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Abstract: The coarse-mesh finite difference (CMFD) scheme is a very effective nonlinear diffusion
acceleration method for neutron transport calculations. CMFD can become unstable and fail to
converge when the computational cell optical thickness is relatively large in k-eigenvalue problems
or diffusive fixed-source problems. Some variants and fixups have been developed to enhance
the stability of CMFD, including the partial current-based CMFD (pCMFD), optimally diffusive
CMFD (odCMFD), and linear prolongation-based CMFD (lpCMFD). Linearized Fourier analysis has
proven to be a very reliable and accurate tool to investigate the convergence rate and stability of such
coupled high-order transport/low-order diffusion iterative schemes. It is shown in this paper that
the use of different transport solvers in Fourier analysis may have some potential implications on the
development of stabilizing techniques, which is exemplified by the odCMFD scheme. A modification
to the artificial diffusion coefficients of odCMFD is proposed to improve its stability. In addition,
two explicit expressions are presented to calculate local optimal successive overrelaxation (SOR)
factors for lpCMFD to further enhance its acceleration performance for fixed-source problems and
k-eigenvalue problems, respectively.
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1. Introduction

The coarse-mesh finite difference (CMFD) scheme, originally developed by Smith [1,2],
is being widely used for accelerating neutron transport calculations. A well-known issue
with CMFD is that the scheme can become unstable and even fail when the optical thickness
becomes large, which has been reported in various numerical and theoretical studies. Some
stabilization techniques have been developed to improve the stability of CMFD [3–6].
One simple method is the under-relaxation approach, which arbitrarily applies some
damping on the drift flux coefficient or the scalar flux [4–6]. However, a judicious choice of
under-relaxation has to be problem-dependent.

A variant of CMFD, called partial current-based CMFD (pCMFD), is found to be stable,
but it is slower than the standard CMFD at an intermediate optical thickness [3]. Zhu et al.
recently proposed an optimally diffusive CMFD (odCMFD) scheme, which generalizes
pCMFD by adding some artificial diffusion to the diffusion coefficient of CMFD [7]. It is
noted that caution should be exercised in determining adequate artificial diffusion. If the
added diffusion is more than necessary, it would hurt the convergence rate; conversely, it
would be insufficient for stability. In this paper, Fourier analysis and numerical results are
presented to show that odCMFD can become unstable and even fail at a relatively large
optical thickness because of insufficient diffusion. In this paper, it is shown that the use of
different transport solvers in Fourier analysis can have some effect on the prediction of the
convergence rate. A modification to the original artificial diffusion coefficients of odCMFD
is proposed to improve its stability.

The linear prolongation-based CMFD (lpCMFD) scheme is the latest development in
the CMFD family [8]. It replaces the conventional flat flux ratio-based scaling approach in
the standard CMFD method with a linear interpolation of the scalar flux differences at the

Energies 2021, 14, 424. https://doi.org/10.3390/en14020424 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en14020424
https://doi.org/10.3390/en14020424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14020424
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/2/424?type=check_update&version=2


Energies 2021, 14, 424 2 of 18

coarse-mesh cell edges between the high-order transport and low-order diffusion calcula-
tions. Various studies have demonstrated that lpCMFD has superior convergence perfor-
mance in terms of stability and effectiveness, as compared to other CMFD schemes [9–14].
It is worth noting that lpCMFD does not use any “ad hoc” fixups, such as under-relaxation
or artificial diffusion. Most recently, Wang has proposed to enhance the convergence per-
formance of lpCMFD by updating the scalar flux (or the scattering source) with successive
overrelaxation (SOR) [15,16]. It was found that lpCMFD with SOR can increase the conver-
gence rate by almost 40% for neutron transport problems. However, the global optimal
SOR value is problem-dependent. Instead of finding the global optimal SOR factor, the
local SOR can be determined for each coarse-mesh cell based on its optical thickness and
scattering ratio. In this paper, two explicit expressions are developed for the calculation of
local optimal SOR factors—one is for fixed-source problems, and the other for k-eigenvalue
problems, which can be easily implemented in a transport code.

The remainder of this paper is organized as follows: Section 2 presents the Fourier
analysis of the CMFD schemes, such as CMFD, pCMFD, odCMFD, and lpCMFD, for both
fixed-source problems and k-eigenvalue problems. The implications on the convergence
rate of the step characteristic (SC) method and the diamond difference (DD) method for the
transport solution are presented and discussed. In Section 3, the modification of odCMFD
is discussed. Section 4 presents the two explicit expressions for the calculation of local SOR
factors for lpCMFD. The numerical results of the one- and two-dimensional test problems
are given in Section 5. Final conclusions are given in Section 6. A brief summary of the
CMFD algorithm and formulation is presented in Appendix A.

2. Fourier Analysis of CMFD Schemes

The general algorithm and formulation of the coupled SN and CMFD iterative proce-
dure is summarized in Appendix A. For simplicity, only the final Fourier analysis results
of the CMFD schemes are presented for both fixed-source problems and k-eigenvalue
problems. Detailed derivation and formulation can be found in the literature [6–8,15,16].

2.1. Spectral Radius for Fixed-Source and K-Eigenvalue Problems

Fourier analysis is typically performed based on a 1D homogeneous problem with
a uniform mesh and a specified number ρ of fine-mesh cells per coarse cell. A single coarse-
mesh cell with periodic boundary conditions is employed. The coarse-mesh spacing is ∆.
The fine mesh spacing is h = ∆

p . The monoenergetic SN transport equation is first linearized
near the exact solution. Then, the error terms in the linearized equations are expressed as
Fourier modes. The spectral radius can be obtained from the error iteration matrix.

For fixed-source problems, the final expression for the fine-mesh scalar flux iterative
error modes is given as

T(ω) = H + θ
∆
(
eiΣt∆ω − 1

)
G + Σa∆2 C

D[2 cos(Σt∆ω)− 2]− Σa∆2 , (1)

where

H =
N

∑
n=1

wnPnY−1
n

Σs

2
(2)

C =
1
p
×
[

1 · · · 1
]

1×pH (3)

G =
[

1 0 · · · 0
]

1×pH (4)

Pn =


1−αn

2
1+αn

2 0 0 0
0 1−αn

2
1+αn

2 0 0

0 0 0
. . . 0

1+αn
2 eiΣt∆ω 0 0 0 1−αn

2


p×p

(5)
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Yn =


a b 0 0 0
0 a b 0 0

0 0 0
. . . 0

beiΣt∆ω 0 0 0 a


p×p

(6)

a = −µn

h
+ Σt

(
1− αn

2

)
(7)

b =
µn

h
+ Σt

(
1 + αn

2

)
(8)

αn =


1+e−

Σth
µn

1−e−
Σth
µn
− 2µn

Σth
for SC

0 for DD
(9)

h =
∆
p

(10)

D =
1

3Σt
(11)

Note that µn and wn are the nodes and weights of a quadrature set (e.g., Gauss–
Legendre quadrature).

The vector θ is defined as
θ =

(
θ1 θ2 · · · θp

)T (12)

The following different iterative schemes can be obtained by defining the vector θ as

SI : θk = 0. (13)

CMFD : θk = 1. (14)

pCMFD : θk =
1

1 + 3
4 τ

. (15)

odCMFD : θk = θ(τ). (16)

lpCMFD : θk =
2p + (2p− 2k + 1)e−iτω + (2k− 1)eiτω

4p
. (17)

where 1 ≤ k ≤ p, and the coarse-mesh optical thickness τ = Σt∆.
It can be seen that when θk = 0, it reverts to the transport source iteration (SI) method

with no CMFD acceleration. For the standard CMFD scheme, θk = 1, which means a flat
prolongation approach is used. The function of θk for pCMFD was derived by Jarret et al. [6],
and it implies that pCMFD tends to the CMFD scheme when the coarse-mesh cell optical
thickness τ (= Σt∆) becomes large. The θk of odCMFD is a function of τ, described by
Zhu et al. [7]. The θk values of lpCMFD are reported by Wang and Xiao [8].

The spectral radius of the CMFD schemes as a function of Fourier frequency ω is
given as

ρ(ω) = max(abs(eig(T(ω)))) . (18)

where Fourier frequency is expressed as follows

ω =
2πs
ΣtL

, s = 1, 2, . . . , J, (19)

J =
L
∆

. (20)

L is the domain size. Finally, the spectral radius is defined as

ρ = max(ρ(ω)). (21)
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For k-eigenvalue problems, the final expression for the fine-mesh scalar flux iterative
error modes is given as

T(ω) = H + θ
∆
(
eiΣt∆ω − 1

)
G

D[2 cos(Σt∆ω)− 2]
, (22)

where

H =
N

∑
n=1

wnPnY−1
n

Σt

2
, (23)

G =
[

1 0 · · · 0
]

1×pH. (24)

Compared to the expression for the fixed-source case, only matrices H and G are
different, in which the scattering cross-section is replaced with the total cross-section.
Therefore, the spectral radius is independent of scattering for k-eigenvalue problems. It is
interesting to note that the spectral radius of fixed-source problems will be limited to that
of k-eigenvalue problems, as the scattering ratio c→ 0 (pure scattering).

2.2. The Implication of Transport Solver

In Fourier analysis, it is customary to use the SC method to discretize the SN transport
equation, in which the transport angular flux on each computational cell is weighted as

ψn,k =

(
1− αn

2

)
ψn,k− 1

2
+

(
1 + αn

2

)
ψn,k+ 1

2
, (25)

where 1 ≤ k ≤ p. ψn,k− 1
2

and ψn,k+ 1
2

are the left and right edge fluxes of the k− th cell.
Then,

αn =
1 + e−

Σth
µn

1− e−
Σth
µn

− 2µn

Σth
. (26)

Remark 1. If the cell optical thickness Σth→ 0 , then αn → 0 , thus the SC solution tends to the
DD solution; if Σth→ ∞ , then it tends to the first-order upwind method (i.e., the step difference
method) because of αn → 1 for µn > 0, and αn → −1 for µn < 0. Therefore, there should be no
difference in the spectral radius predicted by Fourier analysis when using the SC or the DD method
at a thin optical thickness. However, the difference will become appreciable when the coarse-mesh
optical thickness τ > 1. This is confirmed by the Fourier analysis as shown in Figure 1. Note that
the results are obtained with the domain size of L = 200 cm, the coarse-mesh size ∆ = 1 cm, and
the number of fine cells in each coarse cell p = 10.

The following observations can be drawn from the above Fourier analyses:

1. For CMFD, the results of the SC and DD are very close (the black and blue curves are
almost coincident), and both solvers predict failure when τ > 1.

2. For pCMFD, the results of the SC and DD agree very well within the differences of
less than 0.006, except that the DD predicts failure when τ > 90.

3. For odCMFD, significant differences show up when τ > 2.5. The DD predicts failure
at τ > 5.5, while the SC results show that the scheme is more stable and becomes
unstable until τ > 20. It is worth mentioning that the SC solution is somewhat
sensitive to the domain size. If a smaller domain is used, e.g., L = 100 cm, then there
is no occurrence of a failure in the SC solution.

4. For lpCMFD, the SC results show that the scheme becomes unstable when τ > 27,
but interestingly the DD does not predict any failure. Numerical testing indicates
that the lpCMFD scheme is stable even up to a much larger optical thickness, which
implies that the SC prediction is less reliable.
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Now that the spectral radius of the DD is slightly larger than that of the SC, the ques-
tion arises: which transport solver (DD or SC) should be used in Fourier analysis? It is
less of a problem for CMFD, pCMFD, and lpCMFD, since both transport solvers agree
very well, except for very large optical thicknesses. However, this is not the case for the
odCMFD, which shows that the DD results are quite different from those of the SC. The
reason is that the original optimal artificial diffusion coefficients were determined based on
the SC solution, and they are slightly insufficient for the DD solution. In the next section,
it will be shown that the scheme can be stabilized by using the DD-based results.

In addition, it should be noted that when the optical thickness becomes large, the
spectral radius gradually reaches the spectral radius of the power (or source) iteration

scheme, ρ =
tan−1

(
π

Σt L

)
π

Σt L
, which becomes almost 1 for the relatively large domain. Therefore,

the convergence or stability of CMFD at a large optical thickness has the least practical
importance, in particular for neutron transport problems.

3. Modification of odCMFD

Zhu et al. optimized the artificial diffusion coefficients based on Fourier analysis with
the SC for the transport solution [7]. The odCMFD generalizes the CMFD by defining the
modified diffusion coefficient as

D̃ =
1

3Σt,CM
+ θ∆, (27)
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where the artificial diffusion coefficient is defined as

θ =


0, τ < 1

∑6
i=0 aiτ

i, 1 ≤ τ < 14
0.127, τ ≥ 14

, (28)

which is a function of the coarse-mesh cell optical thickness τ = Σt,CM∆. The polynomial
coefficients ai are given in Table 1 [7]. The Fourier analysis in the previous section shows
that odCMFD can lose its effectiveness and even become unstable at a relatively large
optical thickness. The following modified artificial diffusion coefficients are obtained by
using the DD instead of the SC in the Fourier analysis.

θmod =



0, τ < 0.8

∑6
i=0 aiτ

i, 0.8 ≤ τ < 14
0.1685, 14 ≤ τ < 28
0.1685 + 0.002067(τ − 28), 28 ≤ τ < 140
> 0.4, τ > 140

, (29)

where the modified coefficients ai are given in Table 1. A polynomial function is used for
0.8 ≤ τ < 14, which is of practical importance for neutron transport problems. A simple
linear function is used for 28 ≤ τ < 140, and a larger value is suggested for τ > 140.

Table 1. Coefficients for the polynomial fitting of optimal θ.

i Original ai [7] Modified ai

0 −5.543 × 10−2 −1.764 × 10−2

1 8.741 × 10−2 7.156 × 10−2

2 −2.153 × 10−2 −1.409 × 10−2

3 3.146 × 10−3 1.591 × 10−3

4 −2.684 × 10−4 −1.012 × 10−4

5 1.223 × 10−5 3.372 × 10−6

6 −2.285 × 10−7 −4.557 × 10−8

Figure 2a shows that the modified optimal θ values are larger than the original ones,
implying that more artificial diffusion should be added to the CMFD scheme. Herein, the
odCMFD scheme with the new θ function is called “modCMFD”. Figure 2b illustrates the
spectral radius curves of modCMFD for the SC and DD, respectively. It can be seen that
both transport solvers predict almost the same convergence rate with the modified artificial
diffusion coefficients, and the scheme is stable for any optical thickness.
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4. Optimal SOR for lpCMFD

It has been illustrated that the lpCMFD can be enhanced with SOR. For the fixed-
source case, the Fourier analysis indicates that the optimal SOR factor depends on not
only the optical thickness, but also the scattering ratio [15], while for the k-eigenvalue case,
it only depends on the optical thickness [16]. However, it is found in numerical testing that
for better performance, some damping (relaxation) may be necessary for the SOR factors
predicted by the Fourier analysis, in particular, for large scattering ratios. In this section,
two explicit expressions are developed to analytically determine the local optimal SOR
factors for fixed-source problems and k-eigenvalue problems, respectively.

4.1. SOR for Fixed-Source Problems

The spectral radius of the lpCMFD scheme for fixed-source problems is a function
of the coarse-mesh cell optical thickness and scattering ratio. Therefore, the optimal SOR
factor should also depend on optical thickness and scattering.

Based on a comprehensive Fourier analysis, optimal SOR factors are obtained for the
optical thickness in the range of 0.1 ≤ τ ≤ 20, and the scattering ratio in the range of
0.1 ≤ c ≤ 0.998. The SOR distribution in terms of the optical thickness and scattering ratio
is plotted in Figure 3.
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The fitted SOR function is given as

SORFA =
5

∑
i=0

3

∑
j=0

ai,jτ
icj, i + j ≤ 5. (30)

Note that SOR = 1 when c < 0.1, SOR = 1.1 when c < 0.998, and SOR = SOR (τ = 20)
for τ < 20. The polynomial fitting coefficients are given in Table 2.
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Table 2. Polynomial fitting coefficients.

Order (i,j) Coefficient (ai,j)

(0, 0) 9.898 × 10−1

(1, 0) 1.241 × 10−2

(0, 1) 8.727 × 10−2

(2, 0) −4.468 × 10−3

(1, 1) 1.579 × 10−1

(0, 2) −3.770 × 10−2

(3, 0) 6.021 × 10−4

(2, 1) −2.131 × 10−2

(1, 2) 4.672 × 10−2

(0, 3) −4.223 × 10−3

(4, 0) −3.473 × 10−5

(3, 1) 1.316 × 10−3

(2, 2) −7.051 × 10−3

(1, 3) 6.083 × 10−2

(5, 0) 7.160 × 10−7

(4, 1) −2.931 × 10−5

(3, 2) 2.328 × 10−4

(2, 3) −1.871 × 10−3

It is seen that SOR increases with the optical thickness and scattering ratio. In practical
implementation, some relaxation is needed for relatively large scattering ratios because of
numerical effects, such as the treatment of boundary conditions. To apply the relaxation,
the domain of the scattering ratio (c ∈ [0.1, 0.998]) is divided into three regions:

• Region 1: 0.1 ≤ c < 0.9;
• Region 2: 0.9 ≤ c < 0.99;
• Region 3: 0.99 ≤ c ≤ 0.998.

The numerical results indicate that no relaxation is needed for Region 1. However,
for both Regions 2 and 3, the relaxation is required. In order to obtain better fitting, the
following scaling is used for Regions 2 and 3.{

cscaled = 9∗(c−0.9)
0.098 + 1, 0.9 ≤ c < 0.99

cscaled = 9∗(c−0.99)
0.008 + 1, 0.99 < c ≤ 0.998

. (31)

The relaxation functions for Regions 2 and 3 are given as

Relax1 =
4

∑
i=0

5

∑
j=0

bi,jτ
icj

scaled, i + j ≤ 5, (0.9 ≤ c < 0.99), (32)

Relax2 =
4

∑
i=0

5

∑
j=0

ci,jτ
icj

scaled, i + j ≤ 5, (0.99 ≤ c < 0.998). (33)

The polynomial fitting coefficients bi,j and ci,j are given in Table 3.
The final function of SOR is given as

SOR =


SORFA, c < 0.9
SORFA ∗ Relax1, 0.9 ≤ c < 0.99
SORFA ∗ Relax2, c ≥ 0.99

. (34)

The relaxed SOR distribution in terms of the optical thickness and scattering ratio is
plotted in Figure 4.
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Table 3. Polynomial fitting coefficients for relaxation factors.

Order (i,j) Coefficient (bi,j) Coefficient (ci,j)

(0, 0) 1.025 × 10+0 9.851 × 10−1

(1, 0) −5.911 × 10−3 −1.978 × 10−2

(0, 1) −1.027 × 10−3 −1.975 × 10−2

(2, 0) 8.845 × 10−4 1.988 × 10−3

(1, 1) 7.404 × 10−4 −5.955 × 10−3

(0, 2) 5.243 × 10−2 1.422 × 10−2

(3, 0) −7.166 × 10−5 −6.609 × 10−5

(2, 1) −2.291 × 10−4 3.229 × 10−4

(1, 2) −2.535 × 10−3 7.285 × 10−4

(0, 3) −1.216 × 10−2 −3.725 × 10−3

(4, 0) 1.562 × 10−6 8.453 × 10−7

(3, 1) 6.605 × 10−6 −6.618 × 10−7

(2, 2) 2.695 × 10−5 −3.883 × 10−5

(1, 3) 3.953 × 10−4 −4.949 × 10−5

(0, 4) 1.251 × 10−3 3.988 × 10−4

(4, 1) 7.090 × 10−8 −2.618 × 10−7

(3, 2) −1.480 × 10−6 9.277 × 10−7

(2, 3) 1.859 × 10−6 8.170 × 10−7

(1, 4) −2.373 × 10−5 5.419 × 10−7

(0, 5) −4.642 × 10−5 −1.515 × 10−5
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4.2. SOR for K-Eigenvalue Problems

As discussed in Section 2.1, differing from fixed-source problems, the spectral radius
of the CMFD schemes for k-eigenvalue problems is dependent on the coarse-mesh optical
thickness, but independent of scattering.
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Based on the Fourier analysis, optimal SOR factors are found for the optical thickness
in the range of 0.1 ≤ Σt,CM∆ ≤ 20. The fitted SOR function is given as

SORFA =
6

∑
i=0

aiτ
i, 0.1 ≤ τ ≤ 20. (35)

When τ < 0.1, SOR = 1, and when τ > 20, SOR = SOR (τ = 20). The polynomial
fitting coefficients are given in Table 4, and the function above is plotted in Figure 5.

Table 4. Polynomial fitting coefficients.

Order (i) Coefficient (ai)

0 1.019 × 10+0

1 2.474 × 10−1

2 −2.030 × 10−2

3 −8.307 × 10−4

4 2.174 × 10−4

5 −1.163 × 10−5

6 2.049 × 10−7
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This shows that for k-eigenvalue problems, the SOR factor increases with τ signifi-
cantly when τ < 8, and after that, the SOR is almost a constant. However, for numerical
implementation, some relaxation should be applied to the SOR factor. A relaxation factor
of 0.9 is recommended for the entire domain, and additional relaxation is needed for high
scattering ratios.

The final expression of SOR for k-eigenvalue problems is summarized as follows:

SOR = 0.9 ∗


SORFA, c < 0.8
SORFA ∗

[
1 + (Relax− 1) c−0.8

0.19
]
, 0.8 < c < 0.99

SORFA ∗ Relax, c ≥ 0.99
, (36)

where

Relax =

{
1, τ < 4.35
1.1τ − 0.0237, τ ≥ 4.35

. (37)

It should be noted that if the relaxed SOR is smaller than 1, then SOR = 1.
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5. Numerical Results

The numerical results of the one- and two-dimensional test problems are presented to
demonstrate the convergence performance of the modCMFD and the lpCMFD with SOR
(lpCMFD-SOR). For comparison, the results of CMFD and pCMFD are presented as well.

5.1. One-Dimensional Iron-Water Test Problem

The 1D modified iron-water test problem is defined in Figure 6 [9,12,15]. The problem
domain is uniformly divided into 30 coarse-mesh cells with a mesh size of ∆ = 1.0 cm, and
each coarse-mesh cell consists of 10 uniform fine-mesh cells. The high-order SN neutron
transport equation is discretized by using the Gauss–Legendre S12 quadrature set for the
angle, and the SC and DD methods for space, respectively. The SN equation is solved on the
fine-mesh grid. The low-order CMFD equation is discretized and solved on the coarse-mesh
grid to accelerate the SN source iteration. The numerical results are shown in Figure 7.

This shows that the source iteration (SI) scheme converges very slowly because the
problem is relatively thick and diffusive (τ = Σt,CM∆ = 3.3333 and c = 0.9941). The CMFD
fails to converge. Note that the original odCMFD scheme is slower than the pCMFD for
this problem. The modCMFD can improve the convergence rate significantly, and is faster
than the pCMFD, as supposed. It can be seen that the original odCMFD is sensitive to
the SN transport solver. It converges more slowly for the DD than SC, which is consistent
with the theoretical finding. The modCMFD is not sensitive to the transport solver and it
yields almost the same performance for both the DD and SC. As expected, the lpCMFD
scheme performs best among all the CMFD schemes. More interestingly, the lpCMFD-SOR
scheme can further accelerate the convergence, in which the local optimal SOR factor for
each coarse-mesh cell is precomputed by Equation (34). The results are similar to the case
reported by Wang [15], where a global SOR is used.
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5.2. Two-Dimensional Test Problem

The second test case is a 2D k-eigenvalue problem as shown in Figure 8. The problem
domain is a 6× 6 cm square with the reflective boundary condition on each side. The domain
is divided into 5× 5 uniform coarse-mesh cells, with each consisting of 10× 10 fine-mesh cells.
The numerical solutions for the SN transport are obtained on the fine-mesh (50× 50) using the
level-symmetric S12 quadrature set for angular discretization and the DD method for spatial
discretization. The CMFD solutions are obtained on the coarse-mesh grids (5× 5). Two cases
are presented for the problem: Case A has the scattering ratio of 0.9, and it is 0.7 in Case
B. The problem is to investigate whether the scattering has any impact on the convergence,
although the Fourier analysis shows that the spectral radius of the CMFD schemes should be
independent of scattering.
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The convergence performance is illustrated in Figure 9. It is interesting to notice that
the scattering does have some effect on the convergence of the pCMFD and odCMFD. In
general, the convergence slows down as the scattering ratio decreases. However, both the
modCMFD and lpCMFD are much less sensitive to the scattering. Note that the local SOR
factors of the coarse-mesh cells are calculated according to Equation (36).
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5.3. Two-Dimensional Mini-Assembly Problem

In this section, the convergence comparison of the CMFD schemes for a 2D mini-
assembly k-eigenvalue problem is shown in Figure 10. Similar to the previous problem, the
problem domain is a 6× 6 cm square with the reflective boundary condition on each side.
The domain is divided into 5× 5 uniform coarse-mesh cells, and each coarse cell consists
of 10× 10 fine-mesh cells. In each coarse cell, the central 4× 4 fine cells represent the fuel
region, and all the other cells are the water region. The numerical solutions for the SN
transport are obtained on the fine mesh (50× 50) using the level-symmetric S12 quadrature
set for angular discretization and the DD method for spatial discretization. The CMFD
solutions are obtained on the coarse-mesh grids (5× 5). The homogenized cross-sections
on the coarse-mesh cells are updated during each iteration by weighting with the volume
and flux.
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6. Conclusions

Fourier analysis results have been presented for the acceleration schemes: CMFD,
pCMFD, odCMFD, and lpCMFD. It has been shown that the DD transport solver predicts
slightly larger spectral radii than the SC, which can have some implications on the develop-
ment of diffusion-based stabilizing techniques, as exemplified by the odCMFD scheme. The
odCMFD becomes less effective and unstable for a relatively large optical thickness in the
k-eigenvalue problems. This is because the original optimal artificial diffusion coefficients
determined by the SC solution are less sufficient for stability. To stabilize the odCMFD,
these coefficients have been redeveloped based on the DD-based Fourier analysis. The
numerical results for different test problems have confirmed that the modified odCMFD
(modCMFD) scheme is more stable and effective.

The lpCMFD convergence can be enhanced with SOR. However, finding an optimal
global SOR is not straightforward and is problem-dependent. In this paper, two explicit
expressions have been proposed for the calculation of local optimal SOR factors—one is for
fixed source problems, and the other is for k-eigenvalue problems. These local SOR factors
can be precomputed or updated on-the-fly during the iteration.
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Appendix A. CMFD Algorithm and Formulation

The coupled iteration procedure for the k-eigenvalue case is described as follows.
Note that the algorithm for the fixed-source case follows a similar procedure, which is
omitted for brevity. To facilitate the discussion, the model problem is a slab geometry,
homogeneous monoenergetic problem with isotropic scattering and periodic boundary
conditions. The model problem is solved with the SN transport equation coupled with
a CMFD-based acceleration scheme.
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1. Perform a transport sweep:

µn
∂ψ

(l+1/2)
n
∂x

+ Σt(x)ψ(l+1/2)
n =

1
2

[
Σs(x) + λ(l)νΣ f (x)

]
φ(l)(x), (A1)

where
µn = neutron direction cosine with respect to x;
ψn = angular flux;
φ = ∑N

n=1 ψnwn, scalar flux;
wn = quadrature weights;
Σt = total macroscopic cross-section;
Σs = macroscopic scattering cross-section;
νΣ f = macroscopic nu-fission cross-section;
λ = 1

k , where k is the neutron multiplication factor;
l = iteration index.

2. Compute the cross-sections, the diffusion coefficient, and the nonlinear current correction factor
for the low-order diffusion equation:

The coarse-mesh cross-sections are calculated by flux weighting as

Σ(l+1/2)
i,CM =

∫
∆ Σi(x)φ(l+1/2)(x)dx∫

∆ φ(l+1/2)(x)dx
, (A2)

where i = t, a, s, f for total, absorption, scattering, and fission macroscopic cross-sections,
respectively. ∆ is the coarse-mesh cell size. The diffusion coefficient and the nonlinear
current correction factor are then defined as

D(l+1/2)
CM =

1

3Σ(l+1/2)
t,CM

, (A3)

D̂(l+1/2)
CM =

J(l+1/2) + D(l+1/2)
CM

dφ
(l+1/2)

dx

φ
(l+1/2)

(A4)

3. Solve the low-order diffusion eigenvalue problem using the power iteration:

d
dx

[
−D(l+1/2)

CM
d

dx
+ D̂(l+1/2)

CM

]
Φ(l+1,k+1)(x) + Σ(l+1/2)

a,CM Φ(l+1,k+1) = λ(l+1,k+1)νΣ(l+1/2)
f ,CM Φ(l+1,k)(x), (A5)

where is the power iteration index.

4. Update the scalar flux:

φ(n+1)(x) = φ(n+1/2)(x) + δ
[
Φ(n+1), φ

(n+1/2), φ(n+1/2)
]
, (A6)

where δ is a general representation of different CMFD schemes. For the standard CMFD
scheme, it is given as

δ =

(
Φ(n+1)

φ
(n+1/2)

− 1

)
φ(n+1/2). (A7)

The above SN equation (Equation (A1)) and the diffusion equation (Equation (A5))
can be solved using various discretization schemes. In Fourier analysis, the SN equation is
typically discretized using the SC or DD method on a fine mesh grid, as shown in Figure A1.
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tor for the low-order diffusion equation: 

The coarse-mesh cross-sections are calculated by flux weighting as Σ௜,஼ெ(௟ାଵ/ଶ) = ׬ Σ௜(ݔ)߶(௟ାଵ/ଶ)(ݔ)݀ݔ୼ ׬ ߶(௟ାଵ/ଶ)(ݔ)݀ݔ୼  , (A2)

where ݅ = ,ݐ ܽ, ,ݏ ݂  for total, absorption, scattering, and fission macroscopic cross-sec-
tions, respectively. Δ is the coarse-mesh cell size. The diffusion coefficient and the non-
linear current correction factor are then defined as ܦ஼ெ(௟ାଵ/ଶ) = 13Σ௧,஼ெ(௟ାଵ/ଶ)  , (A3)

෡஼ெ(௟ାଵ/ଶ)ܦ = (௟ାଵ/ଶ)ܬ + ஼ெ(௟ାଵ/ଶ)ܦ ݀߶ത(௟ାଵ/ଶ)݀ݔ߶ത(௟ାଵ/ଶ)  (A4)

3. Solve the low-order diffusion eigenvalue problem using the power iteration: ௗௗ௫ ቂ−ܦ஼ெ(௟ାଵ/ଶ) ௗௗ௫ + ෡஼ெ(௟ାଵ/ଶ)ቃܦ Φ(௟ାଵ,௞ାଵ)(ݔ) + Σ௔,஼ெ(௟ାଵ/ଶ)Φ(௟ାଵ,௞ାଵ) = (A5) ,(ݔ)Σ௙,஼ெ(௟ାଵ/ଶ)Φ(௟ାଵ,௞)ߥ(௟ାଵ,௞ାଵ)ߣ

where ݇ is the power iteration index. 

4. Update the scalar flux: ߶(௡ାଵ)(ݔ) = ߶(௡ାଵ/ଶ)(ݔ) + ,Φ(௡ାଵ)ൣߜ ߶ത(௡ାଵ/ଶ), ߶(௡ାଵ/ଶ)൧, (A6)

where ߜ is a general representation of different CMFD schemes. For the standard CMFD 
scheme, it is given as ߜ = ቀ ஍(೙శభ)థഥ (೙శభ/మ) − 1ቁ ߶(௡ାଵ/ଶ). (A7)

The above SN equation (Equation (A1)) and the diffusion equation (Equation (A5)) can 
be solved using various discretization schemes. In Fourier analysis, the SN equation is typi-
cally discretized using the SC or DD method on a fine mesh grid, as shown in Figure A1. 

 
Figure A1. One-dimensional mesh. Figure A1. One-dimensional mesh.
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where
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)
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(
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2

)
ψn,j+1/2 (A9)

αn,j =

 1+e−Σt,jhj/µn

1−e−Σt,jhj/µn −
2µn

Σt,jhj
, SC

0, DD
(A10)

hj mesh size of fine-mesh cell j.
The diffusion equation (Equation (A5)) is solved on a coarse-mesh grid, where each

coarse cell consists of p fine-mesh cells.
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i (A11)

= λ(l+1,k+1)νΣ(l+1/2)
f ,CM,i Φ(l+1,k)

i

where i is the coarse-mesh cell index. hCM is the coarse-mesh cell size.
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