Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries
Abstract
:1. Introduction
2. Literature Review
3. Material and Methods
3.1. Data Sources
3.2. Theoretical Framework and Methodology
4. Main Results and Discussions
4.1. Unit Root Test
4.2. Linear Cointegration Test
4.3. Linear Granger Causality Results
4.4. B.D.S. Test
4.5. Diagnostic Test Results
4.6. Nonlinear Cointegration Results
4.7. Long-Run Nonlinear Effect Results
4.8. Results for Nonlinear Restrictions
4.9. Model Stability Tests
4.10. Asymmetric Causality Results
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Countries | Positive and Negative Changes in Economic Growth and Energy Consumption (Independent Variables) | The outcome of Changes in Independent Variables (Economic Growth and Energy Consumption) on the Dependent Variable (Carbon Emission) |
---|---|---|
Bangladesh | Increase in economic growth | Reduces carbon emission but not significant |
A decrease in economic growth | A significant decline in carbon emission | |
Increase in energy consumption | Significantly increases carbon emission | |
A decrease in energy consumption | Leads to a significant reduction in carbon emission | |
Iran | Increase in economic growth | Decreases carbon emission but not significant |
A decrease in economic growth | Carbon emission decreases significantly | |
Increase in energy consumption | A significant rise in carbon emissions | |
A decrease in energy consumption | Carbon emission increases but not significant | |
Turkey | Increase in economic growth | A significant upsurge in carbon emissions |
A decrease in economic growth | Carbon emission declines significantly | |
Increase in energy consumption | A significant rise in carbon emission | |
A decrease in energy consumption | A nonsignificant reduction in carbon emissions | |
Vietnam | Increase in economic growth | Significantly decreases carbon emission |
A decrease in economic growth | Increases carbon emissions significantly | |
Increase in energy consumption | Carbon emissions significantly rise | |
A decrease in energy consumption | A significant decline in carbon emissions |
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- The World Bank. The World Bank Annual Report 2007; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Perry, L.G.; Andersen, D.C.; Reynolds, L.V.; Nelson, S.M.; Shafroth, P.B. Vulnerability of riparian ecosystems to elevated CO 2 and climate change in arid and semiarid western N orth A merica. Glob. Chang. Biol. 2011, 18, 821–842. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Bello, M.O.; Solarin, S.A.; Yen, Y.Y. The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: The role of hydropower in an emerging economy. J. Environ. Manag. 2018, 219, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Stern, F. Electron Exchange Energy in Si Inversion Layers. Phys. Rev. Lett. 1973, 30, 278–280. [Google Scholar] [CrossRef]
- Stern, D.I. Energy and economic growth in the USA: A multivariate approach. Energy Econ. 1993, 15, 137–150. [Google Scholar] [CrossRef]
- Solomon, S. IPCC (2007): Climate change the physical science basis. AGUFM 2007, 2007, U43D-01. [Google Scholar]
- Sarkodie, S.A.; Adams, S. Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci. Total. Environ. 2018, 643, 1590–1601. [Google Scholar] [CrossRef]
- Apergis, N.; Jebli, M.B.; Youssef, S.B. Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries. Renew. Energy 2018, 127, 1011–1016. [Google Scholar] [CrossRef]
- Ang, J.B. Economic development, pollutant emissions and energy consumption in Malaysia. J. Policy Model. 2008, 30, 271–278. [Google Scholar] [CrossRef]
- Omri, A. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Econ. 2013, 40, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Hanif, I. Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa. Environ. Sci. Pollut. Res. 2018, 25, 15057–15067. [Google Scholar] [CrossRef] [PubMed]
- Brandt, A.R. How does energy resource depletion affect prosperity? Mathematics of a minimum energy return on investment (EROI). Biophys. Econ. Resour. Qual. 2017, 2, 1986. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006; Volume 5. [Google Scholar]
- International Energy Agency. World Energy Outlook 2011; International Energy Agency: Paris, France, 2011; p. 666. [Google Scholar]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, I.; Acaravci, A. CO2 emissions, energy consumption and economic growth in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Tamazian, A.; Chousa, J.P.; Vadlamannati, K.C. Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries. Energy Policy 2009, 37, 246–253. [Google Scholar] [CrossRef]
- Adamantiades, A.; Kessides, I.N. Nuclear power for sustainable development: Current status and future prospects. Energy Policy 2009, 37, 5149–5166. [Google Scholar] [CrossRef]
- DeCanio, S.J. The political economy of global carbon emissions reductions. Ecol. Econ. 2009, 68, 915–924. [Google Scholar] [CrossRef]
- Reddy, B.S.; Assenza, G.B. The great climate debate. Energy Policy 2009, 37, 2997–3008. [Google Scholar] [CrossRef]
- Sachs, G. The future of finance, The rise of the new Shadow Bank, New York. Goldman Sachs Equity Res. 2015, 3. Available online: https://www.fdic.gov/analysis/cfr/bank-research-conference/annual-17th/papers/15-piskorski.pdf (accessed on 18 January 2021).
- The World Bank. World Development Report 2015: Mind, Society, and Behavior; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- US Energy Information Administration. Electric Power Annual 2012; US Energy Information Administration: Washington, DC, USA, 2015.
- Bosah, P.; Li, S.; Ampofo, G.K.M.; Asante, D.A.; Wang, Z. The Nexus Between Electricity Consumption, Economic Growth, and CO2 Emission: An Asymmetric Analysis Using Nonlinear ARDL and Nonparametric Causality Approach. Energies 2020, 13, 1258. [Google Scholar] [CrossRef] [Green Version]
- Raggad, B. Economic development, energy consumption, financial development, and carbon dioxide emissions in Saudi Arabia: New evidence from a nonlinear and asymmetric analysis. Environ. Sci. Pollut. Res. 2020, 27, 21872–21891. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in Honor of Peter Schmidt; Springer Science & Business Media: New York, NY, USA, 2014; pp. 281–314. [Google Scholar]
- Diks, C.; Panchenko, V. A new statistic and practical guidelines for nonparametric Granger causality testing. J. Econ. Dyn. Control 2006, 30, 1647–1669. [Google Scholar] [CrossRef] [Green Version]
- Hiemstra, C.; Jones, J.D. Testing for linear and nonlinear Granger causality in the stock price-volume relation. J. Financ. 1994, 49, 1639–1664. [Google Scholar]
- GrossmanGM, K. Environmental Impacts of the North American Free Trade Agreement; NBER: Cambridge, UK, 1991. [Google Scholar]
- Kuznets, S. Economic growth and income inequality. Am. Econ. Rev. 1955, 45, 1–28. [Google Scholar]
- Ahmad, A.; Zhao, Y.; Shahbaz, M.; Bano, S.; Zhang, Z.; Wang, S.; Liu, Y. Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy. Energy Policy 2016, 96, 131–143. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, L. Electricity Consumption–Economic Growth—CO2 Emissions Nexus in Sub-Saharan Africa: Evidence from Panel Cointegration. Afr. Dev. Rev. 2014, 26, 359–371. [Google Scholar] [CrossRef]
- Bargaoui, Z.K.; Chebbi, A. Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J. Hydrol. 2009, 365, 56–73. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Solarin, S.A.; Ozturk, I. Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: An autoregressive distributed lag (ARDL) approach. Nat. Hazards 2016, 80, 1729–1747. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Hamit-Haggar, M. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energy Econ. 2012, 34, 358–364. [Google Scholar] [CrossRef]
- Pao, H.-T.; Tsai, C.-M. Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy 2011, 36, 685–693. [Google Scholar] [CrossRef]
- Pao, H.-T.; Tsai, C.-M. CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy 2010, 38, 7850–7860. [Google Scholar] [CrossRef]
- Mendum, R.; Njenga, M. Integrating wood fuels into agriculture and food security agendas and research in sub-Saharan Africa. Facets 2018, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lorde, T.; Waithe, K.; Francis, B. The importance of electrical energy for economic growth in Barbados. Energy Econ. 2010, 32, 1411–1420. [Google Scholar] [CrossRef]
- Mezghani, I.; Haddad, H.B. Energy consumption and economic growth: An empirical study of the electricity consumption in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 75, 145–156. [Google Scholar] [CrossRef]
- Paramati, S.R.; Sinha, A.; Dogan, E. The significance of renewable energy use for economic output and environmental protection: Evidence from the Next 11 developing economies. Environ. Sci. Pollut. Res. 2017, 24, 13546–13560. [Google Scholar] [CrossRef]
- Solarin, S.A.; Lean, H.H. Natural gas consumption, income, urbanization, and CO2 emissions in China and India. Environ. Sci. Pollut. Res. 2016, 23, 18753–18765. [Google Scholar] [CrossRef]
- Esteve, V.; Tamarit, C. Threshold cointegration and nonlinear adjustment between CO2 and income: The environmental Kuznets curve in Spain, 1857–2007. Energy Econ. 2012, 34, 2148–2156. [Google Scholar] [CrossRef]
- Esteve, V.; Tamarit, C. Is there an environmental Kuznets curve for Spain? Fresh evidence from old data. Econ. Model. 2012, 29, 2696–2703. [Google Scholar] [CrossRef]
- Fosten, J.; Morley, B.; Taylor, T. Dynamic misspecification in the environmental Kuznets curve: Evidence from CO2 and SO2 emissions in the United Kingdom. Ecol. Econ. 2012, 76, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Lean, H.H.; Shabbir, M.S. Environmental Kuznets curve hypothesis in Pakistan: Cointegration and Granger causality. Renew. Sustain. Energy Rev. 2012, 16, 2947–2953. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Mutascu, M.; Azim, P. Environmental Kuznets curve in Romania and the role of energy consumption. Renew. Sustain. Energy Rev. 2013, 18, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Ozturk, I.; Afza, T.; Ali, A. Revisiting the environmental Kuznets curve in a global economy. Renew. Sustain. Energy Rev. 2013, 25, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Robalino-López, A.; Nieto, A.I.M.; García-Ramos, J.-E.; Golpe, A.A. Studying the relationship between economic growth, CO2 emissions, and the environmental Kuznets curve in Venezuela (1980–2025). Renew. Sustain. Energy Rev. 2015, 41, 602–614. [Google Scholar] [CrossRef] [Green Version]
- Sephton, P.; Mann, J. Further evidence of an environmental Kuznets curve in Spain. Energy Econ. 2013, 36, 177–181. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Shahbaz, M.; Hye, Q.M.A. The environmental Kuznets curve and the role of coal consumption in India: Cointegration and causality analysis in an open economy. Renew. Sustain. Energy Rev. 2013, 18, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Cicea, C.; Marinescu, C.; Popa, I.; Dobrin, C. Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level. Renew. Sustain. Energy Rev. 2014, 30, 555–564. [Google Scholar] [CrossRef]
- Cowan, W.N.; Chang, T.; Inglesi-Lotz, R.; Gupta, R. The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries. Energy Policy 2014, 66, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.H.; Law, S.H. Social capital and CO2 emission—output relations: A panel analysis. Renew. Sustain. Energy Rev. 2014, 29, 528–534. [Google Scholar] [CrossRef]
- Robalino-López, A.; Mena-Nieto, A.; García-Ramos, J.E. System dynamics modeling for renewable energy and CO2 emissions: A case study of Ecuador. Energy Sustain. Dev. 2014, 20, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Khraief, N.; Uddin, G.S.; Ozturk, I. Environmental Kuznets curve in an open economy: A bounds testing and causality analysis for Tunisia. Renew. Sustain. Energy Rev. 2014, 34, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Uddin, G.S.; Rehman, I.U.; Imran, K. Industrialization, electricity consumption and CO2 emissions in Bangladesh. Renew. Sustain. Energy Rev. 2014, 31, 575–586. [Google Scholar] [CrossRef]
- Ajmi, A.N.; Hammoudeh, S.; Nguyen, D.K.; Sato, J.R. On the relationships between CO2 emissions, energy consumption and income: The importance of time variation. Energy Econ. 2015, 49, 629–638. [Google Scholar] [CrossRef]
- Baek, J. A panel cointegration analysis of CO2 emissions, nuclear energy and income in major nuclear generating countries. Appl. Energy 2015, 145, 133–138. [Google Scholar] [CrossRef]
- Ramadan El, A.M.; Kamel, M.M. The Relationship Between Economic Growth and Environmental Pollution: Testing The Environmental Kuznets Curve Hypothesis in Egypt. Available online: https://www.researchgate.net/profile/Maie_Kamel/publication/336563247_The_Environmental_Kuznets_Curve_Hypothesis_in_Egypt/links/5da5c2f492851caa1ba600fa/The-Environmental-Kuznets-Curve-Hypothesis-in-Egypt.pdf (accessed on 18 January 2021).
- Zhang, X.; Zhang, H.; Yuan, J. Economic growth, energy consumption, and carbon emission nexus: Fresh evidence from developing countries. Environ. Sci. Pollut. Res. 2019, 26, 26367–26380. [Google Scholar] [CrossRef]
- Aydoğan, B.; Vardar, G. Evaluating the role of renewable energy, economic growth and agriculture on CO2 emission in E7 countries. Int. J. Sustain. Energy 2020, 39, 335–348. [Google Scholar] [CrossRef]
- Demissew Beyene, S.; Kotosz, B. Testing the environmental Kuznets curve hypothesis: An empirical study for East African countries. Int. J. Environ. Stud. 2020, 77, 636–654. [Google Scholar] [CrossRef] [Green Version]
- Destek, M.A.; Shahbaz, M.; Okumus, I.; Hammoudeh, S.; Sinha, A. The relationship between economic growth and carbon emissions in G-7 countries: Evidence from time-varying parameters with a long history. Environ. Sci. Pollut. Res. 2020, 27, 29100–29117. [Google Scholar] [CrossRef]
- Jin, T.; Kim, J. Investigating the environmental Kuznets curve for Annex I countries using heterogeneous panel data analysis. Environ. Sci. Pollut. Res. 2020, 27, 10039–10054. [Google Scholar] [CrossRef]
- Ongan, S.; Işık, C.; Ozdemir, D. Economic growth and environmental degradation: Evidence from the US case environmental Kuznets curve hypothesis with application of decomposition. J. Environ. Econ. Policy 2020. [Google Scholar] [CrossRef]
- Isik, C.; Ongan, S.; Özdemir, D. The economic growth/development and environmental degradation: Evidence from the US state-level EKC hypothesis. Environ. Sci. Pollut. Res. 2019, 26, 30772–30781. [Google Scholar] [CrossRef] [PubMed]
- Jebli, M.B.; Kahia, M. The interdependence between CO2 emissions, economic growth, renewable and nonrenewable energies, and service development: Evidence from 65 countries. Clim. Chang. 2020, 162, 193–212. [Google Scholar] [CrossRef]
- Erdogan, S.; Okumus, I.; Guzel, A.E. Revisiting the Environmental Kuznets Curve hypothesis in OECD countries: The role of renewable, nonrenewable energy, and oil prices. Environ. Sci. Pollut. Res. 2020, 1–9, 23655–23663. [Google Scholar] [CrossRef]
- Kotroni, E.; Kaika, D.; Zervas, E. Environmental Kuznets Curve in Greece in the period 1960–2014. Int. J. Energy Econ. Policy 2020, 10, 364–370. [Google Scholar] [CrossRef]
- Koc, S.; Bulus, G.C. Testing validity of the EKC hypothesis in South Korea: Role of renewable energy and trade openness. Environ. Sci. Pollut. Res. 2020, 27, 29043–29054. [Google Scholar] [CrossRef]
- Mrabet, Z.; AlSamara, M.; Jarallah, S.H. The impact of economic development on environmental degradation in Qatar. Environ. Ecol. Stat. 2017, 24, 7–38. [Google Scholar] [CrossRef]
- Jalil, A.; Feridun, M. The impact of growth, energy and financial development on the environment in China: A cointegration analysis. Energy Econ. 2011, 33, 284–291. [Google Scholar] [CrossRef]
- Onafowora, O.A.; Owoye, O. Bounds testing approach to analysis of the environment Kuznets curve hypothesis. Energy Econ. 2014, 44, 47–62. [Google Scholar] [CrossRef]
- Ozturk, I.; Acaravci, A. The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey. Energy Econ. 2013, 36, 262–267. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nasreen, S.; Ahmed, K.; Hammoudeh, S. Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels. Energy Econ. 2017, 61, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Boutabba, M.A. The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy. Econ. Model. 2014, 40, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, S.J.H.; Kumar, R.R.; Zakaria, M.; Hurr, M. Carbon emission, energy consumption, trade openness and financial development in Pakistan: A revisit. Renew. Sustain. Energy Rev. 2017, 70, 185–192. [Google Scholar] [CrossRef]
- Shahbaz, M.; Solarin, S.A.; Mahmood, H.; Arouri, M. Does financial development reduce CO2 emissions in Malaysian economy? A time series analysis. Econ. Model. 2013, 35, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Yeh, J.-C.; Liao, C.-H. Impact of population and economic growth on carbon emissions in Taiwan using an analytic tool stirpat. Sustain. Environ. Res. 2017, 27, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Shi, A. Population growth and global carbon dioxide emissions. In Proceedings of the IUSSP Conference in Brazil/SESSION-S09. 2001. Available online: https://iussp.org/sites/default/files/Brazil2001/s00/S09_04_Shi.pdf (accessed on 18 January 2021).
- Shahbaz, M.; Mallick, H.; Mahalik, M.K.; Loganathan, N. Does globalization impede environmental quality in India? Ecol. Indic. 2015, 52, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Baz, K.; Xu, D.; Ali, H.; Ali, I.; Khan, I.; Khan, M.M.; Cheng, J. Asymmetric impact of energy consumption and economic growth on ecological footprint: Using asymmetric and nonlinear approach. Sci. Total Environ. 2020, 718, 137364. [Google Scholar] [CrossRef]
- Javid, M.; Sharif, F. Environmental Kuznets curve and financial development in Pakistan. Renew. Sustain. Energy Rev. 2016, 54, 406–414. [Google Scholar] [CrossRef]
- Abbasi, F.; Riaz, K. CO2 emissions and financial development in an emerging economy: An augmented VAR approach. Energy Policy 2016, 90, 102–114. [Google Scholar] [CrossRef]
- Hang, G.; Yuan-Sheng, J. The relationship between CO2 emissions, economic scale, technology, income and population in China. Procedia Environ. Sci. 2011, 11, 1183–1188. [Google Scholar] [CrossRef] [Green Version]
- Mardani, A.; Streimikiene, D.; Nilashi, M.; Arias-Aranda, D.; Loganathan, N.; Jusoh, A. Energy consumption, economic growth, and CO2 emissions in G20 countries: Application of adaptive neuro-fuzzy inference System. Energies 2018, 11, 2771. [Google Scholar] [CrossRef] [Green Version]
- Ben-Salha, O.; Dachraoui, H.; Sebri, M. Natural resource rents and economic growth in the top resource-abundant countries: A PMG estimation. Resour. Policy 2018. [Google Scholar] [CrossRef]
- Bekiros, S.D.; Diks, C.G. The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality. Energy Econ. 2008, 30, 2673–2685. [Google Scholar] [CrossRef] [Green Version]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Broock, W.A.; Scheinkman, J.A.; Dechert, W.D.; LeBaron, B. A test for independence based on the correlation dimension. Econ. Rev. 1996, 15, 197–235. [Google Scholar] [CrossRef]
- Banerjee, A.; Dolado, J.; Mestre, R. Error-correction mechanism tests for cointegration in a single-equation framework. J. Time Ser. Anal. 1998, 19, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Ssali, M.W.; Du, J.; Hongo, D.O.; Mensah, I.A. Impact of Economic Growth, Energy Use and Population Growth on Carbon Emissions in Sub-Sahara Africa. J. Environ. Sci. Eng. B 2018, 7, 178–192. [Google Scholar]
- Sathiendrakumar, R. Greenhouse emission reduction and sustainable development. Int. J. Soc. Econ. 2003, 30, 1233–1248. [Google Scholar] [CrossRef]
- Fong, W.-K.; Matsumoto, H.; Lun, Y.-F.; Kimura, R. Influences of indirect lifestyle aspects and climate on household energy Consumption. J. Asian Arch. Build. Eng. 2007, 6, 395–402. [Google Scholar] [CrossRef]
- Alam, M.J.; Begum, I.A.; Buysse, J.; Van Huylenbroeck, G. Energy consumption, carbon emissions and economic growth nexus in Bangladesh: Cointegration and dynamic causality analysis. Energy Policy 2012, 45, 217–225. [Google Scholar] [CrossRef]
- Chang, C.-C. A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China. Appl. Energy 2010, 87, 3533–3537. [Google Scholar] [CrossRef]
- Chebbi, H.E. Long and short–run linkages between economic growth, energy consumption and CO2 emissions in Tunisia. Middle East Dev. J. 2010, 2, 139–158. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufeal, Y. Energy consumption, pollutants emissions and economic growth in South Africa. Energy Consum. 2010, 32, 1374–1382. [Google Scholar] [CrossRef]
- Ghosh, S. Import demand of crude oil and economic growth: Evidence from India. Energy Policy 2009, 37, 699–702. [Google Scholar] [CrossRef]
- Shahbaz, M.; Mahalik, M.K.; Shah, S.H.; Sato, J.R. Time-varying analysis of CO2 emissions, energy consumption, and economic growth nexus: Statistical experience in next 11 countries. Energy Policy 2016, 98, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Robalino-López, A.; García-Ramos, J.E.; Golpe, A.; Mena, A. System dynamics modelling and the environmental Kuznets curve in Ecuador (1980–2025). Energy Policy 2014, 67, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Lean, H.H.; Smyth, R. CO2 emissions, electricity consumption and output in ASEAN. Appl. Energy 2010, 87, 1858–1864. [Google Scholar] [CrossRef]
Authors | Relationship | Region | Methodology | Period | Findings |
---|---|---|---|---|---|
[46] | CO2-GDP | Spain | Threshold cointegration | From 1857 to 2007 | Existence of EKC |
[47] | CO2-GDP | Spain | EKC analysis | From 1857 to 2007 | Existence of EKC |
[48] | CO2-GDP | UK | Nonlinear threshold cointegration and error correction method | From 1830 to 2003 | Existence of EKC |
[49] | CO2-Energy-GDP | Pakistan | Cointegration, Granger and EKC analysis | From 1971 to 2009 | Existence of EKC |
[50] | CO2-Energy-GDP | Romania | Cointegration and EKC analysis | From 1980 to 2010 | Existence of EKC |
[51] | CO2-Energy-GDP | Turkey | Cointegration and EKC analysis | From 1970 to 2010 | Existence of EKC |
[52] | CO2-Energy-GDP | Ecuador | System dynamics modeling and EKC analysis | From 1980 to 2025 | Existence of EKC |
[53] | CO2-GDP | Spain | Multivariate adaptive regression splines | From 1857 to 2007 | Existence of EKC |
[54] | CO2-Energy-GDP | India | Bound testing cointegration. | From 1966 to 2009 | Existence of EKC |
[55] | CO2-GDP | EU | Indicator analysis | From 1990 to 2008 | Mixed Results |
[56] | CO2-Energy-GDP | BRICS Members | Granger causality analysis | From 1990 to 2010 | Existence of EKC |
[57] | CO2-GDP | 69 countries | Generalized method of moment estimators | From 2000 to 2008 | Mixed results |
[58] | CO2-Energy-GDP | Ecuador | System dynamics modeling and scenario analysis | From 1980 to 2025 | Existence of EKC |
[59] | CO2-Energy-GDP | Tunisia | A.R.D.L. cointegration and EKC analysis | From 1971 to 2010 | Existence of EKC |
[60] | CO2-Industrial-GDP | Bangladesh | Bounds Testing cointegration | From 1975 to 2010 | Existence of EKC |
[61] | CO2-Energy-GDP | G7 countries | Time-varying Granger causality analysis | From 1960 to 2010 | EKC non-existence. |
[52] | CO2-GDP | Venezuela | Cointegration Technique | From 1980 to 2025 | EKC non-existence. |
[62] | CO2-GDP | Korea | Bounds Testing cointegration | From 1978 to 2007 | Existence of EKC |
[63] | GDP–Energy–CO2 | Egypt | Johansen Cointegration | From 1977 to 2014 | Existence of EKC |
[64] | GDP–Energy–CO2 | 50 Developing countries | Fully-modified OLS (FMOLS) | From 1995 to 2017 | EKC exists in Mexico, Croatia, Kazakhstan, Iran, Algeria, Indonesia, and Thailand |
[65] | CO2-Energy-GDP | E7 countries | OLS, FMOLS, and DOLS | From 1990 to 2014 | Existence of EKC |
[66] | GDP–CO2 | Twelve (12) East African countries | Pooled Mean Group (PMG) | From 1990 to 2013 | EKC non-existence. |
[67] | GDP–CO2 | G-7 countries | Time-varying cointegration and bootstrap-rolling window | From the 1800s to 2010 | EKC pre-existed in Italy, France, and the USA in the 1973 period |
[68] | GDP–CO2 | 34 Annex I countries | Panel cointegration test | From 1990 to 2016 | EKC exists in 5 out of 34 countries |
[69] | GDP–CO2 | United States of America | ARDL/NARDL | 1990M1 and 2019M7 | EKC exists in the NARDL approach |
[70] | Energy–CO2 | 50 US states and a Federal District (Washington, D.C.) | (CCE) and the augmented mean group (AMG) estimation | From 1980 to 2015 | EKC exists in 14 states |
[71] | CO2–Energy-GDP | A panel of 65 countries | (VAR) model, Granger causality, and Toda–Yamamoto tests | From 1980 to 2014 | Existence of EKC |
[72] | GDP–CO2 | Different Income Group Countries | Panel FMOLS | From 1980 to 2013 | EKC hypothesis is validated for lower middle income and also for upper-middle-income country panel |
[73] | GDP–Energy–CO2 | Greece | Granger Causality | From 1960–2014 | EKC non-existence. |
[74] | GDP–Energy–CO2 | Korea | ARDL | From 1971 to 2017 | EKC non-existence. |
Countries | Variable | Mean | Median | Max. | Min. | Std. Dev. | Skewness | Kurtosis | JB | Prob. |
---|---|---|---|---|---|---|---|---|---|---|
Bangladesh | CO | 0.188 | 0.156 | 0.442 | 0.052 | 0.110 | 0.842 | 2.696 | 5.126 | 0.077 |
EC | 4.854 | 4.800 | 5.372 | 4.465 | 0.254 | 0.518 | 2.208 | 2.973 | 0.226 | |
EG | 6.130 | 6.043 | 6.779 | 5.761 | 0.289 | 0.750 | 2.426 | 4.511 | 0.105 | |
Egypt | CO | 1.561 | 1.427 | 2.528 | 0.635 | 0.563 | 0.250 | 1.992 | 2.217 | 0.330 |
EC | 7.689 | 7.890 | 8.566 | 6.312 | 0.718 | −0.393 | 1.715 | 3.969 | 0.137 | |
EG | 7.329 | 7.342 | 7.864 | 6.602 | 0.375 | −0.387 | 2.248 | 2.038 | 0.361 | |
Indonesia | CO | 1.097 | 1.060 | 2.560 | 0.358 | 0.543 | 0.798 | 3.169 | 4.503 | 0.105 |
EC | 6.298 | 6.385 | 6.774 | 5.708 | 0.361 | −0.226 | 1.515 | 4.214 | 0.122 | |
EG | 7.486 | 7.562 | 8.178 | 6.732 | 0.406 | −0.178 | 1.966 | 2.095 | 0.351 | |
Iran | CO | 4.967 | 4.494 | 8.004 | 2.807 | 1.607 | 0.596 | 2.034 | 4.116 | 0.128 |
EC | 7.291 | 7.267 | 7.956 | 6.294 | 0.449 | −0.075 | 2.047 | 1.630 | 0.443 | |
EG | 8.624 | 8.552 | 9.237 | 8.200 | 0.274 | 0.749 | 2.646 | 4.152 | 0.125 | |
Mexico | CO | 3.746 | 3.819 | 4.353 | 2.388 | 0.497 | −1.309 | 4.058 | 13.950 | 0.001 |
EC | 7.227 | 7.286 | 7.414 | 6.753 | 0.166 | −1.511 | 4.273 | 18.810 | 0.000 | |
EG | 8.978 | 8.980 | 9.149 | 8.658 | 0.133 | −0.665 | 2.655 | 3.305 | 0.192 | |
Nigeria | CO | 0.652 | 0.688 | 1.010 | 0.325 | 0.193 | −0.215 | 2.024 | 1.990 | 0.370 |
EC | 6.542 | 6.542 | 6.682 | 6.372 | 0.074 | −0.401 | 2.839 | 1.171 | 0.557 | |
EG | 7.436 | 7.404 | 7.814 | 7.188 | 0.203 | 0.250 | 1.571 | 4.015 | 0.134 | |
Pakistan | CO | 0.643 | 0.654 | 0.991 | 0.309 | 0.218 | −0.032 | 1.711 | 2.912 | 0.233 |
EC | 5.989 | 6.033 | 6.261 | 5.653 | 0.193 | −0.310 | 1.659 | 3.819 | 0.148 | |
EG | 6.604 | 6.674 | 6.988 | 6.118 | 0.267 | −0.315 | 1.937 | 2.673 | 0.263 | |
Philippines | CO | 0.793 | 0.818 | 0.996 | 0.516 | 0.119 | −0.602 | 2.691 | 2.706 | 0.258 |
EC | 6.122 | 6.117 | 6.240 | 6.008 | 0.054 | 0.271 | 2.672 | 0.701 | 0.705 | |
EG | 7.402 | 7.370 | 7.783 | 7.185 | 0.145 | 0.951 | 3.200 | 6.400 | 0.041 | |
S. Korea | CO | 7.699 | 8.444 | 11.803 | 2.603 | 3.111 | −0.206 | 1.575 | 3.850 | 0.146 |
EC | 7.689 | 7.890 | 8.566 | 6.312 | 0.718 | −0.393 | 1.715 | 3.969 | 0.137 | |
EG | 9.068 | 9.210 | 10.073 | 7.634 | 0.759 | −0.336 | 1.765 | 3.461 | 0.177 | |
Turkey | CO | 2.797 | 2.736 | 4.419 | 1.472 | 0.879 | 0.223 | 1.919 | 2.391 | 0.302 |
EC | 6.892 | 6.885 | 7.369 | 6.402 | 0.276 | 0.036 | 1.852 | 2.316 | 0.314 | |
EG | 8.866 | 8.841 | 9.462 | 8.426 | 0.292 | 0.299 | 2.010 | 2.341 | 0.310 | |
Vietnam | CO | 0.663 | 0.427 | 1.701 | 0.262 | 0.456 | 1.078 | 2.702 | 8.294 | 0.016 |
EC | 5.830 | 5.664 | 6.501 | 5.524 | 0.327 | 0.973 | 2.454 | 7.146 | 0.028 | |
EG | 6.236 | 6.072 | 7.234 | 5.557 | 0.532 | 0.417 | 1.856 | 3.511 | 0.173 |
Country | Variable | ADF | P.P. |
---|---|---|---|
1st Diff. | Level | ||
Bangladesh | CO | −4.958053 *** | −5.095271 *** |
EC | −8.105175 *** | −8.105175 *** | |
EG | −9.388714 *** | −6.578150 *** | |
Egypt | CO | −8.060522 *** | −5.095271 *** |
EC | −5.466056 *** | −5.529220 *** | |
EG | −9.388714 *** | −3.840639 *** | |
Iran | CO | −5.534588 *** | −5.533646 *** |
EC | −8.056607 *** | −8.302803 *** | |
EG | −4.343252 *** | −4.323196 *** | |
Indonesia | CO | −7.351991 *** | −5.113169 *** |
EC | −6.408486 *** | −6.416679 *** | |
EG | −4.740846 *** | −4.711259 *** | |
Mexico | CO | −7.493528 *** | −7.424368 *** |
EC | −4.697482 *** | −4.767260 *** | |
EG | −5.225727 *** | 0.0001 *** | |
Nigeria | CO | −7.798879 *** | −7.850522 *** |
EC | −5.680019 *** | −5.716808 *** | |
EG | −4.477894 *** | −4.678554 *** | |
Pakistan | CO | −6.569886 *** | −6.612215 *** |
EC | −5.081361 *** | −5.081473 *** | |
EG | −4.927686 *** | −4.990064 *** | |
Philippines | CO | −6.003711 *** | −6.065572 *** |
EC | −8.881027 *** | −8.511704 *** | |
EG | −3.471897 ** | −3.527832 ** | |
South Korea | CO | −6.740287 *** | −6.843895 *** |
EC | −5.466056 *** | −5.529220 *** | |
EG | −4.913235 *** | −4.908296 *** | |
Turkey | CO | −6.418895 *** | −7.079606 *** |
EC | −6.434442 *** | −6.915337 *** | |
EG | −5.979640 *** | −5.980426 *** | |
Vietnam | CO | −4.981646 *** | −5.104254 *** |
EC | −5.091775 *** | −5.385382 *** | |
EG | −5.091775 *** | −5.385382 *** |
Trace Test Statistics | p-Value | Max-Eign Test Statistics | p-Value | |
---|---|---|---|---|
Hypothesis of no cointegration | ||||
Bangladesh | 42.4764 | 0.0011 | 28.5185 | 0.0038 |
Egypt | 30.592 | 0.0404 | 18.4978 | 0.1123 |
Indonesia | 23.8596 | 0.2064 | 18.7493 | 0.1043 |
Iran | 29.0294 | 0.0611 | 17.1946 | 0.163 |
Mexico | 26.7122 | 0.1089 | 17.8188 | 0.1368 |
Nigeria | 12.5034 | 0.9129 | 7.0153 | 0.9533 |
Pakistan | 18.1126 | 0.5577 | 11.3872 | 0.6087 |
Philipines | 21.1684 | 0.3472 | 15.8066 | 0.2364 |
South Korea | 23.7202 | 0.2125 | 14.0065 | 0.3645 |
Turkey | 21.2214 | 0.344 | 14.6463 | 0.3144 |
Vietnam | 32.2486 | 0.0256 | 20.0402 | 0.0705 |
Hypothesis of at most 1 cointegration relationship | ||||
Bangladesh | 13.9579 | 0.0841 | 9.784 | 0.2265 |
Egypt | 12.0942 | 0.1525 | 7.8039 | 0.399 |
Indonesia | 5.1103 | 0.797 | 4.3982 | 0.8151 |
Iran | 11.8347 | 0.165 | 11.8176 | 0.1177 |
Mexico | 8.8934 | 0.3753 | 7.9445 | 0.3844 |
Nigeria | 5.488 | 0.755 | 5.4876 | 0.6794 |
Pakistan | 6.7253 | 0.6098 | 6.4833 | 0.552 |
Philipines | 5.3618 | 0.7692 | 4.7917 | 0.7679 |
South Korea | 9.7137 | 0.3034 | 8.1115 | 0.3675 |
Turkey | 6.575 | 0.6275 | 6.1597 | 0.5928 |
Vietnam | 12.2084 | 0.1472 | 12.1733 | 0.1043 |
Country | Null Hypothesis | F-Statistic | Prob | Country | Null Hypothesis | F-Statistic | Prob |
---|---|---|---|---|---|---|---|
Bangladesh | EC→CO | 2.12742 | 0.1343 | Pakistan | EC→CO | 8.57022 | 0.0009 *** |
CO→EC | 0.86825 | 0.4285 | CO→EC | 0.92026 | 0.4078 | ||
EG→CO | 7.66062 | 0.0017 *** | EG→CO | 3.34227 | 0.0469 ** | ||
CO→EG | 0.31741 | 0.7301 | CO→EG | 0.04464 | 0.9564 | ||
Egypt | EC→CO | 1.84401 | 0.1732 | Philippines | EC→CO | 1.63126 | 0.2102 |
CO→EC | 0.68438 | 0.511 | CO→EC | 0.70981 | 0.4987 | ||
EG→CO | 0.59250 | 0.5584 | EG→CO | 0.64014 | 0.5333 | ||
CO→EG | 2.71256 | 0.0803 * | CO→EG | 1.30704 | 0.2835 | ||
Indonesia | EC→CO | 3.66009 | 0.036 ** | South Korea | EC→CO | 2.84736 | 0.0715 * |
CO→EC | 0.48001 | 0.6228 | CO→EC | 0.79682 | 0.4588 | ||
EG→CO | 2.90335 | 0.0681 * | EG→CO | 7.35589 | 0.0022 *** | ||
CO→EG | 0.46341 | 0.6329 | CO→EG | 0.06048 | 0.9414 | ||
Iran | EC→CO | 2.09535 | 0.1382 | Turkey | EC→CO | 0.28988 | 0.7501 |
CO→EC | 0.75668 | 0.4767 | CO→EC | 0.42228 | 0.6588 | ||
EG→CO | 2.93896 | 0.0661 * | EG→CO | 1.74327 | 0.1898 | ||
CO→EG | 0.41869 | 0.6612 | CO→EG | 0.35153 | 0.7061 | ||
Mexico | EC→CO | 2.08351 | 0.1397 | Vietnam | EC→CO | 13.9725 | 0.00003 *** |
CO→EC | 0.25710 | 0.7747 | CO→EC | 7.66099 | 0.0017 *** | ||
EG→CO | 2.93266 | 0.0664 * | EG→CO | 8.73214 | 0.0008 *** | ||
CO→EG | 0.07895 | 0.9242 | CO→EG | 1.76289 | 0.1864 | ||
Nigeria | EC→CO | 1.33657 | 0.2758 | ||||
CO→EC | 0.01847 | 0.9817 | |||||
EG→CO | 1.19780 | 0.3139 | |||||
CO→EG | 0.76583 | 0.4726 |
Countries | Dimension | EC | EG | Countries | Dimension | EC | EG |
---|---|---|---|---|---|---|---|
B.D.S. Statistic (***) | B.D.S. Statistic (***) | B.D.S. Statistics (***) | B.D.S. Statistics (***) | ||||
Bangladesh | 2 | 0.177024 *** | 0.174039 *** | Pakistan | 2 | 0.199488 *** | 0.199703 *** |
3 | 0.285864 *** | 0.278125 *** | 3 | 0.334663 *** | 0.337807 *** | ||
4 | 0.350735 *** | 0.339179 *** | 4 | 0.428513 *** | 0.434716 *** | ||
5 | 0.389067 *** | 0.37318 *** | 5 | 0.495292 *** | 0.502299 *** | ||
6 | 0.411109 *** | 0.380987 *** | 6 | 0.544884 *** | 0.551332 *** | ||
Egypt | 2 | 0.201463 *** | 0.198172 *** | Philippines | 2 | 0.10975 *** | 0.158969 *** |
3 | 0.341714 *** | 0.337625 *** | 3 | 0.175152 *** | 0.244498 *** | ||
4 | 0.438403 *** | 0.436021 *** | 4 | 0.193586 *** | 0.283601 *** | ||
5 | 0.506641 *** | 0.506077 *** | 5 | 0.187322 *** | 0.283893 *** | ||
6 | 0.556544 *** | 0.557602 *** | 6 | 0.147491 *** | 0.27089 *** | ||
Indonesia | 2 | 0.194317 *** | 0.197835 *** | South Korea | 2 | 0.201463 *** | 0.20414 *** |
3 | 0.325502 *** | 0.333295 *** | 3 | 0.341714 *** | 0.344286 *** | ||
4 | 0.417838 *** | 0.427217 *** | 4 | 0.438403 *** | 0.443357 *** | ||
5 | 0.483318 *** | 0.495225 *** | 5 | 0.506641 *** | 0.513784 *** | ||
6 | 0.531504 *** | 0.546404 *** | 6 | 0.556544 *** | 0.565905 *** | ||
Iran | 2 | 0.187381 *** | 0.171945 *** | Turkey | 2 | 0.177244 *** | 0.160076 *** |
3 | 0.312782 *** | 0.289979 *** | 3 | 0.295023 *** | 0.265773 *** | ||
4 | 0.399411 *** | 0.368851 *** | 4 | 0.376469 *** | 0.330013 *** | ||
5 | 0.458589 *** | 0.419481 *** | 5 | 0.435256 *** | 0.380511 *** | ||
6 | 0.499275 *** | 0.449397 *** | 6 | 0.483341 *** | 0.422466 *** | ||
Mexico | 2 | 0.201463 *** | 0.166562 *** | Vietnam | 2 | 0.172391 *** | 0.189636 *** |
3 | 0.341406 *** | 0.271809 *** | 3 | 0.270012 *** | 0.309999 *** | ||
4 | 0.436461 *** | 0.343492 *** | 4 | 0.324388 *** | 0.386616 *** | ||
5 | 0.498828 *** | 0.391855 *** | 5 | 0.343519 *** | 0.438129 *** | ||
6 | 0.538705 *** | 0.433351 *** | 6 | 0.337443 *** | 0.470514 *** | ||
Nigeria | 2 | 0.172747 *** | 0.134242 *** | ||||
3 | 0.276635 *** | 0.21865 *** | |||||
4 | 0.343756 *** | 0.264458 *** | |||||
5 | 0.410921 *** | 0.281335 *** | |||||
6 | 0.472064 *** | 0.28456 *** |
Countries | Diagnostics | t-Statistics | Countries | Diagnostics | t-Statistics |
---|---|---|---|---|---|
Bangladesh | SC | 21.89 (0.2369) | Pakistan | SC | 18.78 (0.2803) |
HT | 0.01553 (0.9008) | HT | 1.56 (0.2116) | ||
FF | 0.3552 (0.7859) | FF | 0.5388 (0.6706) | ||
Egypt | SC | 15.62 (0.5507) | Philippines | SC | 14.68 (0.6186) |
HT | 1.029 (0.3103) | HT | 0.1156 (0.7338) | ||
FF | 0.2407 (0.8663) | FF | 0.6411 (0.5990) | ||
Indonesia | SC | 22.09 (0.1403) | South Korea | SC | 17.18 (0.3738) |
HT | 0.5262 (0.4682) | HT | 0.9664 (0.3256) | ||
FF | 4.383 (0.1914) | FF | 1.11 (0.4070) | ||
Iran | SC | 14.48 (0.5628) | Turkey | SC | 18.38 (0.3651) |
HT | 0.2562 (0.6127) | HT | 0.2189 (0.6399) | ||
FF | 0.9677 (0.4597) | FF | 2.302 (0.1137) | ||
Mexico | SC | 15.33 (0.5005) | Vietnam | SC | 24.75 (0.1004) |
HT | 5.007 (0.0252) | HT | 0.07845 (0.7794) | ||
FF | 1.66 (0.3974) | FF | 1.095 (0.3780) | ||
Nigeria | SC | 26.1 (0.0974) | |||
HT | 0.01154 (0.9144) | ||||
FF | 0.5819 (0.6331) |
Countries | ||
---|---|---|
Bangladesh | −4.8587 *** | 6.2568 ** |
Egypt | −2.2745 | 2.1176 |
Indonesia | −0.9489 | 2.7873 |
Iran | −3.7883 ** | 16.9986 *** |
Mexico | −1.1636 | 1.3792 |
Nigeria | −1.6423 | 1.7724 |
Pakistan | −2.0074 | 2.3549 |
Philippines | 0.1254 | 1.9312 |
South Korea | −3.177 | 2.7674 |
Turkey | −3.6632 * | 3.5945 |
Vietnam | −5.2785 *** | 5.9065 ** |
Countries | Long-Run Effect | EG | EC |
---|---|---|---|
Bangladesh | LR-P | −0.056 (0.508) | 0.604 (0.000) *** |
LR-N | −0.379 (0.031) ** | −0.964 (0.000) *** | |
Iran | LR-P | −3.579 (0.279) | 7.161 (0.006) *** |
LR-N | −5.924 (0.000) *** | 1.493 (0.738) | |
Turkey | LR-P | 1.766 (0.003) *** | 1.517 (0.007) *** |
LR-N | −2.555 (0.077) * | −0.794 (0.555) | |
Vietnam | LR-P | −0.365 (0.003) *** | 1.901 (0.0000) *** |
LR-N | 1.168 (0.012) ** | −1.665 (0.0000) *** |
Countries | Wald Statistics | EG | EC |
---|---|---|---|
Bangladesh | WLR-E | 7.812(0.010) ** | 20.13(0.000) *** |
WSR-E | 0.2544(0.618) | 8.27(0.008) *** | |
Iran | WLR-E | 9.393(0.012) ** | 7.678(0.020) ** |
WSR-E | 7.367(0.022) ** | 21.28(0.001) *** | |
Turkey | WLR-E | 0.5065(0.485) | 0.4219(0.523) |
WSR-E | 0.3356(0.569) | 0.4007(0.534) | |
Vietnam | WLR-E | 5.031(0.036) ** | 0.7198(0.406) |
WSR-E | 2.447(0.133) | 0.36(0.555) |
Country | Null Hypothesis | m = 2 | m = 3 | m = 4 | |||
---|---|---|---|---|---|---|---|
t-Stats | p-Value | t-Stats | p-Value | t-Stats | p-Value | ||
Bangladesh | EG→CO | 2.510 | 0.00604 *** | 2.016 | 0.0219 ** | 2.014 | 0.02201 ** |
CO→EG | 1.645 | 0.05003 ** | 1.661 | 0.04832 | 1.687 | 0.0458 ** | |
EC→CO | 1.804 | 0.03559 *** | 1.877 | 0.03027 ** | 1.950 | 0.02556 ** | |
CO→EC | 1.177 | 0.1196 | 1.191 | 0.11683 | 1.195 | 0.11601 | |
Egypt | EG→CO | 1.322 | 0.0931 * | 1.262 | 0.10344 | 1.389 | 0.08237 * |
CO→EG | 0.816 | 0.20736 | 0.830 | 0.20334 | 0.833 | 0.20233 | |
EC→CO | 2.228 | 0.01295 *** | 1.703 | 0.04424 ** | 1.600 | 0.05484 ** | |
CO→EC | 1.112 | 0.86703 | 1.049 | 0.85295 | −0.803 | 0.78904 | |
Indonesia | EG→CO | 1.244 | 0.10676 | 0.941 | 0.17332 | 0.851 | 0.19741 |
CO→EG | −0.909 | 0.8182 | 0.663 | 0.25374 | 0.695 | 0.2434 | |
EC→CO | 1.416 | 0.07839 * | 1.021 | 0.15357 | 0.887 | 0.18749 | |
CO→EC | −0.727 | 0.76624 | −0.729 | 0.76688 | −0.731 | 0.76755 | |
Iran | EG→CO | 0.358 | 0.3603 | 0.650 | 0.25789 | 0.968 | 0.16644 |
CO→EG | 1.484 | 0.06887 * | 1.440 | 0.07491 * | 1.393 | 0.08187 * | |
EC→CO | 1.084 | 0.13912 | 1.041 | 0.14901 | 1.000 | 0.15864 | |
CO→EC | 1.160 | 0.12296 | 1.102 | 0.13531 | 1.104 | 0.13487 | |
Mexico | EG→CO | −1.174 | 0.87986 | −0.952 | 0.82957 | −0.964 | 0.8324 |
CO→EG | 0.733 | 0.23191 | 0.203 | 0.41954 | −0.976 | 0.83539 | |
EC→CO | −0.926 | 0.82273 | −0.865 | 0.80644 | −0.963 | 0.83222 | |
CO→EC | 0.799 | 0.21228 | 0.618 | 0.26813 | 0.626 | 0.26569 | |
Nigeria | EG→CO | −1.565 | 0.94124 | −1.218 | 0.88844 | −1.095 | 0.86327 |
CO→EG | 0.494 | 0.31078 | 0.892 | 0.18615 | 0.905 | 0.18263 | |
EC→CO | 0.574 | 0.28314 | −0.253 | 0.59991 | 0.356 | 0.36099 | |
CO→EC | −0.933 | 0.82457 | −1.363 | 0.91357 | −0.938 | 0.8260 | |
Pakistan | EG→CO | 1.027 | 0.15227 | 0.959 | 0.16866 | 0.970 | 0.16611 |
CO→EG | 0.956 | 0.16946 | 0.733 | 0.23193 | 0.776 | 0.21884 | |
EC→CO | 1.464 | 0.07155 * | 1.364 | 0.08625 * | 1.385 | 0.0831 * | |
CO→EC | 0.573 | 0.28326 | −0.902 | 0.81635 | −0.847 | 0.80154 | |
Philippines | EG→CO | −0.589 | 0.72215 | −0.427 | 0.66534 | −0.308 | 0.621 |
CO→EG | 0.979 | 0.16372 | 1.005 | 0.15752 | 0.963 | 0.16775 | |
EC→CO | 0.403 | 0.34354 | 0.483 | 0.31457 | 0.711 | 0.23842 | |
CO→EC | 1.079 | 0.1404 | 0.941 | 0.17342 | 1.357 | 0.08734 * | |
South Korea | EG→CO | 1.343 | 0.08962 * | 0.764 | 0.22244 | 0.754 | 0.22543 |
CO→EG | 0.828 | 0.20372 | 0.831 | 0.20308 | 0.800 | 0.21197 | |
EC→CO | 1.631 | 0.05144 * | 0.764 | 0.22244 | 0.753 | 0.22558 | |
CO→EC | 0.773 | 0.21962 | 0.797 | 0.2126 | 0.833 | 0.20232 | |
Turkey | EG→CO | 1.172 | 0.12055 | 1.198 | 0.11553 | 1.343 | 0.08962 * |
CO→EG | 1.921 | 0.02739 ** | 1.525 | 0.06366 * | 1.299 | 0.09692 * | |
EC→CO | 1.240 | 0.10752 | 0.901 | 0.1839 | 0.988 | 0.16167 | |
CO→EC | 1.730 | 0.04185 ** | 1.390 | 0.08221 * | 1.372 | 0.08496 * | |
Vietnam | EG→CO | 1.220 | 0.11131 | 1.057 | 0.14523 | 1.063 | 0.14381 |
CO→EG | 0.794 | 0.21367 | 0.826 | 0.20426 | 0.895 | 0.18529 | |
EC→CO | 1.345 | 0.08936 * | 1.058 | 0.14497 | 1.059 | 0.14483 | |
CO→EC | 0.923 | 0.17812 | 1.445 | 0.07429 * | 1.454 | 0.07298 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampofo, G.K.M.; Cheng, J.; Ayimadu, E.T.; Asante, D.A. Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries. Energies 2021, 14, 491. https://doi.org/10.3390/en14020491
Ampofo GKM, Cheng J, Ayimadu ET, Asante DA. Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries. Energies. 2021; 14(2):491. https://doi.org/10.3390/en14020491
Chicago/Turabian StyleAmpofo, Gideon Kwaku Minua, Jinhua Cheng, Edwin Twum Ayimadu, and Daniel Akwasi Asante. 2021. "Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries" Energies 14, no. 2: 491. https://doi.org/10.3390/en14020491
APA StyleAmpofo, G. K. M., Cheng, J., Ayimadu, E. T., & Asante, D. A. (2021). Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries. Energies, 14(2), 491. https://doi.org/10.3390/en14020491