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Abstract: Multi-sensor imagery data has been used by researchers for the image semantic segmenta-
tion of buildings and outdoor scenes. Due to multi-sensor data hunger, researchers have implemented
many simulation approaches to create synthetic datasets, and they have also synthesized thermal
images because such thermal information can potentially improve segmentation accuracy. However,
current approaches are mostly based on the laws of physics and are limited to geometric models’
level of detail (LOD), which describes the overall planning or modeling state. Another issue in
current physics-based approaches is that thermal images cannot be aligned to RGB images because
the configurations of a virtual camera used for rendering thermal images are difficult to synchronize
with the configurations of a real camera used for capturing RGB images, which is important for
segmentation. In this study, we propose an image translation approach to directly convert RGB
images to simulated thermal images for expanding segmentation datasets. We aim to investigate
the benefits of using an image translation approach for generating synthetic aerial thermal images
and compare those approaches with physics-based approaches. Our datasets for generating thermal
images are from a city center and a university campus in Karlsruhe, Germany. We found that using
the generating model established by the city center to generate thermal images for campus datasets
performed better than using the latter to generate thermal images for the former. We also found that
using a generating model established by one building style to generate thermal images for datasets
with the same building styles performed well. Therefore, we suggest using training datasets with
richer and more diverse building architectural information, more complex envelope structures, and
similar building styles to testing datasets for an image translation approach.

Keywords: building envelopes; thermal image simulation; segmentation datasets; data hunger

1. Introduction

Unmanned aircraft systems (UASs), also known as drones, have commonly been used
in civil engineering and military applications [1]. For example, UAS-based aerial images
integrated with photogrammetric technologies allow for classifying building elements [2],
monitoring and controlling construction sites [3], and creating virtual environments for
mission planning and rehearsals [1]. The photogrammetric technology, which maps images
acquired by drones onto a 3D model, provides simple analytics, for example, distance and
dimension measurement. Integrated with other tools and applications, a photogrammetry-
recreated 3D model can detect not only structural damage but also heat loss from buildings
and district heating networks. Such a 3D model can also be used to locate roads and classify
their materials to precisely calculate driving time for route planning. All these examples em-
phasize on the need for extracting semantic information from photogrammetry-recreated
models.
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To extract semantic information, also known as semantic segmentation, from images
or photogrammetric models, many computer vision algorithms, especially deep learning
approaches, have been applied, such as MaskRCNN [4], Yolo family [5], and DeepLab
family [6]. Early studies used images or 3D models with only one channel (mostly the
red-green-blue (RGB) color channel obtained by an image sensor). However, segmentation
based on single sensor images is insufficient when facing complex scenarios; thus, for
more accurate classification and segmentation, researchers have added more channels and
features to RGB images [7]. For example, Chen et al. [1] added texture, point density, local
surface, and open source features, while Liu et al. [8] added depth information to improve
photogrammetric point cloud segmentation. Researchers have also improved segmentation
by adding thermal information [7,9].

Despite the great success achieved by the previously described studies, deep learning
algorithms are quite data hungry as demonstrated in many studies [10,11]. Data hunger
refers to the size of the training dataset required for generating a model with a good
predictive accuracy [12]. It is difficult for individual research groups to expand the training
datasets because researchers are often unwilling to share data, or their data formats are
incompatible. Therefore, researchers are forced to collect more data on their own. How-
ever, collecting data usually takes several days for a large district and is labor-intensive,
costly, and inefficient [13]. Additionally, annotating these new acquired training datasets
also requires many hours of labor and inspection for annotation accuracy. In order to
solve the data hunger problem, some researchers have used synthetic data. For example,
Chen et al. [14] designed a framework to generate synthetic images from a 3D virtual
environment. They simulated drone flight paths over the synthetic virtual environment
(8D point cloud) that had annotated information such as the ground, buildings, and trees
to render synthetic images with corresponding annotations. In their framework, depth
images, which can be obtained by Lidar, and RGB images, which can be obtained by color
cameras, in the real world were instead generated virtually. Data hunger also occurs
with images that fuse RGB with thermal information. For example, Li et al. [15] used
thermal images taken outdoors and indoors on the ground to segment pedestrians, cars,
tables, lamps, and other objects. This takes advantage of the thermal camera’s ability
to capture information in dark and hazy environments. They also introduced synthetic
thermal images to improve segmentation. Inspired by Li’s studies, we planned to use
thermal information to improve the segmentation of aerial images of buildings outdoor
scenes because it would allow us to capture different thermal signatures of each part of
the building and its surroundings [10,16,17]. Segmentation of building components has
many benefits for energy analysis such as detecting building envelopes’ heat loss, moisture,
and thermal bridges [18-20]. It also allows for simulating energy consumption [21,22].
Therefore, generating synthetic thermal images as complementary information for RGB
images could further improve the segmentation process.

There are several simulation approaches to generate synthetic thermal information.
For instance, physics-based building surface thermal simulation enables the precise quan-
tification of energy fluxes and simulates the building surface temperatures by using heat
equations [23-25]. Many recent studies have used 3D models to simulate heat trans-
fers [26,27]; however, these studies are limited to their level of detail (LOD), and accuracy
and effectiveness are reduced [23,28-30]. To be precise, there is no surface temperature
simulation based on an as-is built model (the highest LOD model) due to the computa-
tional complexity and inherent uncertainties caused by the many default parameters and
assumptions used in a simulation process [31]. Furthermore, physics-based simulation
mainly works for buildings or specific infrastructures not for the surrounding environment
such as trees or streets. Physics-based simulation methods do not simulate the surrounding
environment in detail and simplify the surrounding environment as boxes in the geometric
models [25].

Unlike the aforementioned approaches, this study focuses on simulating tempera-
ture information for generating synthetic aerial thermal images. Our approach learns
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features and extracts information from historical data of drone-based images instead of
a physics-based thermal simulation. Our approach avoids using default configurations
when detailed system information such as building material and users’ behaviors is not
available. Furthermore, our approach is not limited to geometric models” LOD; on the
contrary, current approaches depend on 3D models’ precision for accuracy. Our approach
implements computer vision algorithms to translate RGB images acquired by drones over
a large-scale area to thermal images, which also enables them to be fused with RGB images
for segmentation with multi-sensor data. Our study is designed to answer the following
questions: (1) How can RGB images of buildings be used to generate thermal images? (2)
How can training data of captured RGB images affect simulation results? Particularly, how
is the generation model established by one building style used to generate thermal images
with another? (3) What are the similarities and differences between the current approaches
and our proposed approach for generating thermal images? This study will only focus
on thermal image generation performance by evaluating the generated results compared
to the ground truth. The performance of deep learning using generated images will be
evaluated in a future study. The rest of this paper is organized into the following sections:
Sections 2 and 3 review the current work of surface temperature simulation and computer
vision techniques that have been used in this study. Section 4 presents the methodology of
this study. Section 5 presents results and discussion. Section 6 concludes the paper and
presents future work possibilities.

2. Thermal Simulation for Building Envelope to Generate Thermal Images

A building model’s complexity affects the resolution of the surface temperature simu-
lation for generating synthetic thermal imagery data [32]. Some case studies have shown
that less comprehensive models only simulate one unified surface temperature per whole
facade, while more complex models can incorporate more specific parameters of facades
such as their material, orientations, and functions, which makes the temperature simula-
tions more accurate [25,29,32]. For example, Aguerre et al. [33] designed and implemented
ThRend, a facade thermogram simulation tool, which rendered building thermal images
based on different components’ emissivity and reflectivity configurations [25]. The models
used in their experiments were simplified down to four uniformly thick boxes representing
street buildings. Therefore, the simulation results could not capture slight temperature
changes on the facades. For example, at 4 a.m. and 7 p.m., the facades in the simulated
thermal images have uniform simulated thermal temperature. Additionally, the results
cannot simulate thermal bridges on the walls. In their new studies that were developed
as an incremental improvement over their previous work [34,35], they integrated a higher
level of detail geometry into a finite element method (FEM) solver. Their simulation results
were more accurate and detailed, for instance, their results could simulate the temperature
changes between windows and walls.

There are other similar studies conducted by Henon et al. [28,36], Kottler et al. [23,24,29],
and Xiong et al. [30,37]. Henon et al. conducted their experiments using software SOLENE,
which can simulate the climatological factors of urban neighborhoods, to compute building
surface temperature and evaluate the sensible heat flux to the city atmosphere [28,36].
Kottler et al. chose a physical approach to simulate the building surface temperatures
using heat equations [23,24,29]. First, different building components simulated in the
models were clearly classified and linked to a material library. Second, the vegetation
and trees were also taken into consideration when the building surface temperature was
simulated, but the model in their experiment was still simplified. As the authors described
in their research, vegetation and trees were roughly represented as so called forest boxes.
Furthermore, trees that were close to each other were integrated in one model, and single
trees were ignored. Xiong et al. argued that geometric model generation for simulation
was labor-intensive and time-consuming; therefore, they implemented a method to semi-
automatically simulate temperature signatures [30,37]. Their simulation pipeline included
3D model reconstruction, component classification, model surface subdivision, material
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assignment, and infrared rendering with limitations due to the level of detail (LOD). LOD
is a term describing the overall planning or modeling state at a certain time for design and
construction. It can present the complexity of 3D model visualization [38]. Xiong et al.’s
simulation was based on an approximated mesh model by using planar primitives. Their
simulation model was classified as LOD 2, at which roofs and facades were illustrated,
but detailed objects of the roofs and facades were not generated. Therefore, synthetic
thermal imagery data generated by such approaches do not allow the growth of semantic
segmentation training datasets.

Current simulation approaches, based on physics equations and laws of thermody-
namics, are limited to model details and computational time. These approaches are known
as deterministic systems or a “white box.” However, many stochastic systems or “black box”
approaches like neural networks have achieved competitive results. It is then necessary to
study stochastic systems that allow to simulate objects’ temperatures for the generation of
synthetic data.

3. Computer Vision and Generative Adversarial Networks (GAN)

As reviewed in the last section, earlier temperature simulation tasks have used mathe-
matical and physics models to predict the energy transfer between indoors and outdoors to
estimate the building envelope temperature. However, such approaches bring with them
many assumptions and can be limited due to the artificial models used for simulation.
Therefore, researchers have been attempting to improve models’ LOD to the highest as-built
level by deploying computer vision and photogrammetry since RGB images can directly
record the buildings” appearance, which inspires researchers to interpret the information
behind the images, such as image-to-image translation that converts RGB images to thermal
images [39,40]. There are many computer vision approaches used for image translation,
and the most robust and successful approach is generative adversarial network (GAN).
The approach we propose to use in this study is also based on GAN.

3.1. Computer Vision and Neural Networks

Computer vision tasks include collecting, processing, extracting, analyzing, and
understanding digital images. There are many computer vision applications in civil
engineering [41], such as damage detection [42-45], change detection [46-49], and structural
component recognition [50-53]. Additionally, computer vision is also used in urban energy
tasks such as detecting leakage for district heating networks [18,54,55], identifying thermal
bridge and moisture on building envelopes [19,20], and simulating energy consumption
based on thermal images [21,22].

Compared to more traditional computer vision approaches, convolutional neural
networks (CNNs) introduce non-linearity, which considers the dependency between each
pixel in an image. Krizhevsky et al.’s AlexNet is considered the pioneer use of CNNs [56].
After them, VGGNet [57], ZFNet [58], and GoogleNet [59] had improved image processing
performance. These computer vision approaches have been used for object recognition,
semantic segmentation, scene reconstruction, and many other topics. Researchers have
also discovered the potential of computer vision in translating and generating images.

3.2. From “Unstructured” to Conditional Generative Adversarial Network (GAN)

To translate and generate images, researchers have adapted structures and neurons of
hidden layers in the original CNNs. Since image-to-image translation tasks are pixel-wise
classification and regression based [39,60-62], researchers need to modify the output layers
to generate images. In earlier work, the formulations and processes usually transformed
input to output in a “unistructural” way, which means that each pixel is independent of
other pixels. Nevertheless, conditional generative adversarial networks (GANSs) proposed
by Goodfellow et al. [63] instead learned a “structured loss” that considered the joint
features of the output pixels. Additionally, loss function, an important technique, is
different from other network approaches in conditional GANs [6,64,65]. Conditional
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GAN is a machine learning framework used to generate information such as a block
of text or a robot’s action. It is formed by the generative network which can generate
candidates (sentences or actions) and the discriminative network which evaluates the
generated candidates. Due to the rapid development of neural networks, the performance
of generating information using GAN has been improved in recent years. Not only can a
GAN generate sentences and actions, but it also has applications in image translation.

GAN has been used for many image-to-image transformation applications includ-
ing image prediction (next frame prediction [66], product photo generation [67]), image
generation from sparse annotations [68,69], and painting style transfer [70]. However,
these approaches are application specific. Isola et al. [39] and Zhu et al. [40] proposed a
“pixel2pixel” and a “cycle-consistent” GAN. Their approaches are not task-specific. Partic-
ularly, Zhu et al.’s work also learned the input-output image mapping without the need
for paired training examples.

4. Research Method
4.1. Research Design

This study includes three steps: (1) dataset preparation, (2) building envelope thermal
image rendering, and (3) evaluation. Figure 1 illustrates the research method workflow.

Campus testing
datasets 1
- ~ - — Campus training Training of campusGAN Evaluation of campusGAN Cross-Evluation of
Simultaneous aerial RGB.lmage Dn{w}non into datasets (thermal rendering) with campus data campusGAN with city
captured RGB and 1+ size r+  training and _ — — ' _ ‘ _ data and of GityGAN
thermal images reduction testing datasets City training Training of cityGAN Evaluauon‘ of cityGAN with : y
d t (thermal rendering) city data with campus data
City testing i
datasets
Step 1: Data preparation Step 2: Building envelope thermal image rendering : Step 3: Evaluation

Figure 1. Research method flowchart.

The first step is data preparation. In order to fit the algorithm and save memory
and computation time, the resolution of aerial captured RGB images needs to be reduced.
Additionally, the method used in this approach requires the whole dataset to be divided
into training and testing datasets following a commonly used proportion. In this study,
our datasets included both campuses and city areas.

The second step is rendering building envelope thermal images. The image translation
neural network was introduced in this step, and its network parameters were trained and
updated by campus and city training datasets. Such trained network models were used to
simulate thermal images.

The last step is evaluation of the proposed method. The simulated thermal images
were compared with ground truth via two evaluation criteria including two mathematical
approaches: pixel-wise mean squared error (MSE) and structural similarity index (SSIM).
The evaluation criteria were conducted on campus and city data with their respective
testing data as well as cross evaluation.

4.2. Simulation Domains and Dataset Preparation

To easily detect the thermal image contrast of building envelopes, we collected data in
the winter in Karlsruhe, Germany, since the temperature difference between indoors and
outdoors is obvious there in the winter. The experiments were conducted in two structurally
different outdoor scenes. One was on a college campus where modern buildings, separated
by lawn and roads, were not close in proximity in a suburban area. The other one was in a
dense city area in Germany where traditional multi-story European buildings were located
close together. The reasons for the selection of these two scenarios are that (1) the heat
island effect is more obvious in city areas than in suburban areas; and (2) architectural styles
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of buildings are different in city areas and in suburban areas. Conducting experiments in
both areas allowed us to comprehensively explore our approaches.

In this study, we designed four experiments. Thermal and corresponding RGB images
were taken from two separated areas on the campus area for experiments one and two, as
shown in Figure 2a. These two experiments are abbreviated as “Camp1l” and “Camp2”.
Images were also taken from two separated areas in the city area for experiments three and
four, as shown in Figure 2b and abbreviated as “Cityl” and “City2”.

(a) Two experiments on campus. (b) Two experiments in a European city center

Figure 2. Illustration of the experiment locations.

In order to keep the size of the dataset balanced, there were around 20,000 images
in each experiment. Each image had a resolution of 2048 x 2048 pixels® and was resized
to 256 x 256 pixels? to save algorithm computing memory and time. It is common to
divide datasets into training and testing sets. Training dataset usually accounts for 70%
(14,000 images) of the whole dataset, and testing dataset accounts for the rest. Therefore,
datasets in these four experiments were all divided into training and testing datasets.

4.3. As-Built Building Envelope Thermal Image Rendering

The algorithms used in this paper were based on Isola et al.’s previous work called
“pixel2pixel”, which is an image-to-image translation based on GAN and is not task specific.
The network architecture used inside of the algorithm is a fully convolutional network
(U-net). The basic theory of image translation used in this study is to directly convert RGB
images to thermal images via networks.

In a commonly used neural network flowchart, training datasets can train and build
a learning model. The learning model learns rules and features from training datasets
by comparing predicted results with ground truth. After the model learns features by
continuously adjusting its parameters, it can process testing datasets with its updated
parameters. In this study, datasets consisted of pairs of real captured RGB and thermal
images by cameras. The RGB images in proportionally separated training datasets were
fed into the initial GAN model. The model then converted RGB images to simulated
thermal images, and updated its inner parameters based on reducing the discrepancies
between simulated thermal images and captured thermal images to improve the simulation
performance. After many rounds of updating parameters (200 epochs in this study),
the GAN model was ready to process RGB images in proportionally separated testing
datasets. Since we had four experiments as shown in Figure 2, we had four training
datasets and four testing datasets. In this study, we used a training dataset and built a GAN
model to process a testing dataset not only in the same experiment but also in a different
experiment. The cross-evaluation between every two experiments allowed us to observe
how the generation model established in one building style could be used to generate
thermal images on another. As the examples show in Figure 3, the GAN model converts the
RGB images, Figure 3a,d, to the simulated thermal images Figure 3b,e. The latter images



Energies 2021, 14, 353

7 of 16

are compared with the captured thermal images in Figure 3¢ f. Training datasets and testing
datasets in Figure 3 are from the same experiment, so simulated and captured thermal
images look identical. Other cases with cross-evaluations are illustrated and discussed
in the results section, and some discrepancies between simulated and captured thermal
images are observed. The shades of gray color in the thermal images indicate hotter areas
(light gray) and colder areas (dark gray). We selected the black-white palette for two
reasons. First, the monotonous color palette can intuitively represent the contrast between
hot areas and cold areas. Second, the black-white palette only uses one channel to represent
images, and we can color code from 0 to 255 to represent temperature information, which
is easy for algorithms to calculate in the GAN model.

ki

(a) RGB image on campus area (b) Simulated thermal image on campus area  (c) Captured thermal image on campus area

(d) RGB image in city area

(e) Simulated thermal image in city area (f) Captured thermal image in city area

Figure 3. Examples that explain thermal image rendering.

4.4. Evaluation Metrics

The performance of each experiment and cross-evaluation between every two experi-
ments were measured by comparing rendered thermal images (R) generated from RGB
images by the GAN model with real captured thermal images (C) by using image similarity
evaluation criteria, pixel-wise mean squared error (MSE), and structural similarity index
(SSIM), as shown in Equations (1) and (2) [71]. These criteria calculate pixel-wise per image
and compare rendered with captured thermal images.

m—1n—1
x=0 y=0
SSIM(R, C) = (2urpc +c1)(20rc +2) @

(M2 + p2 +c1) (0 + 02 +2)
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In Equation (1), R represents a rendered image and C represents a captured image.
The resolutions of those two images are both 256 pixels times 256 pixels. The character
(x, y) represents the same coordinate of pixels in both rendered and thermal images. The
differences of every two relevant pixels in two compared images are evaluated by squaring
these differences, summing them up, and dividing the sum of squares by the total number
of pixels (256 x 256) in the images. An MSE of value 0 shows that two compared images are
completely identical, and an MSE that is bigger than 0 indicates that two compared images
are different. The bigger the MSE values are, the more differences the two compared images
have, which means that the generation model renders a rendered image with more errors
compared to a captured image. However, MSE is unable to agree with human subjective
analysis [72]. Therefore, SSIM was selected as a complimentary evaluation approach.

SSIM is used to compare the structural information of images. In Equation (2), R
represents a rendered image and C represents a captured image. Symbols yr and or
represent the mean value and standard deviation value of pixels in a rendered image, as
shown in Equations (3) and (4), and ¢, oc represent these values for a captured image.
Symbol o represents the covariance of rendered images and captured images, as shown
in Equation (5). Coordinate (x, y) indicates the same coordinate of pixels in the compared
two images. Last, symbols c; and ¢y, in Equation (2) are constants used for the stability of
the equation when p and ¢ are extremely small. The range of SSIM value is between —1
and 1, where 1 represents perfect identicality.

= ; ;)R(x,y) &)
1 m—1n—1
R\ —1 o ygo@(w) —pr)? @)
1 m—1n—1
ore = \| x;w;)(R(x'y) — ur)(C(x,y) — pe) ®)

5. Results and Discussion

There were four experiments used in this study, abbreviated as “Camp1”, “Camp2”,
“City1”, and “City2”. The evaluations were conducted on the testing datasets in the same
experiment and between different experiments as shown in Table 1. Each row represents a
GAN model that was built based on a training dataset in a corresponding experiment, and
this GAN model processes a testing dataset in each column. The color in Table 1 represents
the value of the number in a cell. According to the evaluation metrics, higher MSE values or
lower SSIM values represent worse performance. Therefore, the red color represents higher
MSE and lower SSIM values, namely worse performance. To represent better performance,
the green color represents lower MSE and higher SSIM values, and the red color represents
higher MSE and lower SSIM.

To investigate the bad performances, we selected cases with the highest MSE and
lowest SSIM values in each evaluation both in the same experiment and in the cross-
evaluation, as shown in Figure 4. In the same way that the horizontal and vertical headers
are organized in Table 1, each row in Figure 4 represents what training dataset was used
to build a GAN model, and each column represents a testing dataset that such a GAN
model processes. The titles “Real captured”, “Simulated”, and “RGB” in Figure 4 represent
captured thermal images, rendered thermal images by a GAN model, and corresponding
RGB images. The selected images have highest MSE and lowest SSIM in each evaluation.
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Figure 4. Selected images with highest MSE and lowest SSIM in each evaluation.
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Table 1. Total average mean squared error (MSE) and structural similarity index (SSIM) values in each experiment.
Total Average MSE Total Average SSIM
Campl Camp2 Cityl City2 Campl Camp2 Cityl City2

(Testing) (Testing) (Testing) (Testing) (Testing) (Testing) (Testing) (Testing)

Campl (training) 2.5779308 60.38710 81.72707 132.63658 0.927918 0.809343 0.803144 0.789476
Camp2 (training) 56.352844 4.675767 60.85602 138.23941 0.823244 0.914039 0.788834 0.75134
City1 (training) 107.46189 72.40453 3.70587 159.21241 0.837777 0.838546 0.944457 0.885718
City2 (training) 79.49741 66.63147 88.94927 2.33137 0.803554 0.800675 0.834157 0.943066

5.1. Simulation Result Assessment

As described in the method Section 4, we evaluated the GAN simulation approaches
based on MSE and SSIM values. As shown in Table 1, if we see MSE and SSIM evaluations as
two matrices, the color patterns for MSE and SSIM evaluation matrices are basically similar.
First, green color is in the diagonals both for total average MSE and SSIM evaluations, in
other words, we can observe a good performance in a case in which training and testing
datasets both stem from the same experiment. Second, using a GAN model that is built
based on city training datasets to render campus testing datasets performs better than the
inverse, since values in upper triangular entries are higher than values in lower triangular
entries in a MSE matrix, and values in upper triangular entries are lower than values in
lower triangular entries in a SSIM matrix. The potential explanation is that the building
styles in city centers are more complex than on campuses, which allows a GAN model
to learn more hidden features from building envelopes in a city center. Additionally,
as Figure 2a shows, buildings are sparsely located and separated by lawn and roads on
campus. Thus, there is less building envelope information for a GAN model to learn.
Therefore, a GAN model established by city datasets is more capable of simulating building
envelope thermal information. Third, although the color patterns are similar between MSE
and SSIM evaluation matrices, there is an outlier in an entry (city1l training dataset—city
2 testing dataset) in MSE matrix, which is supposed to be small, but such entry in SSIM
evaluation matrix is normal.

Figure 4 illustrated the selected cases with bad performance in terms of MSE and
SSIM values. As the MSE and SSIM metrics described, the simulated thermal images with
highest MSE values have big color differences (grayscale color represents temperature
information) from real captured thermal images, and the simulated images with lowest
SSIM values have more image noise and difficulties in representing building envelope
structures. Campus buildings’ envelopes are not complex like city buildings” envelopes;
therefore, campus testing datasets intuitively are simulated better than city testing datasets,
although simulated images shown in Figure 4 are cases with highest MSE and lowest SSIM.
Additionally, the observation that GAN models built based on city datasets perform better
is also validated in Figure 4.

In order to understand the relationship between MSE and SSIM in terms of all images
in an individual evaluation, we plotted several multivariate distribution figures for both the
same and cross-experiment evaluations. In the same way that the headers are organized in
Table 1, these distribution figures are plotted in Figure 5. In each distribution figure, the x-
axis represents MSE value, and the y-axis represents SSIM value. Each image in the testing
dataset has a MSE and a SSIM value, and a red point with a pair of MSE-SSIM coordinates
is drawn in the distribution. The darker red area represents concentrated red points while
the lighter red area represents scattered red points. There are some patterns observed in
Figure 5. First, most figures illustrate negative correlations between MSE and SSIM values.
Figures in the diagonal from upper left to lower right show robust negative correlations
that red areas are very thin like a line with a strong negative coefficient. However, red
points in other figures are scattered, which means such a performance is not stable. Second,
if we observe the distributions in terms of MSE and SSIM values, respectively, we find that
MSE values follow a long-tail distribution while SSIM values follow a Gaussian distribution
in most evaluations. Third, distributions for the cases using a GAN model built with the
city training dataset to process campus testing dataset are more stable than the cases in
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an inverse way. The reason is that distributions in Figure 5i,j,m,n are more stable than
distributions in Figure 5¢,d, g h.
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Figure 5. Multivariate distribution figures for both the same and cross-experiment evaluations. (a) Distribution of

Campl(training) vs.

Campl(testing), (b) Distribution of Campl(training) vs.

Camp2(testing), (c) Distribution of

Campl(training) vs. Cityl(testing), (d) Distribution of Camp1(training) vs. City2(testing), (e) Distribution of Camp2(training)
vs. Campl(testing), (f) Distribution of Camp2(training) vs. Camp2(testing), (g) Distribution of Camp2(training) vs.
City1(testing), (h) Distribution of Camp2(training) vs. City2(testing), (i) Distribution of City1(training) vs. Camp1(testing),
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vs. Camp2(testing), (o) Distribution of City2(training) vs. City1(testing), (p) Distribution of City2(training) vs. City2(testing).
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5.2. Comparison between Our Results and Other Existing Methods

There have been several simulation tools to generate synthetic thermal images for
growing deep learning training datasets. Our approaches have some similarities compared
to the existing methods. First, we all can simulate the thermal information of building
envelopes without limitations to the building styles. As the results showed, we simulated
thermal images of building envelopes both on campuses and in city areas. Meanwhile,
the existing methods also do not have difficulties in simulating building envelopes with
different building styles. Second, we all can simulate thermal images for generating
synthetic thermal images to some extent [15,73]. The existing methods need to simulate the
3D geometric model first, but the thermal images still can be rendered by a virtual camera
in the 3D model. Our own approach has several differences from the current approaches.
First, as Henon et al. [36] described in their approach, they omitted some small structures
(appliances and chimneys) on roofs. In our study, there are many European traditional
city buildings with appliances and chimneys on complex roofs. Since our approach is
directly implemented on captured images, these features are not omitted. Second, the
evaluation metrics are different. For example, in Aguerre et al.’s [34] experiment, their
simulations were based on building models, as such their evaluation did not include the
surrounding environment such as trees or streets. In contrast, our approach covered both
buildings and their surroundings. In addition, Aguerre et al. compared simulation results
from selected areas of building envelopes with real thermal information. Such comparison
cannot cover areas that the building model did not represent in the simulation. Their
evaluation failed to compare this issue. In our approach, we compared the simulated
thermal errors by evaluating MSE values, on top of which, we also compared the building
envelope structures in the simulated images by evaluating SSIM values. We observe that an
image translation approach is more feasible than a physics-based approach for generating
synthetic thermal images for segmentation datasets. Third, if a physics-based approach
is used for generating thermal images, researchers should configure a virtual camera that
is consistent to a camera used for capturing RGB images in terms of camera position,
focal length, and point of view (POV), but such a virtual camera is difficult to accurately
configure. Our image translation approach avoids these procedures because it directly
converts RGB images to thermal images.

On the other hand, our approach also has drawbacks compared to current approaches.
As Aguerre et al. [34] described, they can simulate the surface temperatures at different
times of the day by adjusting parameters. However, our datasets were and should be
captured during the same time span of the day. For example, datasets captured in the
morning are not capable to simulate envelope surface temperatures in the night.

6. Conclusions and Future Work

Thermal information can be used to improve the segmentation of aerial images of
outdoor scenes. We proposed an innovative image translation approach that would sim-
ulate temperature information and we analyzed and validated that such an approach
is more feasible than a physics-based approach for generating synthetic thermal images
for segmentation. Compared to current approaches, these are the main benefits to our
approach: (1) It avoids acquisition of detailed system information like building materials
and does not require default configurations. This is more feasible for old buildings that lack
detailed information. (2) Our approach is not limited to the geometric models’ precision
and LOD, since image data used in our approach are taken from drone view directly
capturing the as-built building envelopes. Our approach can save time compared with
creating a geometric digital model. (3) Our approach can simulate buildings” surrounding
environment thermal information such as trees and streets. Those elements were simplified
in physics-based approaches as boxes during simulation. (4) Since our approach directly
converts RGB images to thermal images, it does not need to align a virtual camera that
renders thermal images to a real camera that captures RGB images.
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Our approach also has some limitations. Since the simulation process is based on
historical training datasets instead of the laws of physics, the time and season when these
data were collected is important. For example, training datasets collected in the morning or
summer do not allow us to simulate buildings’ envelope thermal information in the evening
or winter, and vice versa. On the contrary, a physics-based approach is based on building
materials and laws of thermodynamics. It can simulate building surface temperature at
different times of a day and seasons by adjusting corresponding parameters.

In this study, we only evaluated the GAN model performance of simulating thermal
images by implementing our approach on different datasets. We designed two evaluation
metrics, MSE and SSIM values. The former is to evaluate the ability of simulating building
envelope thermal information, and the latter is to evaluate the ability of simulating envelope
appearances. As described in Section 5, we could reach some important conclusions: (1)
Plotting all images’ pairs of MSE and SSIM values shows a negative relationship between
MSE and SSIM, namely one increasing while the other decreasing. If MSE and SSIM are
investigated separately, we found out that a long tail and a Gaussian distribution can
respectively describe MSE and SSIM values” distribution. (2) Using one model established
by one building style to generate thermal images in another is not ideal. Both Table 1 and
Figure 5 demonstrated that a case in which both training and testing datasets are in the
same experiment (either city or campus experiment) performs better than other cases in
which both datasets are in different experiments. It is wiser to use a training dataset that
is similar to testing datasets for training the image translation models. (3) A GAN model
built based on city datasets performs better than a model built based on campus datasets.
This is because the city datasets have more complex buildings and features for the former
model to learn. We suggest that researchers use datasets in which building information is
richer and envelope structures are more complex as training datasets.

As described, the performance of deep learning using simulated images was not
evaluated in this study. In future work, we plan to further evaluate the segmentation
performance using simulated images by our method and current existing methods. When
we compared our method with the current method, we did not use the same dataset since
some researchers” methods were not open source. In the future, we will also consider
integrating image generation with physics-based approaches to avoid their respective
drawbacks.
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