1. Introduction
Nowadays the design of gasoline-powered engines for passenger vehicles is becoming more challenging due to the increasingly stringent emissions regulation. In these engines, the combustion of lean-mixtures would be a quite effective strategy to strongly reduce the tailpipe emissions of unburned hydrocarbons (UHC), carbon monoxide (CO), and soot. Furthermore, operating lean mixtures reduces the heat losses resulting in higher engine efficiency, thus, lower fuel consumption while enhancing the knock occurrence with concerns on the engine reliability. Moreover, the combustion of lean mixtures in traditional spark ignited engines remains a concern since the presence of additional nitrogen together with the high temperature typical of those engines promote the formation of thermal Nitrogen Oxides (NO
). Since passenger vehicles are one of the main sources of the overall atmospheric NO
emission, their control and reduction is mandatory. As far as the installation of NO
traps along the exhaust line on passengers vehicles needs to be avoided for cost and space reasons, mixture control strategies such as the use of high pressure (warm) and low pressure (cold) Exhaust Gas Recirculation (EGR) are mainly adopted together with stroichiometric or slight rich air-fuel mixtures. It is known that in traditional spark ignited combustion chambers the amount of EGR must be limited in order to avoid the significant increase of the Coefficient of Variation (COV) and unstable combustion events [
1]. The use of innovative ignition systems is among the technological solutions to improve the implementation of low-impact engines. Indeed, in the nowadays highly-boosted gasoline engines the bottleneck with respect to the emissions target is represented by the current ignition system, which is called Transistor Coil Ignition (TCI), or simply spark. Under these conditions, in the case where a leaner fuel-air mixture is operated, the voltage required to ignite such mixtures can not be achieved with TCI systems. This can be understood by analyzing in detail the mechanism of the TCI: Once a high voltage is applied to the two electrodes of the spark, an intense electric field is generated accelerating the electrons of the mixture that migrate to the positive pole while colliding with other electrons along their path. These collisions lead to the breakdown of the dielectric first and to the electric arc then, resulting in the decreasing of the voltage between the two electrodes. The aforementioned electric phenomenon negatively affects the performances of the engine since the high amount of heat generated within the arc and transferred to the surrounding gas aims to maintain the ionization of the mixture to a sufficient value to initialize combustion. Furthermore, those high temperatures (around 1000 K at the spark plug walls) enhance the corrosion of the electrodes with concerns on their reliability and lifetime.
Currently, among all the plasma applications that have been implemented in industrial processes, the most flexibles are the so called non-LTE plasma (Local Thermal Equilibrium). In these plasma sources the interaction-mean free path is such that the electrons are not capable of transferring energy to ions resulting in a plasma configuration where the energies of ions and electrons highly differ. Under these conditions, the plasma is characterized by highly energized electrons (10–15 eV and 12,000–18,000 K) while ions show almost the ambient temperature (300 K). As a result, the plasma is characterized by an overall temperature which is the same than that of the ions and by highly energetic channels called streamers, namely regions where the local presence of those energetic electrons promotes a high electrical conductivity. The phenomenon is called Corona ignition and it is correlated to the use of electrode tips where the massive accumulation of the charge occurs due to high-curvature radius surfaces. As a consequence of the tip-shape of the electrode, the dielectric (i.e., air or mixture) breakdown and the following propagation from the tip of plasma streamers are observed. Under Corona ignition conditions, the classic hydrocarbon oxidation (by means of the spark) mechanism are replaced by electron impact dissociation reactions with reaction rates that are commonly two orders of magnitude greater than that of oxidation [
2]. The implementation of a non-LTE plasma source of corona type in place of the classical spark is a new ignition configuration called High Frequency Ignition system (HFI). HFI systems have been already applied successfully in different industrial applications (see [
3,
4,
5,
6,
7]) and its most recognized advantages are: (i) The lower voltage required at the electrode; (ii) the initial reactive volume, which is around three orders of magnitude higher with respect to TCI systems; and (iii) the characteristic time of the ignition event is around
against the
time range of the traditional sparks.
As reported in the current literature (refs. [
1,
8]), the implementation of the corona HFI system allows one to extend the lean and EGR mixture limits with advantages on the engine efficiency and brake specific emissions. In [
1] Cimarello et al. have conducted experiments on a 1-cylinder optical accessible gasoline engine equipped with a 4-tip Corona igniter. The Design of Experiments (DOE) comprised of the comparison between the Corona igniter and the standard spark plug at low speed and low load with different spark advances and normalized air-fuel ratios (
) from stoichiometric to 1.7 lean. The authors reported that for a given air-fuel ratio the Corona igniter produced a faster flame propagation at every
and a strong reduction of the COV at the leaner
(>1.4). This suggested that the Corona ignition is capable of speeding up the combustion process while promoting more repeatable ignition events. Due to the faster combustion, the knock lean limit of the engine was extended allowing no-knock combustions at
that were not achievable with the standard spark plug. Under this lean mixture quality, on the one hand the nitrogen mass amount into the combustion chamber was greater, with concerns on the potential increase of NO
production. On the other hand such air excess promoted the gas cool down resulting in the overall significant reduction of the brake specific NO
emission with respect to the stoichiometric and the leaner stable combustions with the traditional spark plug. In [
8] Pineda et al. performed an experimental comparison of a standard spark plug and a 4-tip Corona igniter by analyzing the indicating and the brake performance of a 1-cylinder Gasoline Direct Injection (GDI) engine under three different operating points with the focus on the effect of EGR. With regards to the high speed and high load points, the authors confirmed the observations seen in [
1] on the general improved combustion stability and velocity and the following knock tendency mitigation with the Corona ignition system. As a result, the Authors reported that the use of the Corona ignition allowed acceptable engine operations with higher fractions of EGR (from 10 wt% to 15 wt%), thus, with a lower NO
production. Therefore, the on-board implementation of HFI systems on passenger vehicles is a promising and attractive technological solution to mitigate the knock tendency, increase engine efficiency, and reduce the NO
emission thanks to the capability of this device to operate mixtures that are leaner in
and richer in EGR.
Different works have been carried on to characterize non-LTE plasma in detail. It is underlined that two of the main key features for a rigorous and representative modeling of a non-LTE plasma are photo-ionization and the number of species considered: (i) The former is recognized as the main driver of the streamer path development and formation along the medium; (ii) the latter is a measure of the degree of complexity of the model with respect to the simulation of the potential electrons interactions during their diffusion along the medium. One species models consider only the electrons phase, neglecting the effects of the ions on the electric field and could poorly estimate the electrons population density. On the other hand, three species models, accounting the presence of positive and negative ions in addition to electrons, are the strictly needed compromise between complexity (number of species) and the electrical characteristics of the discharge. In the current literature, almost the whole findings on the topic regards non-LTE plasma modeling in air at atmospheric conditions for generic purposes without any specific target application. In [
9], the authors studied the case of a positive Corona discharge wire and implemented a steady-state three species model, neglecting the recombination and photo-ionization effects, to compute the electron impact dissociation rates together with an in-house Boltzmann solver. In [
10], Georghiou et al. has effectively conducted the study on the development and the generation of transient non-LTE plasma from gas discharge with numerical three-dimensional simulations by considering a three species model together with photo-ionization and recombination phenomena. In [
11], Liu et al. applied their proposal of the transition of corona glow discharges into streamers by simulating a two-dimensional computation grid around a Corona tip. Transient regime, photo-ionization, and recombination were taken into account. Despite the fact that these works have contributed significantly in the knowledge advancement of numerical Corona discharge modeling, there is a lack of chemical kinetics integration, thus the assessment of the potential metastable molecules and radicals formation-destruction is not considered. Furthermore the main outputs returned and discussed by those works regard the electrons and ions number density, as well as the current and the electric field strength without any evaluation on the species distribution.
Among the most complete works on the generic characterization of Corona discharges in atmospheric air there are [
12,
13] since they included the integration of the charged particles balance equations with a chemical radical formation model. Furthermore both the above-mentioned models are capable of returning the distribution of the traced radicals. In [
12], Naidis with the aim to simulate two-dimensional transient Corona discharge proposed a different simplified charged particles balance equations set. In particular the Naidis’ proposal consists in considering the electrons interactions with ions and radicals by means of two representative populations whose balances is solved together with the classical electrons balance without specific information on their species and charge. As a consequence of this approach, the direct resolution of the Boltzmann equation was not possible, therefore the values of the radicals production rates was calculated using given rate constants from other literature works. In [
13], Tochikubo et al. developed the most comprehensive modeling of this phenomena including all the above-mentioned features plus a different photo-ionization source calculation method, the solution of the Boltzmann equation, and an extensive chemical kinetics model for two-dimensional transient simulations. To the knowledge of the present authors the most engine-oriented study of the Corona discharge process is that of [
14] Varma et al. In [
14], the authors implemented a code for the electrical characterization of a HFI system by solving the Gauss’ law with several simplificative hypothesis among which the most stringent ones are: (i) The ionization layer and its effects on radicals and ions production are neglected; (ii) the conductivity of the medium in set to zero; (iii) the mobility of the ions does not change; and (iv) the medium is represented by a single species. The code was tested on engine-like gas conditions assumed to reproduce the ones of a typical natural aspirated Spark Ignited (SI) engine. The results in terms of electric field and current density were validated against the measurements from an experimental test bench facility.
To the knowledge of the present authors, the current Computational Fluid Dynamics (CFD) engine simulation framework for the supporting of the design of the next low-impact engine lacks a methodology to integrate the modeling of the ignition conditions induced by those promising HFI systems with combustion simulations. This work is intended to propose a fast while reasonably accurate methodology to supply CFD engineers with the initial spatial distribution of the engine reactive species to provide chemical kinetics-based combustion models. This would be necessary since the Corona effect promotes low-temperature ignitions that are not enthalpy-driven but rather induced by a highly reactive large volume composed of the above-mentioned species. Despite the fact that, as mentioned before, Tochikubo et al. [
13] have already developed a very comprehensive model for the simulation of Corona discharges involving the characterization of the reactive species in ambient air, their proposal does not fulfill the strict balance between computation time and distribution accuracy required for the target application. This is due to both the high computational effort and complexity and the lack of available and reliable swarm-transport properties under engine boundary conditions. As a consequence, one of the main focuses of this work was the in-house development of a methodology which approaches the Corona discharge modeling with implementations aimed to save computing time while ensuring numerical stability and accuracy in the prediction of the ignitable mixture distribution. This work deals with the steady-state mono-dimensional numerical modeling of the Corona discharge of a reference 1-tip HFI system. Furthermore the non-LTE discharge was characterized for engine-like conditions, i.e., pressure around 50 and temperature around 800 K, which are greater than those commonly used for the study of these phenomena, i.e., ambient conditions. The properties of the electrons population by means of the Electron Energy Distribution Function (EEDF) was solved with an in-house developed Boltzmann solver. The number density of the electrons was estimated with the electron-ion transport equations together with the Gauss’ law to map electron diffusion inside of the combustion chamber, namely the plasma extension. Finally, the classical chemical kinetics laws are adopted to estimate the molar fractions of the species. As a result, the radicals mapping around the corona tip is obtained. Differently from Varma et al. [
14] which focused their study on the characterization of the HFI device and the Corona effect only from the electrical aspect point of view, the present work aims to reproduce the volume extension and the gas composition available for combustion triggered by the Corona discharge event. Moreover it needs to be considered that the implementations of Varma et al. were addressed by naturally aspirated engine conditions, which are no more consistent with the current marketplace scenario. Therefore in the present work the modeling was approached inline with the most recent highly-boosted GDI engines characteristics. The Boltzmann solver was validated against the results of two recognized open-access softwares (Bolsig+ and METHES) in terms of EEDF distribution and reactions rates calculation. The complete model was run to perform a parametric analysis according to an extensive DOE comprising the variation of different engine control parameters. The results are also discussed.
2. Methodology
This work is focused on the mono-dimensional numerical modeling of the Corona discharge for a 1-tip HFI ignition system under highly boosted gasoline engine conditions. The 1-tip assumption was needed since the mutual influence between the streamers generated by multi-tip ignition systems are strongly random and multi-dimensional. This, together with the hypothesis of polar and azymuthal symmetry in a spherical coordinates system, allows the present authors to approximate the calculation grid as a one-dimensional radial domain which is centered on the corona tip as shown in
Figure 1.
As far as the main goal is to investigate the creation of the initial discharge volume and its composition in terms of species that are available for the following combustion reactions, the Corona effect is considered to be reasonably approximated in its only steady-state (long-term) effect, i.e., neglecting the nano-pulsed effects that may be present. This assumption is supported by the fact that the Corona discharge temporal evolution is several orders of magnitude faster (ns time range) than the characteristic times of an internal combustion event (ms time range). The previous hypothesis is also supported by Moravej et al. [
15], which have shown that the effect of an high-frequency applied voltage does not affect the radical distribution in the ms time range. Even the work of Tochikubo et al. [
13], in which Figure 10a,b show that the N and O radicals number densities reach a quasi steady-state value after approximately 300
, supports the above-mentioned hypothesis. Another concern on the implementation of the transient regime for the charged species transport models is the compromise between computational cost and a straight representation of the unsteady aspects. Indeed, the time steps required by the typical time scales of the current propagation would result in the order of ns, in order to assure both the numerical stability and the capture of that time scales. However a such fine study would strongly slow down the solution time, which is one of the key features of the present proposal. It must be underlined that the subsequent combustion reactions that involve the reactive species distribution given by the present model, are not solved in this work since they are left to the computing power of the CFD solver in the future codes’ integration. It is further assumed that the overall swarm transport properties of the fuel-air mixture are not directly affected by the radicals production, although the electron transport equations account for the positive and negative ions effect on the electrons distribution. The model is capable of returning the initial discharge radius and distributions of both the radical species and the electrons’ energy along this radius.
The model was developed in Matlab and comprises of three dedicated sub-models: (i) The transport of electrons, positive and negative ions with three different transport equations together with the Gauss’ law; (ii) the radicals production due to the electron-impact events described with the Boltzmann equation; and (iii) the re-combinations between the radicals created by the discharge by means of chemical kinetic solver which computes the radicals molar fraction. As a result, these modeling steps return the radicals created by the pre-flame species dissociation processes and their distribution inside the fresh mixture at the time-step next to the spark time. In the followings, a detailed presentation of the developed model and its sub-models is shown.
2.1. Electron Transport Equations
In a spherical coordinates system, neglecting the angular dependencies, the transport equations for electrons, positive ions, negative ions, and the Gauss’ law in a steady-state plasma region are used. The system of equations is summarized from Equation (1a–d):
where the subscripts
e,
p, and
n are referred to electrons, positive ions, and negative ions respectively.
,
and
are the number densities (#/
);
,
and
are the mobility coefficients (
);
,
and
are the diffusion coefficients (
); and
is the ionization coefficient (
),
the attachment coefficient (
),
the electron and positive-ion recombination coefficient (
) and
the negative-ion and positive-ion recombination coefficient (
). The electric potential field is defined as
V (V),
is the vacuum permittivity (F
) and
e (
) the electron charge. The photoionization source at the distance
from the plug’s tip
(#/
/
) is calculated using Equation (2a–c) as proposed in [
9]:
where
is the photoionization coefficient. The values of
,
,
,
,
,
,
and
can be calculated with a Boltzmann solver or retrieved from specific electron transport databases (see [
16]).
In this work the generic transport property
of the gas mixture is calculated as the molar fraction weighted sum as in Equation (
3):
where
is the generic transport property of the
i-th gas species and
its molar fraction.
The boundary conditions adopted for Equation (
1a), using a radial interval
are: (i) A Robin type condition which describes the electrons charge flux at the tip (Equation (
4)) and (ii) a Dirichlet type condition for the value of the number density (Equation (
5)).
(A
) is the electrons charge flux at the spark radius
a and
is the undisturbed radial distance, usually the spark tip-piston crown distance at the Top Dead Center (TDC). The electric field strength
(
) is calculated each iteration using Equation (
6):
For Equation (
1b), a homogeneous Dirichlet type boundary condition is adopted which describes the null contribution of the positive ions to the total current at the tip surface, thus, their density is zero (Equation (
7)). The same approach applies for negative ions with regards to Equation (
1c). Therefore Equation (
8) is used at the undisturbed radial distance:
The Dirichlet boundary conditions Equation (9a,b) are adopted for Equation (
1d) with
(V) the applied voltage:
The computational grid comprises of 10,000 elements distributed according to an exponential spacing that coarsens up from the spark tip to the undisturbed radial distance. In order to start the computation, Equation (
1d) is solved with a null Right Hand Side (RHS). Once electrons, positive ions, and negative ions number densities are calculated, the electric potential field is updated by solving Equation (
1d) which is used to update the transport properties until convergence using the relationship
.
2.2. Boltzmann Equation
The Boltzmann equation for an ensemble of electrons in an ionized gas is defined as in Equation (
10):
where
f (eV
) is the electron distribution function in the six-dimensional phase space,
(
) the velocity,
the electron’s mass (
),
the velocity-gradient operator, and
C (eV
/s) the rate of change of
f due to collisions.
Inside of Corona discharges, elastic collisions are more frequent than the inelastic ones. During elastic collisions, electrons lose less energy having a mass which is several orders of magnitude smaller with respect to those of the heavy species. As a consequence, the direction of the electron velocity changes whilst its speed does not vary significantly. Furthermore, the electron drift velocity is considered to be small compared to the electron mean thermal speed, and the electron distribution can be approximated as isotropic in velocity space. Thus, the use of the two-term Legendre expansion for the electron velocity distribution is consistent with the above-mentioned hypotheses (in [
17] an extensive treatment of this method is reported). At each radial position, the EEDF in the Corona plasma is obtained by solving the spatially homogeneous steady-state case Boltzmann equation [
9]:
where
is the EEDF,
the mass of heavy species (
),
u electrons kinetic energy (eV),
elastic collisions frequency (
) of electrons, and
(
) the inelastic collisions integral.
A generic collision frequency is calculated using the related cross section
(
) as in Equations (
12) and (
13):
with
the mixture density (
),
the Avogadro constant (#/mol), and MW (
) the molar weight of the mixture. The cross sections are assumed as isotropic with respect to the scattering angle and are retrieved by the LxCat database [
16].
Assuming the heavy species as a gas mixture, the collision frequency
can be evaluated through the molar weighted sum of the specific gas
as in Equation (
14):
The inelastic collision integral is obtained by summing the contribution of excitation, dissociation, attachment, and ionization processes as from Equations (
15) to (
19):
where
,
,
, and
are the collision frequencies due to
k-th excitation,
i-th dissociation,
j-th attachment, and
m-th ionization process respectively;
,
are the energy thresholds for the
k-th excitation and
j-th dissociation process respectively; and
is the
m-th ionization potential.
The boundary conditions of Equation (
11) are defined by Equations (
20) and (
21):
Considering the RHS of Equations (
16), (
17) and (
19) the right-end-tail terms are called energy shifted terms. From the inelastic collisions integral
the above-mentioned energy shifted terms are extracted and used as the RHS of the linear system obtained. As the RHS depends on
itself, it is iteratively updated and the solution re-calculated until the accomplishment of the convergence criterion, namely relative error ((new − old)/old) <
. In order to speed up the convergence, an Aitken-based relaxation method is used.
The kinetic energy is discretized with an exponential spaced grid of 300 elements from to a value which should be greater enough with respect to the mean kinetic energy of the EEDF so that can be stated.
When an iteration of the algorithm ends, the EEDF must be normalized with the following constraint (Equation (
22)):
Once the EEDF is determined, the reaction rate
for the collision process
i of the
j species is calculated as in Equation (
23):
where
.
All equations that have been presented in this section are solved using the second order accurate Finite Difference Method with a Central Differencing Scheme for both the first and the second order derivatives.
2.3. Boltzmann Solver’s Validation
This subsection presents a comparison between the electron Boltzmann solver BOLSIG+ (v12/2017), which is available in literature [
17] as open software, the Monte Carlo code METHES (v01.07.2015) also available in literature as open software [
18], and the implemented model. The use of METHES as a comparison benchmark relies on the fact that it is based on a different approach with which the EEDF and the reaction rates are calculated. In fact it adopts the Monte Carlo method to directly simulate the movement and the subsequent collisions of an ensemble of electrons for given cross sections database. For this reason a good match between all the models confirms the reliability of the sub-model developed in this work.
In order to perform a fair comparison, all the codes were provided with the same properties by the aforementioned LXCat (vJune2013) database. Five different electric field intensities under the same given mixture and temperature were tested and the results in terms of EEDF are shown in
Figure 2.
Figure 2 shows that the wider the EEDF, the greater the overall energy content of the electrons population. This implies that electrons have enough energy to ionize/dissociate the fuel-air mixture as approaching the spark plug.
The general agreement between all the models can be noticed. Any difference in the EEDF distribution between Bolsig+ and this work is due to the different numerical schemes employed and the different numerical formulation implemented. In order to perform an additional comparison, the ionization and attachment total collision rates calculated (using Equation (
23) divided by
) by all the models are reported in
Table 1 and
Table 2 respectively.
A good match between all the models is achieved. Since the models under comparison adopt the same methodology to compute the dissociation rates, the present authors are confident in the reasonable accuracy of the proposed model in the resolution of such rates and thus the distribution of the reactive species computation.
To the current authors’ knowledge, a similar work which studies numerically or experimentally the radicals distribution profile using engine-like conditions has not been conducted yet. Therefore a quantitative comparison of this output can not be performed.
2.4. Chemical Kinetics Model
In this work the carbon related interactions are neglected due to the fact that the reaction initiating hydrocarbon oxidation is replaced by electron impact dissociation reactions, whose reaction rate constants are considered to be at least two orders of magnitude larger.
The electron impact dissociation reactions are considered to be limited by the three-body recombination reactions of all the active species, represented by (24):
with their recombination rates expressed by Equation (24a–c):
The kinetic constants
,
, and
are calculated by linear interpolation of the experimental data in [
15,
19,
20] as function of temperature.
For a generic species
i the steady-state composition is calculated by solving Equation (
25):
where
and
are the molar concentrations (
) of the
i species and its molecular form.
After each EEDF update, the new radicals composition are calculated using Equation (24a–c) until convergence.
In
Figure 3 a schematic representation of the complete algorithm of the ignition model is shown.
2.5. Grid Independence Test
In this subsection, the authors present the grid independence test for the radical molar fractions computation. The operative conditions adopted to perform the grid independence test were the same as that of the reference engine simulation point which will be deeply presented in the following section. In
Figure 4 the radial profiles for N, O and H radicals are shown using six different equally spaced grids ranging from 15 to 500 elements. It is shown that, except for the 15 elements grid which cannot sufficiently approximate the radicals radial evolution, the other grids exhibit the same profile for all the species involved. Minor differences with the initial radical decay point can be noticed. Such differences do not affect the radicals profile evolution and the final distribution values, which are the same among all the grids tested. As a consequence very fine discretizations with elements of micro-metric base size, which would be the common practice to capture the spherical evolution of the flame kernel of traditional TCI systems, seem to be not significantly helpful to capture the main feature of HFI systems, which is instead the diffusion profiles of the generated species whose characteristic length scale allows the use of a few dozens of elements to gain computational speed with a slight accuracy loss.