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Abstract: In this paper, an innovative solution to minimize noise emission, acting on the flow ripple,
in a prototype External Gear Pump (EGP) is presented. Firstly, a new tool capable to completely
simulate this pump’s typologies, called EgeMATor, is presented; the hydraulic model, adopted for
the simulation, is based on a lumped parameter method using a control volume approach. Starting
from the pump drawing, thanks to different subroutines developed in different environments
interconnected, it is possible to analyze an EGP. Results have been compared with the outputs of a
three-dimensional CFD numerical model built up using a commercial code, already used with success
by the authors. In the second section, an innovative solution to reduce the flow ripple is implemented.
This technology is called Alternative Capacitive Volumes (ACV) and works by controlling and
uniformizing the reverse flow, performing a consistent reduction of flow non-uniformity amplitude.
In particular, a high reduction of the flow non-uniformity is notable in the frequency domain on
the second fundamental frequency. The technology is easy to accommodate in a pump housing,
especially for high-pressure components, and it helps with reducing the fluid-borne noise.

Keywords: external gear pumps; EGPs; fluid-borne noise; flow non-uniformity; lumped parameter
numerical simulation; CFD; flow ripple

1. Introduction

Nowadays, the scientific community considers it intolerable that millions of people
suffer from unacceptable noise level emissions. Every country is doing its best to conform
to the more stringent regulations and policies regarding environmental noise emissions.
Fluid power technology aims to keep noise limitation as low as possible for industrial
and mobile applications. External gear pumps (EGPs) are widely used in fluid power
since these pumps have many advantages, like compactness and low costs, relatively high
efficiency and remarkable reliability, structural simplicity, and a wide range of operating
conditions. Even if the working principle of the EGPs is straightforward, there are many
studies available in the literature focused on their performance improvement. An EGP
consists of a driving gear, connected to the pump’s shaft and a driven gear (Figure 1) [1,2].
The displacement chambers, generated by the gears meshing, are connected to the ports
through two wear-plates.

In recent years, as the world advances more and more towards complete electrification,
noise emissions from all fluid power components are becoming crucial. The request of
low-noise EGPs has pushed research towards developing innovative design solutions
capable of minimizing the kinematic flow ripple. Among them, many solutions improve
the standard involute gear design concept using numerical and experimental techniques.

To center this target, numerical models can be an efficient way to analyze the operation
of EGPs and predict their performance. Several authors studied the ideal flow behavior of
the machines using theoretical models (Ivantysyn et al. [1] and Manring et al. [3]), while
others adopted numerical modeling both with lumped parameter and Computational Fluid
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Dynamic (CFD) approaches. Vacca et al. [4–8] developed a numerical tool to understand
EGPs also with asymmetric tooth profiles. In Reference [5], they optimized an EGP using
an NSGA-II algorithm to reduce the flow ripple and, as a consequence, the emitted fluid-
borne noise. The same authors in a recent study [7] implemented a thermal model on
the already developed lumped parameter tool, improving the prediction of the pump
operation. Borghi et al. [9,10], studying the EGPs, developed lumped parameter numerical
models to predict both the volumetric and hydro-mechanical efficiencies and all their main
losses. Mancò et al. [11] studied an EGP using a lumped parameter approach that has been
compared with experimental data with high accuracy. Zhou et al. [12] developed a lumped
parameter approach to consider the dynamic nature of the gas cavitation process in external
gear machines (EGMs). Lumped parameter-based models have many advantages; one of
them is that they can also be integrated with mechanical models for the evaluation of gear
micromotion, like models done by Zardin et al. [13], Falfari et al. [14], Mucchi et al. [15]
and by Vacca et al. [4].
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Other studies analyzed EGPs using two-dimensional (2D) modeling approaches
with deforming mesh and volume re-meshing in the literature. However, even if the
2D modeling approaches give interesting results, they cannot predict the internal flow
behavior like three-dimensional (3D) models [16]. It depends on the fact that the flow is
complex during the operation of those machines because of the rotational speed (range
of 500–3000 rpm) and the high pressure. Besides, three-dimensional CFD methods are
widely used for studying EGPs [17]. Corvaglia et al. [18] showed a new application of a
3D CDF algorithm to predict the unsteady flow rate in hydraulic pipes placed after the
pump’s delivery port. The authors compared experimental data and numerical results
with excellent agreement. Castilla et al. [19] presented a numerical technique applied
on an EGP to predict vortexes’ general shape, generated in the meshing zone, and their
distribution. In Reference [20], the same authors introduced a decompression slot in the
plates located in correspondence to the meshing zone, using the same tool previously
described in Reference [19] for the analysis. Other researchers modified the design of
the plates by adding grooves, with the aim of noise reduction. However, even if those
grooves can reduce the pump’s fluid-borne noise, they can also significantly affect the
volumetric efficiency of the EGP if not well-designed because they connect volumes at
different pressures [9]. Grooves’ effects inside the plates have been widely numerically
studied by Borghi et al. [21], looking at the reverse flow in the transition area between high-
and low-pressure volumes.

In this paper, a Hydreco prototype pump manufactured by Duplomatic MS for in-
dustrial applications (theoretical displacement of 53 cm3/rev), with a pressure rated up
to 350 bar and a speed range of 450–3500 rev/min, has been studied to minimize noise
emission, acting on the flow ripple. The pump has 16 teeth per gear, and the pump rotation
is clockwise (right pump). Firstly, the pump has been numerically studied using a tool
completely developed by the authors called EgeMATor (External Gear Machine Multi Tool
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Simulator). The tool used for the hydraulic simulation is a lumped parameter model that,
for its nature, is always quicker and suitable for optimization studies, while the 3D CFD
numerical model permits, on one side, to support the 0D model and, from the other side,
to go deeper in the pump behavior, for example, to study cavitation phenomena. Since
the pump is in its prototyping phase, the EgeMATor tool’s results have been validated
with a 3D CFD model developed with the commercial code Simerics MP+® (Simerics
Inc., Bellevue, WA, USA), showing high accuracy. An innovative technology, later called
Alternative Capacitive Volumes (ACV), has been presented. The ACV consists of two
volumes used to connect the delivery volume with the displacement chambers cyclically
through two opportune orifices: it uniformizes the reverse flow with a high reduction of the
flow non-uniformity that is notable, in the frequency domain, in particular on the second
fundamental frequency. An optimization process done in EgeMATor has been run to find
the best design of the ACV with a reduction of the flow ripple by 61% and a consequent
reduction of the fluid-borne noise.

2. The Tool: EgeMATor
2.1. Overview

EgeMATor (External Gear Machine Multi Tool Simulator) is a tool completely devel-
oped by the authors for numerical simulations of external gear machines. In particular,
the tool is composed of different subroutines developed in different environments, in-
terconnected to each other, as visible from its workflow in Figure 2, to study the EGMs
in depth.
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The hydraulic simulation main subroutine, visible in the previous figure, runs a nu-
merical simulation of the pump, in Simcenter Amesim® (Siemens AG, Munich, Germany),
using a lumped parameter method based on the control volume approach. This step is
preceded by a code, written in MATLAB® (MathWorks Inc., Natick, MA, USA), called
Surface Tool, that provides all the information needed by the hydraulic simulation sub-
routine, regarding displacement volumes as the gears rotate and their connection with
the contiguous elements. Then, after the hydraulic simulation, it is possible to activate a



Energies 2021, 14, 471 4 of 22

subroutine that calculates gears’ forces and torques. Next, another subroutine runs the
bearings reaction calculation; then, results are compared and, if a different gear positioning
is necessary, the Surface Tool starts the process again. Further information will be provided
in the next section.

2.2. The Surface Tool

The Surface Tool, the hearth of EgeMATor, needs an excel file for its calculation, with
all the pump parameters and drawings of the components to start. An example of this
excel file has been shown in Figure 3a, where the pump parameters are defined (such as a
number of teeth, gears’ center to center distance, axial dimension, gear micromotion, etc.),
and also the folder path containing DXF files (Drawing Exchange Format) of tooth profile
and wear-plates’ relief groove geometries is linked. The DXF files, used as input, can be
saved directly from a Computer-Aided Design CAD model (only exporting a sketch) or
from experimental measurement like a non-contact 3D laser scan arm. The code, written
in MATLAB®, locates the right cell of the excel file and uses the relative value during the
script running. Firstly, the Surface Tool runs control on the gear engagement with these
inputs, checking any interference in the meshing zone. In case of interference, the tool
provides a warning; otherwise, it continues its subroutine, generating all the required data
files needed by the lumped parameter model. The Surface Tool saves around 100 data files,
where every calculated dimension, such as the volumes of the displacement chambers,
Gi (driving gear), and Ni (driven gear), are tabled as functions of the angular position
(Figure 3b).
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Figure 3. The Surface Tool: (a) Excel sheet input sample for the Surface Tool input; (b) Sample of output data.

To provide support for the user, helping to visualize the morphology of the displace-
ment chambers and their connections with the wear-plates, the Surface Tool is also capable
of optionally generating a GIF (Graphics Interchange Format) animation of gear mesh-
ing. The GIF animation frames have been presented in Figure 4 for two different angular
positions, where the i-th displacement chambers are visible. In the figure, the Gi and Ni
volumes with their previous and following chambers are notable. The wear-plate relief
grooves and suction/delivery volume have been added as well.
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The tool also provides an estimation of the pump displacement, VE, in accordance
with the following formulation: for the analyzed pump, the estimation of the displacement
is 52.72 cm3/rev:

VE = zT · [max(VGi + VNi )−min(VGi + VNi )] (1)

where zT is the number of teeth, VG,i is the volume of the displacement chamber Gi, and
VN,i is the volume of the displacement chamber Ni.

Taking a step back to the EgeMATor workflow in Figure 2, the tool is now ready to
simulate the hydraulic behavior with a model created in the Simcenter Amesim® environ-
ment. The modeling is based on a control volume approach, well-known in the literature,
and already used by the authors with success [22]. Figure 5 presents an overview of the
lumped parameter model to understand better its working approach and how volumes
are connected.

2.3. The Hydraulic Model

With reference to Figures 4 and 5, it is important to underline how the control vol-
ume approach works. For the control volume approach, every Gi and Ni volume has
homogeneous properties, and they are modeled as capacitive elements, whose pressure is
calculated as follows:

dp
dt

=
βk
V

(
∑ Q− dV

dt

)
ρatm

ρ
(2)

where volumetric fluxes, Q, are evaluated for every connection presented in Figure 5. The
equation to evaluate the flux depends on the physics of the connection. In particular,
tooth tip and side fluxes have been modeled considering both Couette and Poiseuille flow
contribution; more precisely, slices of teeth have been considered for the side leakage ap-
proximation.
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The Surface Tool requires a significant parameter to complete its subroutine: it is
the “saving delta angle” ∆ϕ, which is crucial for a robust hydraulic simulation. As said
earlier, the tool creates a batch of data files, where a collection of (ϕ,y) couples is stored.
Each couple represents a dimension (y) as a function of the rotational angle (ϕ). For this
reason, it is important to define the table as “saving delta angle” (∆ϕ = ϕi + 1 − ϕi). With a
bigger ∆ϕ, the Surface Tool subroutine will be faster, but some information could be lost,
while lower ∆ϕ will provide more information than necessary, consuming CPU resources
with consequently more computational time. An analysis of the numerical flow ripple
has been performed to find the hydraulic simulation independence from the parameter
∆ϕ. Results, presented in Figure 6a, show a single flow ripple of the analyzed pump,
simulated with the hydraulic model in Simcenter Amesim® (an overview is shown in
Figure 7) at 1500 rev/min with an imposed outlet pressure of 230 bar. It is clearly visible
that the instantaneous flow at pump delivery becomes independent for ∆ϕ ≤ 0.50 degrees.
In Figure 6b, the CPU time required by an Intel(R) Core (TM) i7-7700HQ CPU 2.80 GHz, to
complete the subroutines is presented as well. The same independence has been observed
on the Gi and Ni pressurizations. A fair tradeoff for the ∆ϕ in the Surface Tool is 0.50 deg,
but since both subroutines (Surface Tool and hydraulic simulation) require around 10 min
to complete, a value of 0.25 deg has been set for the presented study.

EgeMATor has other features; in particular, it is also capable of running other sub-
routines to calculate, for example, forces and torques on the gears, but since the nature
of the paper is more focused on the hydraulic side of the machine—the flow ripple—the
description of those subroutines is not presented in this publication. Only some results
have been presented in the final section.
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3. Three-Dimensional CFD Numerical Model

A transient three-dimensional CFD model of the external gear pump has been built up
only to validate results obtained with EgeMATor in the absence of experimental data. The
model has been developed with the commercial software Simerics MP+, which fits perfectly
for this kind of analysis and has already been used by the authors successfully [22–25].
It discretizes the conservation of mass (3) and momentum (4) equations using a finite
volume method. The CFD code uses a template mesher for EGPs, which creates a structural
mesh for the two gears. The software works directly with the fluid volumes extracted from
a CAD 3D model (shown in Figure 8a); those volumes, after meshing, are interfaced during
the numerical modeling in Simeric MP+. In Figure 8b, a section of the gears’ meshing
volume is presented.

∂
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A cavitation model has been implemented to account for cavitation phenomena.
Simerics MP+ includes a cavitation model based on the full cavitation model developed
by Singhal et al. [26], where the working fluid in cavitating flows is always assumed to
be a mixture of liquid, vapor, and some non-condensable gases (NCG). The modeling
of the NCG effects has been done with the Equilibrium Dissolved Gas Model (EDGM)
available in the software. In the EDGM, the mass fraction of the total non-condensable gas
remains constant, but a part of it is dissolved into the liquid to satisfy the local equilibrium
condition instantly. Mathematically, in addition to the same vapor mass fraction equation
and vapor mass transfer models, the EDGM model solves an additional transport equation
for the mass fraction of the dissolved gas, which is assumed to always be in an equilibrium
state. The modeling equations for the liquid-vapor phase change are as follows [27]:

∂(ρ fv)

∂t
+∇ ·

(
ρ
→
V fv

)
= ∇ ·

[(
Dv +

µt

σv

)
∇ fv

]
+ Re − Rc (5)
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where Dv is the diffusivity of the vapor mass fraction, and σv is the turbulent Schmidt
number. The vapor generation term, Re, and the condensation rate, Rc, are modeled as:

Re =

Ceρlρv

√
2
3
(pv−p)

ρl

(
1− fv − fg, f

)
p < pv

0 p ≥ pv
(6)

Rc =

0 p < pv

Ccρlρv

√
2
3
(p−pv)

ρl
fv p ≥ pv

(7)

The free NCG mass fraction, fg,d, has not been considered constant, but its evaluation
has been achieved by adding the transport equation of the dissolved gas:

∂(ρ fg,d)

∂t
+∇ · (ρ

→
V fg,d) = ∇ ·

((
Dg,d +

µt

σg,d

)
∇ fg,d

)
+

ρ

τ

(
p

pd,equil,re f
fd,equil,re f − fg,d

)
+ Sg,d (8)

where Sg,d is the user-defined law of gas dissolution or release, and fd,equil,ref is the equilib-
rium mass fraction of the dissolved gas at the reference pressure pd,equil,ref, both parameters
have user-specified values. In this equilibrium model, the time scale, τ, approaches zero so
that the mass transfer is near-instant. The free gas has the mass fraction fg,d, instead of fg.
The mass fraction of the free gas is obtained from the condition:

fg = fg, f + fg,d = fg,speci f ied (9)

where fg,specified is a user-specified value.
In the absence of experimental data, a mesh sensitivity analysis has been done by

increasing or decreasing the cells’ number of the displacement chambers and wear-plates
to achieve a stable solution of the monitored model’s outputs. The model requires a
computational time of around 1 day for each pump revolution on an Intel (R) Xeon (R)
CPU E5-2640v2 @ 2.00 GHz (two processors) and consists of 554,000 3D cells. Heat transfer
is not included in the modeling, and temperature affects only fluid viscosity and density.
To solve the turbulent flow, Simerics MP+® adopts a RANS approach, with the standard
“K-Epsilon” turbulence model, which has been proven to be capable of predicting the
correct time-averaged flow field, in particular for wall-bounded flows [22,23].

For the three-dimensional CAD model, the theoretical radial clearance between the
tooth tip and the internal housing is 36 µm. However, to reproduce the gear micromotion
due to the pressure toward the inlet side, both gears have been offset by 30 µm to create
a micro-gap of fluid to respect a non-zero volume cell required by Simerics MP+®. This
micromotion creates an eccentricity with respect to the housing, increasing the gap over
the tip at the pump’s high-pressure side. Another small clearance is needed between the
driving and driven gears’ teeth to reproduce the contact. In particular, a relative rotation of
0.21◦ has been set to get a 5 µm gap, as shown in Figure 9.

The numerical 3D CFD model has been run at the same boundary conditions and
fluid properties simulated with EgeMATor:

• The pressure at inlet port: 0 bar
• The pressure at outlet port variable in the range 230–350 bar
• The fluid is hydraulic oil, ISO VG46
• Variable dynamic viscosity
• Variable liquid bulk modulus (linearly dependent with pressure)
• Oil Temperature: 313 K
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4. Results Comparison

In this section, a comparison between the presented methods is shown. Authors in a
previous paper [23] have already verified the accuracy of the 3D CFD approach used in this
paper to validate the results achieved with EgeMATor. Outlet flow ripple and displacement
chambers’ (Gi and Ni) pressures have been compared. Next, graphs will show results from
three different models, where each item has a particular significance:

1. EgeMATor standard (later called EgeMATor STD) are the results from the lumped
parameter model in standard condition, where sealing conditions (gears’ teeth contact,
gears—housing micromotion) are strictly respected.

2. EgeMATor (3D CFD) are the results from the lumped parameter model with imposed
clearances to match the 3D CFD simulating conditions (no perfect sealing).

3. 3D CFD are data referring to the three-dimensional CFD numerical model with
minimum clearance to respect a CFD simulation context.

All the following results have been referred to a rotational speed of 1500 rev/min and
350 bar of the outlet pressure (maximum pressure).

4.1. Outlet Flow Ripple

In Figure 10, the outlet flow ripple has been presented in both time and frequency
domains. Notably, there is a similar prediction for both approaches. As expected, the
EgeMATor (STD) model, identified with the blue line in Figure 10, provides an average
outlet flow higher than the EgeMATor (3D CFD) model (black line) for its better sealing
conditions. As predicted, the 3D CFD model (red line) provides an average outlet flow
closer to the lumped parameter model with imposed clearances (EgeMATor 3D CFD).

4.2. Gi and Ni Pressure Distributions

The effects of the clearances imposed in the EgeMATor (3D CFD) model are better
visible in Figure 11, where the pressure distributions of the displacement chambers G1
and N1 have been presented. Indeed, for the two models, EgeMATor (3D CFD) and 3D
CFD, both chambers’ pressurization phase have a similar prediction, while the EgeMATor
(STD) shows different pressurization starting angle. This delay is related to the reduced tip
clearance in this model during the pressurization phase transition.
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Figure 11. Gi and Ni pressure distributions.

Even in these plots, the comparison shows a good agreement among the numerical
simulations, confirming the adopted methodology’s robustness. Considering the leakage
flux across the driving tooth number 2 (nomenclature visible in Figure 4), from Figure 12,
the effects of the different radial clearance (gears—pump housing) between the two lumped
parameter models are visible, as well as how the 3D CFD results are more similar to the
EgeMATor (3D CFD) model, especially during the pressurization phase (around 85–130 deg
of the figure). Negative values represent a flux exiting the control volume G2.

To better prove the presented tool’s effectiveness and robustness, the authors decided
to add another study on a different pump with a lower number of teeth (ten per each
gear) in Appendix A since this is the first time that EgeMATor is presented. The next
paragraph is focused on the optimization of the pump performance, looking, in particular,
at the reduction of the flow ripple. For this purpose, an innovative solution called ACV is
introduced in EgeMATor, providing interesting results.
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5. Alternative Capacitive Volumes (ACV)
5.1. The ACV Idea

The main idea behind introducing the Alternative Capacitive Volumes (ACV) is to act
on the reverse flow from the delivery volume to the displacement chambers during the
pressurization (Figure 13). Usually, the displacement chamber’s pressurization happens
through a reverse flow coming directly from the outlet volume, creating a drop clearly
visible on the flow ripple. With the introduction of the ACV, a volume of oil trapped
between two small orifices (around 4 cm3 for the presented case) is used for the chamber
pressurization; thus, the reverse flow is controlled and uniformized. The first orifice is a
threaded orifice inserted to connect the ACV with the delivery volume (Figure 13), while
the second one is directly machined in the wear-plate connecting the displacement volume
to the ACV, as highlighted in Figure 14b. Every visible external access will be opportunely
sealed, as well as the wear-plate back.

A standard 1 mm threaded orifice has been selected for the ACV connection with the
delivery port to make the system industrially reliable. A volume of the ACV that could
easily fit in the pump housing through additional machining has been designed. Then,
numerical simulations have been run to prove the idea.

The first set of simulations has been run to compare results from the 3D CFD (ACV)
model with EgeMATor (3D CFD ACV), validating the lumped parameter approach the
introduction of ACV. The simulation constraints are 1500 rev/min (average working speed)
and 230 bar (average working pressure). This analysis has been presented in Figure 15,
where the EgeMATor (3D CFD), identified with a blue line, shows a higher numerical flow
non-uniformity amplitude than the pump model with the ACV (black line). The same
results are visible for the 3D CFD model, which is very similar in the flow ripple prediction.
Looking at the frequency domain in the same figure, a reduction of the flow ripple on the
second fundamental frequency (800 Hz) is clearly visible due to the reduction of the reverse
flow for each displacement chamber (at 1500 rev/min the shaft frequency is 25 Hz, a value
that if it is multiplied by the number of 32 displacement chambers gives 800 Hz). After
this validation, the second set of simulations has been run only in EgeMATor environment,
with a perfect sealing, not reliable in the 3D CFD model. The mentioned analysis has been
presented in Figure 16, where the flow ripple amplitude reduction is still effective.
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Figure 16. Standard vs. ACV (no gap), outlet flow ripple at 1500 rev/min and 230 bar in time and frequency domains.

As is shown, the second fundamental frequency of the flow ripple, visible in the
frequency domain, is highly reduced. No relevant differences have been observed on the
other frequencies.

5.2. The ACV’s β Angle Optimization

Since the dumper functionality of the ACV has been proven, an optimization process
has been run to get the benefit of a best design. The optimization process has been
performed directly in EgeMATor, since Simcenter Amesim® permits this kind of study.
In other works, the authors approached the optimization also in a CFD environment [23],
but because the tool robustness has been proven, the process has been performed directly in
Simcenter Amesim® for its speed of calculation. It has been decided to run an optimization
to reduce the flow ripple by merely modulating the β angle visible in Figure 17 since
the Surface Tool does not allow parametrization of the plate’s geometries. In this way,
the Non-Uniformity Grade (NUG) [1] can be minimized, reducing the fluid-borne noise.
The optimization process aimed at the fluid-borne noise reduction has been done using a
Non-Linear Programming by Quadratic Lagrangian (NLPQL) method, which particularly
fits this kind of study, where a single objective function has to be minimized.
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The optimization process’s input is the parameter ∆β, which shifts the angular position
of the hole that connects the displacement chamber to the ACV. The effects of gears’
micromotions have been neglected since they lie in the drawings’ tolerance range. The
definition of the objective function is given in the following equation:

Objective Function : min(NUG) (10)

This objective function has a simple interpretation: it tends to minimize the “Non-
Uniformity Grade”. Parameters set for the optimization study are the following:

• Optimization technique: NLPQL
• Relative gradient step: 0.0001
• Desired final accuracy: 0.001

The optimization process took nine iterations to complete the algorithm, as shown
in Figure 18. It can be noted from Figure 18 that the NUG has been further reduced from
the initial value of 0.160, to 0.131, which corresponds to a further percentage reduction of
18.1%. The corresponding ∆β variation from the initial value is −0.51 deg. The working
condition constraints are 1500 rev/min (average working speed) and 230 bar (average
working pressure).
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Figure 18. Optimization process trend.

5.3. Final Results

Using EgeMATor, further analysis is presented in Figure 19, where the numerical flow
ripple comparison has been reported, for both time and frequency domains, among the
initial standard pump (blue line), the pump with the ACV (black line), and the pump with
the ACV angle optimized (red line). A further reduction in the flow ripple amplitude
using the optimized angle is clearly visible from the figure’s top plot. The same results are
evident in the frequency domain, again on the second fundamental frequency (800 Hz).

Table 1 presents a summary of the NUG reduction achieved with the optimization process.
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Table 1. Results summary at 1500 rev/min and 230 bar.

EgeMATor Model NUG Reduction from STD Model

Standard (STD) 0.334 /
with ACV (STD ACV) 0.160 −52.1%

with ACV optimized (STD ACV OPT) 0.131 −60.8%
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As for the Gi and Ni pressure distributions visible in Figure 20, the effects of the ACV
introduction are also evident. The pressurization, due to the tip leakage, becomes shorter
in terms of angular extension.
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Figure 20. Gi and Ni pressure distributions.

Since EgeMATor can also evaluate force and torque on the gears through a subrou-
tine developed in MATLAB®, the following figures have been presented to compare the
three different pumps, showing the effects of the ACV introduction on the forces and
torques ripples.

As can be seen from Figures 21 and 22, only a slight variation on forces acting on the
gears has been observed. Non-relevant variations have been appreciated on the torque
acting on the shaft.
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Figure 22. Contact force and numerical torques acting on driving and driven gears.

This analysis confirms that the ACV system can reduce the pump’s fluid-borne noise
without increasing the structural borne-noise, which is mainly influenced by oscillating
forces and torques.

Another six working conditions have been analyzed to understand the ACV’s effects
at different speeds and pressures. A summary of this analysis has been reported in Table 2,
where it is evident that, at the same speed used as a boundary condition for the optimization
process, the flow ripple reduction (in terms of NUG) is still very interesting, also varying
the pump outlet pressure (studies number 1 and 2). In other cases, particularly for studies
numbers 3 and 4, the improvements are less relevant but still consistent at a lower speed.
At higher speed (studies numbers 5 and 6), the benefits disappeared, and indeed, the NUG
got slightly worse.
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Table 2. Analysis of different working conditions.

Study
Number

Pump Speed
(rev/min)

Outlet Pressure
(bar)

NUG STD
(/-)

NUG STD ACV OPT
(/)

Variation
(%)

1 1500 350 0.403 0.170 −57.82%
2 1500 120 0.269 0.159 −40.89%
3 800 350 0.482 0.392 −18.67%
4 800 120 0.308 0.234 −24.03%
5 3000 350 0.340 0.363 +6.76%
6 3000 120 0.317 0.345 +8.83%

Finally, an additional optimization process has been run. In this case, the input
parameter ∆β, which shifts the connection hole to the ACV, has been differentiated for the
driving and the driven gears. The optimization process trend for this analysis has been
shown in Figure 23, where it can be noted that after twenty-four iterations, even if the
NUG has been further reduced, the improvement achieved differentiating the two angles
is irrelevant. Indeed, the optimized NUG is now equal to 0.129, which means a further
reduction of 1.5%, a value not relevant if it is considered that the wear-plate will lose its
symmetry (that simplifies the meshing and the assembly processes).
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6. Conclusions

In this paper, two different approaches to simulate the fluid-dynamic of an EGP have
been presented. The first methodology is based on the control volume approach, and it
has been simulated through a tool (EgeMATor) developed by the Fluid Power Research
Group of the Universities of Naples Federico II and Sannio. The second methodology uses
a three-dimensional CFD commercial software that includes a specific template mesher for
EGPs. Since no experimental data were available during the analysis, because the pump
was still in a prototyping phase, results from both methodologies have been compared;
in particular, the three-dimensional CFD simulation has also been used to validate the
EgeMATor results deeply. Due to the nature itself of the CFD simulation, where contact
between pump elements cannot be realized since a minimum fluid gap is always required
(to avoid zero volume cells), two models have been realized with EgeMATor: the first one
(called STD) replicates a perfect sealing during the simulation, while the second model,
instead, uses the minimum gaps as imposed in the three-dimensional CFD model. Obtained
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results have permitted validation of the EgeMATor approach, so the tool has been used
to run further analyses. Two volumes have been accommodated in the pump housing,
and they have been used to cyclically connect the delivery volume and the displacement
chambers through two opportune orifices. The new system, called ACV, has been used to
control the reverse flow coming from the pump outlet, that pressurizes the displacement
chamber. In this way, the reverse flow has been controlled and uniformized. The wear-plate
geometries have been optimized with an NLPQL algorithm, showing a reduction of the
flow ripple (NUG) by 61%, substantially reducing the fluid-borne noise. Analysis of forces
and torques that could create structural vibrations has been done as well. The results,
obtained with EgeMATor, showed no significant variation on gears’ forces and torques.
Further optimization will be done on orifices’ dimensions and ACV volumes, but the actual
best design will be manufactured and tested before that.
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Abbreviations

Acronyms
Name Descriptions
ACV Alternative Capacitive Volumes
CAD Computer-Aided Design
CFD Computational Fluid Dynamic
CPU Central Processing Unit
DXF Drawing Exchange Format
EDGM Equilibrium Dissolved Gas Model
EgeMATor External Gear Machine Multi Tool Simulator
EGMs External Gear Machines
EGP External Gear Pump
GIF Graphical Interchange Format
ISO International Organization for Standardization
NCG Non-Condensable Gas
NLPQL Non-Linear Programming by Quadratic Lagrangian
NSGA-II Non-dominated Sorting Genetic Algorithm II
NUG Non-Uniformity Grade
RANS Reynolds Average Navier-Stokes
Symbols
Name Descriptions
Ce Cavitation evaporation coefficient
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Dv Diffusivity of the vapor mass fraction (m2/s)
Dg,d Diffusivity of the dissolved NCG (m2/s)
fd,equil,ref Equilibrium mass fraction of the dissolved gas at the reference pressure
fg Mass fraction of free NCG
fg,d Free NCG mass fraction
fg,f Mass fraction of dissolved NCG
fg,specified User-specified value
fv Mass fraction of the vapor
→
n Surface normal of the surface σ

p Pressure (Pa)
pd,equil,ref Reference pressure for the dissolved gas equilibrium mass fraction (Pa)
pv Phase-change threshold pressure (Pa)
Q Flowrate (L/min)
Re Vapor generation rate
Rc Vapor condensation rate
Sg,d Source of dissolved NCG (kg/m3)
V Volume (m3)
→
V Fluid velocity vector (m/s)
VE Estimated pump displacement (m3/rev)
VG,i i-th volume of the driving gear (m3)
VN,i i-th volume of the driven gear (cm3)
t Time (s)
zT Number of teeth
Greek Symbols
β Angle on the ACV
βk Fluid bulk modulus
µt Turbulent viscosity (Pa·s)
ρ Density of mixture (kg/m3)
ρatm Fluid density at atmospheric pressure (kg/m3)
ρg Density of gas (kg/m3)
ρl Density of liquid (kg/m3)
σ Surface of the control volume (m2)
σg,d Dissolved Gas Schmidt number
σv Vapor Schmidt number
Ω Control volume (m3)
τ Time scale (s)
→
ø Stress tensor
ϕ Angle (deg)
∆ϕ Saving delta angle (deg)

Appendix A

In this appendix, a study on a different pump is presented to show the effectiveness
of the EgeMATor tool. This pump has a lower number of teeth per gear, 10 instead of 16.
It can be seen from Figures A1 and A2, showing flow ripple and displacement chambers’
pressure distributions, that there is a good agreement between the 3D CFD approach and
the EgeMATor model. In this case, experimental results (P-Q curve) were available, and
the models were validated on the average outlet flow.
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