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Abstract: Valorising biomass waste and producing renewable energy or materials is the aim of several
conversion technologies. In this work, we consider two residues from different production chains:
lignocellulosic residues from agriculture and wool residues from sheep husbandry. These materials
are produced in large quantities, and their disposal is often costly and challenging for farmers. For
their valorisation, we focus on slow pyrolysis for the former and water hydrolysis for the latter,
concisely presenting the main literature related to these two processes. Pyrolysis produces the C-rich
biochar, suitable for soil amending. Hydrolysis produces a N-rich fertiliser. We demonstrate how
these two processes could be fruitfully integrated, as their products can be flexibly mixed to produce
fertilisers. This solution would allow the achievement of balanced and tuneable ratios between C
and N and the enhancement of the mechanical properties. We propose scenarios for this combined
valorisation and for its coupling with other industries. As a result, biomass waste would be returned
to the field, following the principles of circular economy.

Keywords: circular economy; integrated approach; biochar; biomass pyrolysis; wool residue; hydrolysis

1. Introduction

The circular economy is becoming the driving force for developing new technologies,
as well as for the upgrade of existing productive cycles. As is widely known, the circular
economy is based on exploiting potential residual matter in new productive chains or
processes such as the generation of energy or new materials. The aim is twofold: on the one
hand, to avoid exploiting raw (and possibly non-renewable) sources and, on the other hand,
to avoid the cost and impact associated with the disposal of waste materials. This strategy
can appropriately tackle some of the most troublesome social and environmental problems
we are currently facing, such as climate change, the increase in generated residues because
of the increase in population and the depletion of resources [1–12].

Poorly managed farming activities currently pose multiple threats to the environ-
ment. Bentsen and colleagues [13] estimated that the average yearly global production
of lignocellulosic residues from barley, maize, rice, soybean, sugar cane and wheat in the
years 2006–2008 was about 37 × 108 t (on dry basis). Even though lignocellulosic residues
typically have a carbon content of about 45–50 wt%, they are often unexploited. These
residues are disposed of in landfills, left on fields or, in the worst case, burned, generating
uncontrolled emissions. A recent report from the Food and Agriculture Organization
(FAO) of the United Nations estimated that 38 × 107 t of maize, rice paddy, sugar cane
and wheat residues were burned in 2016, resulting in total emissions of 299 × 105 t of
CO2equivalent [14]. This amount alone is about 1‰ of the total annual anthropogenic CO2
emissions [15]. The advantages of giving new purposes to these residues appear obvi-
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ous: they are low-to-negative cost materials and impacts caused by their disposal could
be avoided.

While considering the problem on a global scale can help understand its magnitude,
the possible solutions must be provided locally. One of the reasons lies in the properties
of biomass: its low density makes transporting it for long distances expensive and un-
sustainable [16]. In fact, lab-scale studies have provided countless opportunities for the
exploitation of such materials [17–23]. However, the feasibility of these technologies at
larger scales should always be assessed in order to evaluate their actual viability [24–26].
Several alternatives have been proposed to exploit lignocellulosic residues, such as combus-
tion [27], gasification [28], pyrolysis [29] and fermentation [30] to produce energy and/or
new products. In particular, the thermal decomposition of biomass (i.e., pyrolysis) pro-
duces a solid residue with a high carbon content and unique structure that has several
possible applications, including soil amendment [31].

The exploitation of other types of residues is still less established. Another notable
example related to farming activities is sheep wool. Sheep represent a noteworthy species
for food security: they are efficient and can adapt to the most diverse climate, from the cold
of Iceland to wastelands in Africa, Asia and Australia. Compared to intensive farming,
the natural sheep behaviour of searching for food in dry areas (typical of least developed
countries) produces less detrimental gaseous emissions and has beneficial effects on the
soil [32]. Due to these aspects, researchers believe that they will become the main source
of meat in the forthcoming years [32]. Recent studies on sheep husbandry performed in
developed countries [33–35] reported that enteric fermentation causes the greatest impact
on the environment. Moreover, the production of 1 kg of wool is more impactful compared
to the same amount of meat and milk.

The EU has the second largest population of sheep (98.3 million units in 2016), after
China (162 M units in 2016) and before Australia (67.5 M units in 2016) [14]. Northern and
central European countries mainly raise sheep for their meat, while southern European
countries do it for dairy products. In both cases, the produced wool has a low quality,
which cannot compete with that of the main producer countries (China, Australia and New
Zealand). Moreover, the price of wool has decreased due to the increasing demand for
low-cost synthetic fibres. Nowadays, European farmers see wool as a residual product
which is hard to dispose of [36]. Its properties prevent both landfilling and combustion, and
thus illegal disposal practices are often applied. In the last decades, researchers foresaw
that low-grade wool could be given new purposes, and showed that it could be exploited
in the building, medical and agricultural sectors [37]. In this framework, water hydrolysis
was recently proposed as a way to transform wool into a low-cost nitrogen-rich fertiliser,
without employing chemicals [38,39].

In general, the agriculture and food industries showcase several possibilities for their
fruitful integration [40–47]. Within the aforementioned framework, we propose an in-
tegrated approach that allows valorising both agricultural and wool residues; Figure 1
graphically summarises its logic. Agricultural residues can be pyrolysed to produce
biochar. Conversely, residual wool can be hydrolysed using superheated water to produce
a nitrogen-rich fertiliser. These two products can be pelletised together to obtain a bal-
anced and tuneable fertiliser, possibly overcoming problems caused by poor mechanical
properties and nutrient availability [43,48,49]. The integrated approach will be brought to
life in the framework of the “Biochar” project, funded by the Piedmont region (Italy). The
project aims at showing the feasibility of an innovative scaled-up unit, based on the results
obtained with two-stage [50] and multiple spouted bed [51,52] units. It is based on the
positive outcomes of two past projects: the LIFE+ GREENWOLF Project [53] and the Valen-
tex2 project [54]. In particular, the conclusions of the latter suggested that this technology
can only be economically sustainable if by-products are valorised, if low-to-negative cost
materials are converted, and if there is a tight cooperation with local industries in terms of
offer and demand. All these aspects appear in favour of coupling it with the hydrolysis of
wool waste, another waste-valorisation technology. Wood and agricultural residues are
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indeed very abundant in the region of Piedmont and fostering their energetic valorisation
is a noteworthy opportunity [55].
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The aim of this work is to discuss the feasibility of this integrated approach: to
our knowledge, it has never been mentioned in the literature before. After a succinct
but complete overview of the literature for these two technologies, several scenarios are
proposed, proving the flexibility of the approach and the possible ways to optimise the
process from the material and energetic points of view. Finally, we broaden our perspective
to holistically discuss how the process could be integrated with other industries.

2. Agricultural Residues and Pyrolysis

The concept of exploiting biomass for energetic purposes dates back to when hu-
mankind learnt to control fire. Nonetheless, this research field is still remarkably active
due to the challenges in increasing the overall conversion and efficiency of the various
processes. Choosing the most suitable valorisation technique depends on the properties
of the biomass, on the desired output and on other factors, such as the plant size and
location [20,56]. Thermochemical processes are classified depending on the amount of
oxidising agent fed to the reactor, compared to the amount required for the stoichiometric
oxidation. In pyrolysis, no oxidising agent is fed, and the reactions take place due to the
thermal decomposition of the material at high temperature. Biomass is hence converted
into three phases: a solid phase (the biochar), a condensable phase (the tar or bio-oil) and a
gaseous phase (the syngas or pyrogas). The relative amount of these three phases can be
tuned through the variation of the operative conditions. Pyrolysis attracts much interest
due to the possibility of obtaining different products in reasonable quantities.

Fast and flash pyrolysis are aimed at maximising the bio-oil yield, which can reach up
to 80 wt% of the raw material. Fast pyrolysis requires biomass sizes lower than 2 mm, high
heating rates (>10–200 ◦C/s) and low residence times (0.5–10 s), while the requirements are
even stricter for flash pyrolysis [22]. Catalysts can also aid optimising the outcome [57–59].
This bio-oil can be further used for energetic purposes, even though pre-treatments are
usually necessary. Conversely, slow (or conventional) pyrolysis is aimed at maximising
the biochar yield, which is typically about 35 wt% and that, under adequate operating
conditions, can be up to 90 wt%. Slow pyrolysis requires much higher residence times (up
to days), and has less constraints on the particle sizes (typically 5–50 mm) [22].

Charcoal was first discovered several thousand years ago, and today it is considered
the first synthetic material ever produced [60]. Biochar is the charcoal produced from
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the pyrolysis of biomass. The properties of biochar may notably vary depending on the
conversion technology, initial feedstock and operative conditions. As an example, Table 1
summarises the characterisation of biochar samples obtained from various feedstocks and
at different conditions.

Table 1. Data from the literature for biochar production from different feedstocks.

Noted as Feedstock Pyrolyser
Temperature (◦C)

Biochar Yield
(wt%)

Biochar C
Content (wt%)

Biochar N Content
(wt%) Ref.

RAP Rapeseed plant 400–900 39.4–27.9 71.34–79.86 1.35–1.57 [61]
PIS Pinewood shavings 100–700 99.8–22.0 50.6–92.3 0.04–0.08 [62]
PES Peanut shells 300–700 36.9–21.9 68.27–83.76 1.91–1.14 [63]
SES Sewage sludge 300–700 70.1–50.3 30.72–22.40 4.11–1.73 [64]
PIW Pine wood 300–600 49.8–28.3 69.24–85.68 0.31–0.34 [65]

Biochar has been proved to be suitable for a wide range of applications, including [66]:
soil amendment [67], adsorption of liquid [68] and gaseous [69] contaminants, catalysis [70],
water treatment [71] and others, as explained in detail in the review article by Cha et al. [72].
Such remarkable performances are due to its key properties: a high carbon content, a
porous structure and a valuable presence of mineral species. Biochar is also still vastly
used as a fuel in developing countries. Its production methods often adopt outdated
technologies: Woolf et al. [73] estimated that if optimised processes were adopted, about
130 × 109 t of CO2eq emissions could be avoided in a century.

In this work, we focus on the use of biochar for soil amendment to establish a closed
circular economy loop: pyrolysis of agricultural residues to produce biochar, subsequently
used to foster the growth of new crops. The use of biochar for this purpose has been
extensively studied in the past years [31,67,72,74,75], and these advantages are generally
pointed out [72]:

• biochar can neutralise acidic soils due to its basic pH;
• biochar contains N, P, Ca and K that can act as nutrients, either directly or for microor-

ganisms;
• biochar increases the soil porosity, favouring the growth of microorganisms;
• biochar sequestrates its carbon content in the soil in a stable way, reducing the amount

of carbon dioxide in the atmosphere.

There are a wide number of existing technologies used to carry out pyrolysis reactions.
The detailed review article by Garcia-Nunez and colleagues [76] offers an overview on the
development of different devices and their categorisation. Pyrolysers are often optimised
for different types of biomass. A pre-treatment phase is usually required to satisfy the
reactor requirements in terms of size and shape of the particles. This limit could be partially
overcome using spouted bed reactors, a particular type of fluidised bed reactor. Thanks to
their fluid dynamic regime [77,78], they are suitable to process coarse, irregular and sticky
particles, which can cause problems to other devices. Most notably, a proper choice of
the inlet gas flow rate can ensure the lack of segregation phenomena. Their application
in several processes has been studied, including biomass gasification [79–81] and pyroly-
sis [82,83]. In particular, Niksiar and Nasernajad [84] described the use of spouted beds for
the production of biochar from pistachio shells. The new reactor being built for the Biochar
process is based on the combined concepts of two-stage [50] and multiple-unit [51,85]
spouted beds. Its structure and fluid dynamics have been described in a recent experimen-
tal work [52] and its suitability has been confirmed through computational fluid dynamic
(CFD) simulations [86], based on a previously-validated approach [87–89].

3. Wool Residues and Hydrolysis

Currently, about 2.4 million tonnes of wool are produced per year, 10% of which
is produced in Europe [90]. Sheep breeding in Italy and in Europe are mainly aimed at
satisfying the food industry and the demand for dairy products. Wool from these sheep is
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characterized by a medium-to-low quality and only a minor part (<25%) [91] is used in the
textile market. Therefore, the wool obtained from the shearing of breeding sheep is a by-
product that needs to be disposed of. In Italy the situation is even worse: in a 2015 article,
Vagnoni and colleagues [36] estimated that the 6.3 million sheep of the country produce
about 14,000 t of wool and only 5% of it is sold for textile purposes. The article describes
three projects developed in different Italian regions aimed at finding other purposes for the
waste wool, and the authors point out that only innovative approaches with joined efforts
from different entities may overcome the current problems.

According to a European law [92], waste wool must be disposed of as a special waste,
due to its potential harmful characteristics (presence of excrement residues and pathogens).
Storage and transport must also be done according to specific regulations. The proper
disposal of waste wool is thus associated to high costs (around 150 €/ton [93]). This results
in the increase in burning or burial alternatives, leading to serious environmental impacts:
contrarily to other textile residues [93], wool residues cannot be burned easily. Moreover,
they are bio-degraded in rather long times.

For the above reasons, eco-sustainable processes that permit avoiding disposal have
been developed, providing a new use for something that is still seen as a waste. Some
of these processes are summarised in the recent review article by Rajabinejad and col-
leagues [37]. Among the possible uses, waste wool can be recycled to produce thermal or
acoustic insulation panels or other kinds of filling materials [94–96]. However, especially
for greasy wool, it is necessary to perform an expansive washing cycle that eliminates dirty
and extraneous substances, together with the disinfection due to pathogenic microorgan-
isms. Recent studies have also proven the suitability of wool for more specific applications,
such as the adsorption of heavy metals following a suitable chemical treatment [97]. Finally,
waste wool can be employed for soil amendment in its original state [98]. If previously
composted, Hustvedt and colleagues [99] showed that it is more convenient to mix it with
other types of vegetal biomass. However, in some cases it may be more convenient to
hydrolyse wool, so as to enhance its properties before of applying to soils.

Hydrolysis is a chemical process carried out in acid or basic environments, which
degrades proteins to their constituents, oligo-peptides and amino acids, breaking also
the disulphide bridges present in the keratin molecule. Wool is composed of a biological
protein fibre, keratin, naturally biodegradable [100–102]. Several elements can be obtained
from its decomposition: the most abundant ones are C and N, but K, P, Na and Fe are
also present [103]. Wool can be hydrolised with the aid of chemical compounds [104],
and researchers have shown that the product has beneficial effects on the soil [105]. This
approach is however debated, due to the potential impact of the employed chemicals. In
this framework, Petek and Marinšek Logar [106] recently reviewed the exploitation of
waste wool as an organic substrate, highlighting that the aid of enzymatic or microbial
processes may be more recommendable. Some recent studies confirmed the validity of
enzymatic hydrolysis [107,108], while another showed that hydrolysis can also be achieved
through the action of microwaves [109].

The LIFE+ GREENWOLF Project [53] established a process in which the wool hydrol-
ysis is performed only with saturated steam under pressure and without the use of other
chemicals. This makes the process environmentally sustainable and eliminates the cost of
purchasing chemicals. The feasibility of this process was demonstrated through several
devices, starting from laboratory tests up to the construction of a reactor capable of treating
from 10 kg to 100 kg per cycle [39]. Residence time and temperature are the key parameters
of the process: the first one ranges between 30 and 90 min, while the second one from 170
to 185 ◦C. The hydrolysed wool yield varies from 1:1 up to about 1:2. Thus, from each kg
of treated wool, from 2 to 3 kg of hydrolysed protein can be obtained. The project demon-
strated that waste wool can undergo a hydrolysis process that degrades the proteins. This
process does not require any pre-treatment phase and satisfies the sterilisation requisites.
The final product has the characteristics of a soil improver and fertiliser, and it can be used
to redevelop exhausted land for cultivation or breeding itself, as proved by germination
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tests. After leaving the hydrolysis reactor, the hydrolysate is wet and has an unpleasant
odour, comparable to other common organic fertilisers. However, if subjected to a drying
phase, the material becomes practically odourless.

The reaction time directly affects the density and viscosity of the product: for short
reaction times the hydrolysis is partial, and the product appears gelatinous and semi-solid,
while for longer times the hydrolysate will be liquid. It is not possible to suggest a defined
optimum, since the market can require solid materials (with slow release time) or liquid
materials (with fast release time). Furthermore, the composition in terms of nutrients
is slightly different, as the needs for different plants and crops are different. The use of
hydrolysed wool is promising because it contains primary nutrients such as nitrogen,
carbon, phosphorus, potassium, ammonia and several micro-nutrients important for the
plant health (B, Mn, Ni, Cu, Zn). The composition of the hydrolysed wool [39] is reported
in Table 2. As the Table shows, the variation of the parameters is quite weak, especially
with the larger initial mass. Therefore, it makes more sense to work with a low residence
time, reducing the energetic demand.

Table 2. Composition of the greasy wool and of the hydrolysed wool.

Sample Batch Mass (kg) Process Time (min) C (wt%) N (wt%) P (wt%) K (wt%) C/N Ratio (wt)

Greasy wool n/a 32.52 7.62 0.05 2.33 4.26

6.5
30 14.19 5.09 0.03 0.55 2.78
60 8.52 3.9 0.02 0.58 2.18
90 8.95 3.9 0.02 0.56 2.29

10
30 15.08 4.21 0.03 1.25 3.58
60 16.47 4.88 0.02 1.58 3.38
90 15.00 4.22 0.02 1.36 3.55

Microorganisms decompose organic matter into soil using carbon as a source of energy
and nitrogen as a constituent of cellular structures. It follows that the C/N ratio is a crucial
factor for the characterisation of a soil. High values of C/N (>10) promote the humification
process, which enriches the soil with organic molecules increasing fertility. For lower values
of C/N, the mineralisation reaction is favoured by making a large quantity of nitrogen
available for the growth of the plant; this is the case of the wool hydrolysate obtained in
these tests (the C/N ratio is in the range 2.18–4.26). The optimal value of C/N depends
on the chosen application, and can also be tuned after the hydrolysis process, with the
added aim of enhancing the handleability of the material. One way to do this is mixing the
hydrolysed wool with pyrolytic biochar, obtaining a balanced and suitable fertiliser.

4. The Use of Both Residues to Produce Fertilisers

The hydrolysed protein, in its solid and gelatinous form, is sticky and difficult to move
and dose. Mixing it with an inert absorbent material is convenient to obtain pellets that are
easy to transport and dose. With this aim, the hydrolysed product may be combined with
the biochar obtained from the pyrolysis of agricultural residues. This fact brings a double
advantage: enhanced dosage properties given from the absorption capability of biochar
and an optimisation of the C/N ratio due the high carbon content of the biochar. Such a
bio-fertiliser could thus be obtained from an integrated process that joins the valorisation
of sheep breading waste and agricultural waste, promoting the best properties of both
residues. It represents a valid example of circular economy and green chemistry, connecting
two different economic activities and creating a product that can aid them both.

As mentioned in the previous Section, there is no fixed optimal value of the C/N
ratio. The value must be chosen depending on the soil and crop necessities to provide the
required contribution. Looking at the overall production chain of the balanced fertiliser,
the key resides in the adequate tuning of pyrolysis and hydrolysis conditions to achieve
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the desired properties for the final product. In this Section, we propose and show four
different scenarios to tune the properties of the final product:

• effect of varying the pyrolyser temperature with fixed inlet flow rates of biomass and
wool (Section 4.1);

• effect of varying the inlet wool flow rate with fixed working conditions in the pyrolyser
(Section 4.2);

• effect of varying the biochar amount with fixed working conditions in both the pyrol-
ysis and hydrolysis sections (Section 4.3);

• obtainment of two different fertilisers with different C/N ratios at fixed working
conditions in both the pyrolysis and hydrolysis sections (Section 4.4).

In all cases, for the hydrolysed wool, we considered the properties of the material
obtained for an initial wool mass of 10 kg and process time equal to 30 min, with a
wool/water ratio equal to 1:1. As it is shown in Table 1, the properties of the hydrolysed
wool hardly vary with the process conditions. Hence, it is better to choose a low residence
time, in order to minimise the energetic demand. The biochar and hydrolysed wool are
mixed to obtain the balanced fertiliser. The C/N ratio of the final product is calculated as:

C/N =
Cbiochar + Chydrolysed

Nbiochar + Nhydrolysed
(1)

in which C and N are the mass of carbon and nitrogen in the material, and the subscript
identifies either the biochar or hydrolysed wool. Although there is no reason to believe the
final value will be different, this kind of mixing has never been reported in the literature,
and therefore it is impossible to compare the C/N ratios obtained through Equation (1)
with experimental data. The actual values of C/N will be checked in the future experimen-
tal campaign.

4.1. Variation of the Pyrolyser Temperature

The properties of the pyrolysis biochar are likely to vary significantly depending on
the feedstock biomass and the process conditions. For this reason, we considered the
literature data of Table 1 to study the influence of the pyrolysis feedstock and temperature
on the final C/N ratio. Figure 2 depicts the trend of the C/N value when all the obtained
biochar is mixed with the hydrolysed wool, as a function of the feedstock and temperature
(as per Table 1).
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Here, we supposed to convert 2400 and 1600 kg/day of biomass and wool, respectively;
the first value is the design value of the planned spouted bed pyrolyser, while the second
is a value that could be easily obtained with about four 100 kg batch units [53]. Perhaps
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counterintuitively, the role of the pyrolysis temperature is shown to be quite limited. If
we do not consider the low temperatures of 100 and 200 ◦C for PIS, the C/N ratio is rather
weakly affected by the pyrolysis temperature, ranging between six and eight in almost
all cases. Biochar from sewage sludge slightly falls out of this range due its initial lower
carbon content and higher nitrogen content. Above 300 ◦C, an increase in the temperature
reduces the biochar yield, but increases the carbon content of biochar, so that the total
amount of carbon does not vary significantly. Based on this plot, it appears recommendable
to work at low temperature (around 300–400 ◦C): this allows a lower energetic demand
and higher biochar yield. Nonetheless, some other considerations shall be considered upon
an effective implementation of the technology. For example, the temperature can likely
affect the porosity of the biochar and the biological availability of the carbon.

4.2. Variation of the Wool Flow Rate

If the process has to be optimised for a particular value of C/N, it is technically more
feasible to adapt the hydrolysis section due to its batch nature. Considering the data for
pine wood (PIW) pyrolysis at 450 ◦C, with biomass feed of 1200 and 2400 kg/day, we
studied the C/N ratio as a function of the amount of wool fed to the hydrolyser. Figure 3
depicts the obtained trends. The graph highlights that if the desired C/N is higher than
10, the hydrolysis section must not convert roughly more than 33 wt% of the converted
biomass. Conversely, for high values of residual wool fed to the process, the C/N ratio
obviously tends to become equal to that of the hydrolysed material. It should also be
considered that the more wool is converted, the more fertiliser is produced, possibly
in excess.
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4.3. Variation of the Biochar in the Fertiliser

While hydrolysed wool can only be employed as a fertiliser, biochar has a plethora of
possible applications. If the plant is located in an agro-industrial area, it should be easy
to identify other applications for it, such as those reported in Section 2. Thus, it may be
interesting to choose a fixed value of converted wool and obtain the required C/N value
tuning the amount of biochar that is mixed with it. Figure 4 showcases the results of this
analysis obtained for two values of fed residual wool (800 and 1600 kg/d), employing the
data for the pyrolysis of PIW at 450 ◦C. In this case the trend is almost linear: a variation
of the amount of biochar modifies both the Cbiochar and Nbiochar terms in Equation (1).
However, the variation range of Nbiochar is limited compared to Nhydrolysed resulting in the
observed linear trend. This solution is probably the most recommendable. Most notably, it
allows the conversion of all the wool into hydrolysate, avoiding the need to dispose of it.
Moreover, the final fertiliser may be produced on demand and with the desired properties.
As biochar is versatile, its excess can be easily employed for several other applications, even
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within the same plant, avoiding the purchase of external materials. Within this framework,
the next Section presents a solution in which two different fertilisers are obtained, and
some residual biochar is retained.
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4.4. Production of Two Different Fertilisers

Finally, we considered two possible scenarios to continuously produce two different
fertilisers with different C/N values. Table 3 shows the obtained results. The data are
calculated for the pyrolysis of 1600 kg/d of PIW at 450 ◦C and the hydrolysis of 600 kg/d
of wool. In accordance with the previous considerations, about 500 kg/d of biochar and
1200 kg/d of hydrolysed wool are thus obtained. Excess amounts of biochar of 168 and
193 kg/d are also, respectively, obtained. The scenarios are obviously virtually infinite,
but all of them can avoid the need for disposing of the residual wool, which is an obvious
economic advantage for sheep owners.

Table 3. Two possible scenarios to obtain fertilisers with different C/N ratios.

Biochar Mass Flow
Rate (kg/d)

Hydrolysed Wool Mass
Flow Rate (kg/d) Final C/N Fertiliser Mass Flow

Rate (kg/d)

Case 1

185.4 400 12 585.4
147.6 800 7 947.6

Case 2

190.9 300 15 490.9
116.9 900 6 1016.9

4.5. Final Comments

These results demonstrate the feasibility and flexibility of the proposed combined
approach. The optimal conditions must be identified experimentally, on the basis of the
agricultural producers’ demands. Nonetheless, the above considerations confirm the
interest for this process, which can link and aid further industrial realities. In this sense,
it could be interesting to broaden the perspective and consider the processes on a larger
scale, taking into account more possible connections with related industries.

Figure 5 depicts the scheme of a proposed integrated approach. While the blocks
“Sheep breeding” and “Agriculture” have already been described, the block “Textile indus-
try and others” is representative for the human activities that may benefit from biomass
energy or biochar, which are numerous, as previously summarised. The cycle may also
include the treatment of municipal solid waste, which are often still unexploited and
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disposed of in landfills. The scheme is apparently complex, and it is true that not all these
connections may be feasible in all realities, depending on the location of the plants and
availability of materials in the area. However, these applications have been proven feasible
in the literature, and the abundance of possible integration solutions definitely provides an
exciting outlook for the future of agriculture and industry. Once the more plausible links
are identified, it will also be interesting to perform a specific life cycle analysis (LCA), so as
to assess the impacts associated to the various steps of the supply chain, including transport.
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The energy demand of the process may be evaluated as well. As previously de-
scribed, the hydrolysis needs to heat water from ambient temperature to about 170 ◦C. For
1200 kg/d of water, this would correspond to an energetic demand of at least 35.2 kW (a
value calculated with the program Aspen Plus and that does not take into account possible
energy losses). This heat demand may be met through an exchange with the hot gaseous
stream that exits the pyrolyser. Were it not enough, it may be also partially or completely
burned to provide the required energy. Other energetic demands may be originated by
other plant units (e.g., compellers, pelletisers, etc.) or by plants in the surrounding area.

These energy demands could be satisfied thanks to the combustion of the products of
pyrolysis, providing the added value of a clean energy produced from a carbon-neutral
source and enhancing the sustainability of one or more processes. Although the proposed
pyrolyser [52] is not operative yet, it is possible to make some initial estimates on the
basis of the literature data: the following values are reported in the review article by
Kan et al. [22]. The gaseous stream that leaves the pyrolyser comprises the tar (or bio-
oil) and the pyrogas, which usually represent more than 65% of the initial biomass. The
high heating value of the bio-oil usually ranges between 15 and 20 MJ/kg, while the
low heating value of common pyrogas ranges between 10 and 20 MJ/Nm3. Biochar can
also be employed for energy generation, since it often features interesting high heating
values (20–36 MJ/kg). More precise calculations would depend on the abundance and
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composition of the pyrogas and bio-oil, which in turn depend on the biomass composition,
reactor features and working conditions. Given the complexity of such an analysis, it is left
for a future optimisation study.

5. Conclusions

This work focused on two promising and sustainable biomass valorisation processes:
the pyrolysis of lignocellulosic residues and the water hydrolysis of waste sheep wool.
The two processes are described with reference to the relevant literature and in light of
the achievements of recent projects that focused on these technologies. We show that the
carbon-rich product of pyrolysis (biochar) and the nitrogen-rich product of hydrolysis
could be mixed to produce a balanced fertiliser with a tuneable C/N ratio. By taking into
account several scenarios, we demonstrate the flexibility of the process, and how it is
possible to modify the working conditions to obtain the desired product.

The benefits are evident: following circular economy principles, two waste materials
coming from agricultural activities are valorised, and returned to the field with the aim of
fostering the growth of new biomass. Moreover, as biochar can act as a carbon sequestrator,
the carbon balance of the overall process will be negative. If the proposed circularity were
achieved, costly, unsustainable or illegal waste disposal practices would be avoided. At the
same time, the materials would be re-employed in the same production chain or in a close
one, helping farmers not purchase materials generated from non-renewable sources.

The effects of this fertiliser will be studied in future works in the framework of the
Biochar project, in which the authors are also developing an innovative scaled-up pyrolyser
based on the spouted bed technology.
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