771.46 | 726 | 180 | Schedule 6 |
T13 | 280 | 314 | 298 | 771.46 | 443 | 149 | Schedule 4 |
T14 | 168 | 257 | 301 | 771.46 | 364 | 121 | Schedule 3 |
T15 | 338 | 258 | 470 | 771.45 | 368 | 78 | Schedule 3 |
T16 | 317 | 432 | 600 | 771.46 | 615 | 103 | Schedule 5 |
T17 | 377 | 487 | 331 | 771.46 | 689 | 208 | Schedule 6 |
T18 | 334 | 256 | 302 | 771.46 | 359 | 119 | Schedule 3 |
T19 | 407 | 332 | 532 | 771.46 | 469 | 88 | Schedule 4 |
T20 | 459 | 566 | 592 | 771.46 | 802 | 135 | Schedule 7 |
T21 | 431 | 513 | 596 | 771.45 | 730 | 122 | Schedule 6 |
T22 | 515 | 512 | 594 | 771.46 | 726 | 122 | Schedule 6 |
T23 | 378 | 512 | 596 | 771.46 | 725 | 122 | Schedule 6 |
T24 | 416 | 484 | 594 | 771.46 | 685 | 115 | Schedule 6 |
Time (h) | Inflow (m3/s) | Discharge (m3/s) | Load (MW) | Water Level (m) | Energy Production (MW) | Percentage Energy Production | Target (Schedule) |
---|---|---|---|---|---|---|---|
T1 | 750 | 777 | 733 | 746.92 | 777 | 106 | Schedule 10 |
T2 | 833 | 748 | 727 | 746.91 | 744 | 102 | Schedule 9 |
T3 | 743 | 528 | 539 | 746.91 | 524 | 97 | Schedule 7 |
T4 | 698 | 530 | 497 | 746.90 | 522 | 105 | Schedule 7 |
T5 | 835 | 530 | 499 | 746.90 | 522 | 105 | Schedule 7 |
T6 | 561 | 530 | 500 | 746.92 | 530 | 106 | Schedule 8 |
T7 | 475 | 530 | 505 | 746.91 | 526 | 104 | Schedule 8 |
T8 | 439 | 531 | 578 | 746.89 | 518 | 90 | Schedule 7 |
T9 | 509 | 679 | 730 | 746.89 | 667 | 91 | Schedule 8 |
T10 | 559 | 828 | 951 | 746.89 | 816 | 86 | Schedule 10 |
T11 | 417 | 1049 | 973 | 746.89 | 1037 | 107 | Schedule 13 |
T12 | 488 | 957 | 736 | 746.86 | 932 | 127 | Schedule 12 |
T13 | 576 | 784 | 743 | 746.85 | 755 | 102 | Schedule 10 |
T14 | 573 | 783 | 740 | 746.84 | 750 | 101 | Schedule 10 |
T15 | 544 | 782 | 740 | 746.83 | 745 | 101 | Schedule 9 |
T16 | 445 | 783 | 741 | 746.82 | 741 | 100 | Schedule 9 |
T17 | 538 | 783 | 741 | 746.80 | 733 | 99 | Schedule 9 |
T18 | 737 | 783 | 742 | 746.80 | 733 | 99 | Schedule 9 |
T19 | 737 | 783 | 746 | 746.84 | 750 | 101 | Schedule 10 |
T20 | 647 | 790 | 749 | 746.83 | 753 | 101 | Schedule 10 |
T21 | 740 | 790 | 749 | 746.80 | 741 | 99 | Schedule 9 |
T22 | 878 | 790 | 749 | 746.81 | 745 | 99 | Schedule 9 |
T23 | 879 | 791 | 749 | 746.82 | 749 | 100 | Schedule 10 |
T24 | 647 | 760 | 749 | 746.82 | 718 | 96 | Schedule 9 |
Time (h) | Inflow (m3/s) | Discharge (m3/s) | Load (MW) | Water Level (m) | Energy Production (MW) | Percentage Energy Production | Target (Schedule) |
---|---|---|---|---|---|---|---|
T1 | 252 | 151 | 220 | 642.42 | 251 | 114 | Schedule 3 |
T2 | 174 | 162 | 221 | 642.82 | 255 | 115 | Schedule 3 |
T3 | 67 | 73 | 92 | 642.86 | 95 | 103 | Schedule 1 |
T4 | 67 | 58 | 64 | 642.84 | 69 | 108 | Schedule 1 |
T5 | 67 | 55 | 64 | 642.87 | 62 | 97 | Schedule 1 |
T6 | 67 | 64 | 64 | 642.91 | 77 | 120 | Schedule 1 |
T7 | 67 | 126 | 115 | 642.92 | 187 | 163 | Schedule 2 |
T8 | 222 | 305 | 466 | 642.72 | 514 | 110 | Schedule 6 |
T9 | 497 | 378 | 650 | 642.44 | 655 | 101 | Schedule 7 |
T10 | 508 | 416 | 652 | 642.84 | 708 | 109 | Schedule 8 |
T11 | 509 | 402 | 650 | 643.14 | 672 | 103 | Schedule 8 |
T12 | 512 | 405 | 651 | 643.48 | 665 | 102 | Schedule 7 |
T13 | 303 | 447 | 647 | 643.82 | 727 | 112 | Schedule 8 |
T14 | 260 | 396 | 648 | 643.36 | 653 | 101 | Schedule 7 |
T15 | 260 | 390 | 657 | 642.92 | 659 | 100 | Schedule 7 |
T16 | 257 | 385 | 659 | 642.48 | 666 | 101 | Schedule 7 |
T17 | 491 | 387 | 659 | 642.05 | 685 | 104 | Schedule 8 |
T18 | 510 | 411 | 661 | 642.40 | 715 | 108 | Schedule 8 |
T19 | 514 | 412 | 662 | 642.73 | 705 | 106 | Schedule 8 |
T20 | 414 | 441 | 660 | 643.07 | 744 | 113 | Schedule 8 |
T21 | 253 | 395 | 658 | 642.98 | 665 | 101 | Schedule 7 |
T22 | 252 | 401 | 657 | 642.50 | 694 | 106 | Schedule 8 |
T23 | 252 | 312 | 581 | 642.00 | 553 | 95 | Schedule 6 |
T24 | 252 | 200 | 251 | 641.79 | 361 | 144 | Schedule 4 |
Time (h) | Inflow (m3/s) | Discharge (m3/s) | Load (MW) | Water Level (m) | Energy Production (MW) | Percentage Energy Production | Target (Schedule) |
---|---|---|---|---|---|---|---|
T1 | 573 | 479 | 865 | 639.91 | 812 | 94 | Schedule 8 |
T2 | 323 | 296 | 488 | 640.26 | 507 | 104 | Schedule 5 |
T3 | 293 | 263 | 439 | 640.36 | 453 | 103 | Schedule 4 |
T4 | 293 | 258 | 439 | 640.47 | 444 | 101 | Schedule 4 |
T5 | 293 | 260 | 439 | 640.60 | 448 | 102 | Schedule 4 |
T6 | 292 | 262 | 439 | 640.72 | 452 | 103 | Schedule 4 |
T7 | 292 | 259 | 440 | 640.83 | 447 | 110 | Schedule 4 |
T8 | 292 | 281 | 440 | 640.95 | 484 | 120 | Schedule 5 |
T9 | 526 | 474 | 673 | 640.99 | 806 | 100 | Schedule 8 |
T10 | 773 | 626 | 1060 | 641.17 | 1059 | 104 | Schedule 10 |
T11 | 797 | 677 | 1103 | 641.68 | 1146 | 109 | Schedule 11 |
T12 | 776 | 713 | 1104 | 642.09 | 1206 | 98 | Schedule 11 |
T13 | 512 | 500 | 872 | 642.30 | 852 | 107 | Schedule 8 |
T14 | 287 | 414 | 662 | 642.34 | 708 | 98 | Schedule 7 |
T15 | 289 | 381 | 663 | 641.91 | 653 | 94 | Schedule 6 |
T16 | 431 | 365 | 663 | 641.59 | 625 | 102 | Schedule 6 |
T17 | 449 | 394 | 664 | 641.82 | 674 | 101 | Schedule 6 |
T18 | 449 | 392 | 665 | 642.01 | 671 | 102 | Schedule 6 |
T19 | 450 | 391 | 666 | 642.20 | 669 | 102 | Schedule 6 |
T20 | 461 | 393 | 667 | 642.40 | 673 | 102 | Schedule 6 |
T21 | 469 | 394 | 665 | 642.63 | 676 | 102 | Schedule 6 |
T22 | 466 | 392 | 661 | 642.88 | 673 | 102 | Schedule 6 |
T23 | 466 | 391 | 658 | 643.12 | 670 | 101 | Schedule 6 |
T24 | 469 | 385 | 660 | 643.36 | 661 | 100 | Schedule 6 |
Tianshengqiao Plant 1 (Winter Season) | Tianshengqiao Plant 1 (Summer Season) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Decision Tree Algorithms | Nodes | Leaves | Max Depth | Attributes | Error Rate | Execution Time | Nodes | Leaves | Max Depth | Attributes | Error Rate | Execution Time |
C4.5 | 7 | 4 | 3 | 8 | 4% | 93 ms | 13 | 7 | 6 | 8 | 8.3% | 188 ms |
Improved C4.5 | 3 | 2 | 2 | 8 | 30% | 109 ms | 9 | 5 | 4 | 8 | 20% | 109 ms |
ID3 | 5 | 3 | 3 | 8 | 5% | 110 ms | 5 | 3 | 3 | 8 | 40% | 125 ms |
CHAID | 4 | 3 | 2 | 8 | 16% | 93 ms | 4 | 3 | 2 | 8 | 20% | 125 ms |
Tianshengqiao Plant 2 (Winter Season) | Tianshengqiao Plant 2 (Summer Season) | |||||||||||
Decision Tree Algorithms | Nodes | Leaves | Max Depth | Attributes | Error Rate | Execution Time | Nodes | Leaves | Max Depth | Attributes | Error Rate | Execution Time |
C4.5 | 9 | 5 | 4 | 8 | 16% | 94 ms | 9 | 5 | 4 | 8 | 8% | 110 ms |
Improved C4.5 | 7 | 4 | 3 | 8 | 25% | 125 ms | 9 | 5 | 4 | 8 | 12% | 187 ms |
ID3 | 5 | 3 | 3 | 8 | 30% | 110 ms | 7 | 4 | 3 | 8 | 16% | 110 ms |
CHAID | 4 | 3 | 2 | 7 | 4.1% | 93 ms | 4 | 3 | 2 | 8 | 25% | 110 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvez, I.; Shen, J.; Hassan, I.; Zhang, N. Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant. Energies 2021, 14, 298. https://doi.org/10.3390/en14020298
Parvez I, Shen J, Hassan I, Zhang N. Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant. Energies. 2021; 14(2):298. https://doi.org/10.3390/en14020298
Chicago/Turabian StyleParvez, Iram, Jianjian Shen, Ishitaq Hassan, and Nannan Zhang. 2021. "Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant" Energies 14, no. 2: 298. https://doi.org/10.3390/en14020298
APA StyleParvez, I., Shen, J., Hassan, I., & Zhang, N. (2021). Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant. Energies, 14(2), 298. https://doi.org/10.3390/en14020298