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Abstract: This paper presents an application of the IpDFT spectrum interpolation method to estimate
the fundamental frequency of a power waveform. Zero-crossing method (ZC) with signal prefiltering
was used as a reference method. Test models of disturbances were applied, based on real disturbances
recorded in power networks, including voltage harmonics and interharmonics, transient overvoltages,
frequency spikes, dips and noise. It was determined that the IpDFT method is characterized by
much better dynamic parameters with better estimation precision. In an example, in the presence of
interharmonics, the frequency estimation error was three times larger for the reference method than
that for the IpDFT method. Furthermore, during the occurrence of fast transient overvoltages, the
IpDFT method reached its original accuracy about three times faster than the ZC method. Finally,
using IpDFT, it was possible to identify the type of disturbances: impulsive, step changes of frequency
or voltage dips.

Keywords: frequency estimation; spectrum interpolation; power network disturbances; power quality

1. Introduction

Monitoring the frequency of voltage waveforms in power supply networks is one of
the most important parameters from the point of view of, e.g., power quality measure-
ments [1,2] and power network protection automation devices, especially those occurring
in inverters used in the photovoltaic industry [3–5]. In the first industry, incorrect estima-
tion of the fundamental frequency of the waveform results in a so-called spectrum leakage,
and consequently, in an increased uncertainty of measurement of spectral parameters
such as harmonics and interharmonics. On the other hand, incorrect estimation of the
fundamental frequency in the second industry results in large power losses in the case of
frequency mismatch between two different power systems and their phase synchroniza-
tion [6]. This is important both in the case of cooperation among large power systems and
also when connecting a large number of micro photovoltaic power plants to the power
grid [4]. Inverters, which are a key component of such systems, must be equipped with
disturbance-tolerant algorithms that estimate the instantaneous frequency of the electrical
grid. According to [3], the requirements for power generation modules require the use of
the so-called limited frequency sensitive mode at overfrequency (LFSM-O) and limited
frequency sensitive mode at underfrequency (LFSM-U), which consist in a dynamic change
of the generated energy as a function of changes in the grid frequency. Moreover, the
aim of the protection automatics in photovoltaic systems is to protect the systems against
unwanted switching between grid-connected and islanding operating modes [4,7]. For this
purpose, the rate-of-change-of-frequency (ROCOF) method is used, among others. This
method requires calculating the frequency over a number of cycles and comparing with a
specified trigger threshold [3,8].
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There are many algorithms for estimating the fundamental frequency of power wave-
forms. These methods can be divided into time, filter, frequency and other methods (e.g.,
time–frequency methods).

One of the basic temporal methods is the zero-crossing method. This method, due
to its sensitivity to noise found in real power waveforms, is supplemented by prefiltering
or regression least mean squares (LMS) modeling methods [9]. These models [10,11] and
their extended least squares (ELS) extensions [12] are also used independently of the
zero-crossing method.

Filtering methods include the use of Kalman filters [12–15]. In the ROCOF method,
Kalman filters have been used, for example, to reduce the nondetection zone (NDZ) [8].
Furthermore, a combination of Kalman filtering and the least squares (LS) method is used
to improve the dynamic properties of accurate frequency estimation [16].

Spectral methods provide the estimation of the fundamental frequency of the power
waveform based on the spectrum processing obtained by discrete Fourier transform (DFT).
In order to improve the accuracy of the spectrum estimation, its interpolation IpDFT
(which will be discussed later in this paper) or other modifications, such as the so-called
smart DFT (SDFT) with the additional use of the complex-valued least squares (CLS-SDFT)
method [17], are used. The DFT transformation is also used repeatedly [18]. Spectrum
interpolation can also be based on non-Fourier methods, e.g., Prony’s method to model
the signal using exponentially damped sinusoids [19] or the Aboutanios and Mulgrew’s
(HAM) method [20] and the cooperative weighted least squares (WLS) method representing
HAM-WLS [20]. Spectrum estimation is also performed using time–frequency analyses
e.g., discrete wavelet transform (DWT) [21] or Wigner–Ville transform [22].

Finally, the methods can be applied to the analysis of single- and three-phase wave-
forms [23–25].

IpDFT spectrum interpolation methods deserve special attention; the first one was
developed by Rife and Vincent in 1970 [26], but their rapid development has occurred
over the past two decades. These methods combine the advantageous properties of using
nonrectangular time windows, a FFT algorithm and further processing of the resulting
DFT spectrum to reduce errors due to the discrete nature of the resulting spectrum. The
use of such time windows as Hann (often referred to as Hanning windows), Hamming,
Kaiser, Chebyshev and many others, allows a significant reduction of the phenomenon
of spectrum leakage, originating from harmonics and interharmonics in the conditions of
nonsynchronous (noncoherent) sampling with the period of the measured signal. On the
other hand, the use of the FFT algorithm in a modern DSP system with a signal processor
that is optimized for fast execution of such an algorithm makes the computation time
much smaller than the signal measurement time, while maintaining a low cost of the
system. The time window method combined with the FFT algorithm belongs to classical
Fourier analysis and has a reputation for being fast but not very accurate due to the so-
called picket fence effect. This effect is the cyclic nature of the frequency and amplitude
estimation errors when these parameters are determined from the local maximum of the
raw DFT spectrum. Then, the maximum error of frequency estimation is half of the DFT
computational resolution (i.e., ±0.5/NT—half the inverse of the measurement time) and
does not depend on the applied data window. For typical time windows, the maximum
amplitude estimation errors caused by picket fence effect range from −9% to −22% [27].
The essence of IpDFT methods is to further process the raw DFT spectrum to eliminate
errors caused by the discrete nature of the DFT spectrum (picket fence effect) without
significantly increasing the computation time. In this way, IpDFT methods combine the
beneficial properties of classical Fourier analysis methods (high speed and low cost) and
non-Fourier methods (usually much more accurate, but much slower). The latest strands of
IpDFT methods are those that take into account the conjugate component in the spectrum,
developed especially for applications with short measurement times—of the order of a few
signal periods [28–31]. Their latest version [31] is further discussed in a more detailed way
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in Section 3 and its basic flowchart for a real-time grid-monitoring system is presented in
Figure 1.
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scheme with the definition of the sliding window; (b) the DSP block diagram; (c) the algorithm to
estimate the fundamental frequency f 1 of the grid signal y(t).

The method presented in [31] and in Figure 1 has the following advantages:

• It allows for the estimation in short measurement times with high accuracy because
the conjugate component in the spectrum (i.e., a component with a negative frequency
resulting from the mathematical properties of the Fourier transform) is taken into
account during derivation of the estimating formula;

• The estimation formula used in the calculations only applies a GMSD window, the
FFT algorithm and a simple interpolation formula, which involves three points of the
FFT-resulting spectrum;

• It allows for a cheap implementation, because the calculation time depends mainly on
the calculation time of the FFT algorithm, hence modern cheap signal processors and
microcontrollers optimized for FFT are applicable;

• It can be used for signals with a large THD coefficient, because GMSD windows
significantly eliminate its influence on the accuracy of the estimation.

The basic comparison of the presented method with parametric methods is presented
in Table 1. More quantitative details are provided, e.g., in [29,30]. It shows that the pre-
sented method has very good properties for short, delayed estimation of the fundamental
frequency, as for λ1 ≈ 1 . . . 3 it still maintains its high accuracy and at the same time it
does not require many calculations.

The paper focuses on the influence of the most important disturbances on the esti-
mation results. It is the first systematical study of this aspect of the method [31]. The
models of grid disturbances are presented in Section 2 and the interpolated discrete Fourier
transform is summarized in detail in Section 3. The important role of the proper choice of
the method’s parameters is described in detail in Section 4, as well as a short description
of the characteristics of the zero-crossing (ZC) method used in the paper as a reference
method. The simulations performed in the MATLAB software environment are presented
in Section 5, and they include detailed information about the features of the method when
a grid signal contains various disturbances, as is usually the case. The conclusions are
presented in Section 6.
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Table 1. Qualitative comparison of the IpDFT method with GMSD windows (which takes into account the conjugate
component during derivation of the estimation formula) vs. parametric methods depending on the normalized frequency
λ1 (the number of signal periods in the measurement window).

Measurement Window
Duration

IpDFT-Based Frequency Estimation Methods Parametric Methods

IpDFT Method Which
Takes into Account

Conjugate Component

IpDFT Methods Which Do Not
Take into Account Conjugate

Component

Parametric Methods:
Prony LS,

TLS (Total Least Squares), ESPRIT

Very short window
(λ1 < 1)

Applicable only for low
level of noise

Not applicable
due to great number of systematic

errors

Applicable, especially for high
resolution methods (e.g., ESPRIT)

Short window
(λ1 ≈ 1 . . . 3)

Applicable
Good accuracy

(systematic errors below
the level caused by noise)

Cheap implementation

Not applicable
due to great number of systematic

errors

Applicable, but expensive in
practice due to the great

number of calculations required
(even by a few orders for N > 1000)

Long window
(λ1 >> 3)

Applicable
Good accuracy

Cheap implementation

Applicable
Good accuracy

Cheap implementation

Applicable
Good accuracy

Expensive implementation

2. Disturbances and Its Models in Power Networks
2.1. Disturbances in Power Networks and Power Quality

The voltage electrical waveform in power networks is by definition a strictly deter-
ministic signal. It is modeled by a single sinusoidal waveform with nominal rms value,
symmetric with respect to the 0 V level and nominal frequency. In three-phase networks,
these waveforms are additionally shifted in individual phases by 120◦.

In fact, this waveform additionally contains disturbances of deterministic and non-
stationary character. The first group includes cyclic or permanent disturbances that are
specific to the supply network, for example, the continuous presence of the 5th harmonic,
long-lasting voltage underdeviation or asymmetry. The second group includes distur-
bances appearing every indefinite time, or whose character evolves in time in an unpre-
dictable manner, e.g., voltage overvoltages caused by lightning, momentary changes of
the fundamental frequency under the influence of rapid changes of the load or oscillatory
disturbances occurring during activation of capacitor banks to compensate reactive power.

Some of the disturbances occurring in the supply voltage waveform have a direct
impact on the power quality and on the operation and safety of electrical equipment. These
include all kinds of voltage fluctuations, harmonics, interharmonics, frequency fluctuations
and supply voltage asymmetry. The remainder at least affects the user comfort of electrical
equipment. These disturbances can include, inter alia: the phenomenon of flickering caused
by a series of changes in the rms value of the voltage of the light source supply, dips and
interruptions in power supply. Definitions and acceptable levels of most of the mentioned
disturbances are defined in relevant standards of power quality, such as EN501610 [32],
and electromagnetic compatibility from the IEC 61000 series [33].

Based on the authors’ own research, various types of interference were acquired,
which can be divided into three groups:

- Temporary disturbances—of incidental nature;
- Sustained disturbances—occurring in the power network for a longer period of time;
- Mixed disturbances—containing the two above mentioned types of disturbances.

Figure 2 as well as Figures 3 and 4 present examples of disturbances from the first
group: transient overvoltage, voltage fluctuations and dips and instantaneous frequency
changes, respectively.
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Figure 2. High-frequency damped sinusoidal fast transient overvoltage with oscillation frequency of
4 kHz: (a) signal with the disturbance; (b) expanded disturbance.

The duration of the first one is about 3 ms and it has an oscillatory character with a
frequency of about 4 kHz.

The second disturbance is an example of a voltage drop of about 2.4% and two
consecutive dips of 12% and 24%.

The third disturbance represents changes in the instantaneous frequency of the voltage.
These changes are often of a sustained disturbance nature, which include long-term devi-
ations of the power network frequency within ±1% for 99.5% of the year [32]. However,
dynamic fluctuations of the fundamental frequency are also encountered, caused by rapid
changes in the power network load, which include the frequency fluctuation of 0.3% shown
in Figure 3.
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Figure 4. Temporary changes in fundamental frequency.

The second group of disturbances—sustained disturbances—often involves, among
other things, the occurrence of harmonics and interharmonics, which are generated by
nonlinear loads, in particular by voltage converters, available, for example, in any IT
equipment. These disturbances are parameterized, for example, by so-called spectral
power quality parameters, which include [34]:

- Total distortion factor of harmonic subgroups—Equation (1),

THDSU =

√√√√ hmax

∑
h=hmin

(
Usg,h

Usg,1

)2

(1)

where:

U2
sg,h =

1

∑
k=−1

U2
C,(N×h)+k (2)

U2
sg,h—harmonic subgroup of the h order.

U2
sg,1—first-harmonic subgroup.

UC,l—rms value of the spectral voltage component of the l order.
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N—number of periods of the fundamental component.
h—harmonic order.
hmin—minimum harmonic order: 2.
hmax—maximum harmonic order: 50.

- Centered subgroups of interharmonics—Equation (3),

U2
isg,h =

N−2

∑
k=2

U2
C,(N×h)+k, (3)

where the interpretation of individual parameters is as for Equation (2).
Examples of harmonic disturbances registered in an office building are presented in

Figure 5. The values of particular harmonic subgroups are shown in Table 2. Deformation
of the waveform in the area of minima and maxima is characteristic for this type of
disturbances. Moreover, this type of disturbance usually has a quasi-stationary character
and lasts for a minimum of several dozen periods or persists permanently. As a rule, the
values of even harmonics are minimal, while the dominant ones are the 5th, 7th and 11th
harmonics. The total distortion factor of the harmonic subgroups should remain below 8%
for 95% of the week [32]. The mentioned example represents the exceedance of this value:
10.3%. When interharmonics are present, the distortion factor of the centered interharmonic
subgroups has not yet been defined in the relevant standard.
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Table 2. Parameters of measured harmonics from THDSU = 10.3%.

Parameter
i—Harmonic Number

1 3 5 7 9 11 13 15 17 19 21 23

fi = i· f1[Hz] 50 150 250 350 450 550 650 750 850 950 1050 1150
Usg,i rms [V] 225 0.6 15.2 14.5 1.2 6.4 4.1 0.8 4.6 3.6 0.9 0.6
Usg,i rms [%] 100 0.29 6.74 6.47 0.56 2.91 1.82 0.37 2.04 1.65 0.41 0.26

Noise is also a disturbance that affects the distortion of the waveform spectrum.
Figure 6 shows an example of recorded noise-like interference with a signal-to-noise (SNR)
of 27 dB. Disturbances of this type are also usually of sustained character.
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An example of the third group of disturbances, concerning a combination of both tran-
sient and sustained disturbances, is presented in Figure 7. It shows a harmonic disturbance
with superimposed transient overvoltage of oscillatory nature.
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2.2. Disturbance Modeling

Based on the real disturbances occurring in power grids and on the test procedures
included in the standards for power quality and electromagnetic compatibility, as well as in
the relevant documents related to the requirements imposed on inverters in PV microgrids,
the following disturbance models are proposed. These models will allow us to investigate
the influence of certain types of disturbances on the accuracy of the instantaneous frequency
measurement.

2.2.1. Harmonics and Interharmonics

The parameters of the signal models representing the harmonic and interharmonic
disturbances are presented in Tables 3 and 4, respectively. Due to the specificity of the
power waveforms, harmonics are practically nonexistent and they have not been taken
into account. The amplitudes of the individual harmonics and interharmonics have been
selected based on actual tests. The THDSU parameter exceeds the acceptable threshold
defined in the standards—8% [32].
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Table 3. Harmonic parameters of the signal from THDSU = 10.3%.

Parameter
i—Harmonic Number

1 3 5 7 9 11 13 15 17 19 21 23

fi = i· f1[Hz] 50 150 250 350 450 550 650 750 850 950 1050 1150
Usg,i [V] 225 0.6 15.2 14.5 1.2 6.4 4.1 0.8 4.6 3.6 0.9 0.6

ϕi [°] 0 0 0 0 0 0 0 0 0 0 0 0

Table 4. Interharmonic signal parameters.

Parameter
i—Interharmonic Number

1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

fi = i· f1[Hz] 50 160 165 170 175 180 185 190 195
Uig,i[V] 230 1.5 2 4.5 12 17 4 3 2

ϕi [°] 0 0 0 0 0 0 0 0 0

Graphical representations of the waveforms with harmonic and interharmonic distur-
bance models are shown in Figures 8a and 8b, respectively.
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2.2.2. Transient Overvoltages

The transient overvoltages were modeled using exponentially damped oscillatory
disturbances. Two models were proposed: short duration and long duration. These models
were expressed as (4) and (5):

sI(t) = 2000e−0.0583t sin(2π106t) (4)

sII(t) = 500e−0.00029278t sin(2π103t) (5)

In the first case, the oscillation frequency is equal to 1 MHz, the amplitude is 2000 V,
and the duration after which the waveform is damped 100 times is 15 µs.

In the second case, these parameters are, respectively: 1 kHz, 500 V and 6 ms.
In the case of a short-duration disturbance, its amplitude was limited to 400 V due

to the fact that the input systems of the measuring equipment are practically unable to
transfer such a steep disturbance and in fact, the final waveform to be acquired has an
amplitude of 400 V.

Figure 9a shows the signal with the disturbance expressed by (4), and Figure 9b shows
the superimposed disturbance on the power waveform. Figure 10 shows the above for the
disturbance defined by Equation (5).
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2.2.3. Changes in Fundamental Frequency

The model of the signal containing fluctuations of the basic component of the power
waveform consists of five waveforms with the rms value of 230 V and the following
frequencies (6):

y(t) =



42.50 Hz for t < 0.353 [s]
46.25 Hz for 0.353 < t < 0.677 [s]
50.00 Hz for 0.677 < t < 0.977 [s]
53.375 Hz for 0.977 < t < 1.258 [s]
57.50 Hz for 1.258 < t < 1.600 [s]

(6)

Each waveform contains 16 complete periods at the frequencies specified above.

2.2.4. Multicomponent Disturbances: Harmonics, Dips, Transient Overvoltages

Finally, a model consisting of harmonics, two transient overvoltages and three voltage
dips was used to illustrate the response of the tested frequency measurement method in
the presence of many different types of disturbances. Detailed parameters are shown in
Table 5. Throughout the test run, the fundamental frequency was constant at 50 Hz.

Table 5. Multicomponent disturbance parameters.

Type of Disturbance Parameter Occurrence Time (s)

Harmonics In accordance with Table 2 0–1.6

Transient overvoltages In accordance with Formula (5) 0.6–1.2

Voltage dips

Urms = 230 V 0–0.7
Urms = 215 V 0.7–0.9
Urms = 181 V 0.9–1.1
Urms = 162 V 1.1–1.3
Urms = 230 V 1.3–1.6

Figure 11 presents the signal with disturbances, as described in Table 5.
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3. Interpolated Discrete Fourier Transform with the Use of GMSD Windows

The characteristics of the power network signal presented in Section 2 allow us to
define the stationary part of this signal as:

y(t) =
K

∑
m=1

Am sin(2π fmt + ϕm) (7)

where A1, f 1, and ϕ1 are the parameters (amplitude, frequency and phase, respectively)
of the fundamental component, and Ai, fi, and ϕi are the harmonic and interharmonic
parameters. Such a signal is found in many fields of science and technology and is often
referred to as a multifrequency signal because it consists of multiple sinusoidal compo-
nents. For obvious reasons, such a signal is further disturbed by the noise present in each
measurement and a number of additional distortions, which for the case of the mains signal
are described in Section 2. Rms values Ui rms of the sinusoidal components are obtained
from the relation Ui rms = Ai/

√
2. For a complete description of the power network signal,

estimation of all Ai, fi and ]ϕi parameters is required for all i, but the most important of
these is the value of f 1, i.e., the frequency of the power network signal. It is nominally
50 Hz or 60 Hz, and in practice it is a value varying within the range allowed by legal
regulations or exceeding this range in cases of control system failures in the process of
electricity generation. Precise determination of the parameter f 1 determines the remaining
parameters of the power network signal.

Many methods have been developed, parametric and nonparametric, allowing estima-
tion of the parameters of the multifrequency signal modeled by Equation (7). Particularly
noteworthy are spectrum interpolation methods (IpDFT), whose development and range
of applications is constantly increasing. The application of IpDFT methods for the determi-
nation of f 1 is also studied in the context of power network signal parameter estimation for
the following reasons:

- In IpDFT methods, the computation time is much smaller than the signal measurement
time, which significantly reduces the total estimation time of f 1 (the total estimation
time is equal to the sum of the signal measurement time and the duration of calcula-
tions necessary to be performed after the measurement is completed);

- IpDFT methods achieve high estimation accuracy of f 1, even with short signal mea-
surement times, i.e., between one and three signal periods; this allows for a quick
response in systems controlling power generation or disconnecting devices from the
supply network;

- In IpDFT methods, the computational complexity of the estimation algorithm is
much lower than in parametric methods, which lowers the cost of the DSP system



Energies 2021, 14, 6465 13 of 26

for determining the parameters of the power network signal; this is particularly
important for small power generation systems (e.g., small photovoltaic installations)
or for power quality monitoring by consumers.

The latest IpDFT methods are based on the complex values of the DFT spectrum
obtained by the FFT algorithm and include in their solution a conjugate component, i.e.,
a component with a negative frequency, resulting from the mathematical properties of
the Fourier transform. The use of the complex values of the DFT spectrum eliminates the
drawbacks of earlier IpDFT methods, which used the DFT spectrum modules. On the other
hand, the inclusion of the conjugate component allows for a significant reduction in signal
measurement time, relative to earlier IpDFT methods, without increasing the systematic
error values. The paper [31] presents the latest version of the IpDFT method taking into
account the conjugate component and using the complex values of the DFT spectrum.
This method uses windows of sinm type, which are, as shown in [31], generalized MSD
windows already used in earlier IpDFT methods. The IpDFT method presented in [31]
uses GMSD windows, which are described by two, mutually equivalent, relations:

wn =
H−1

∑
h=0

(−1)hah cos
[
(2h + z)πn

N
+

zπ
2

]
, n = 0, . . . , N − 1 (8)

wn = sinm
(πn

N

)
= sin2r+z

(πn
N

)
, n = 0, . . . , N − 1 (9)

where wn are the values of the GMSD window function for indices n = 0, . . . , N − 1, N is
the number of samples of the GMSD window, m = 2r + z is a natural number, H = r + 1, z =
0 for even m and z = 1 for odd m, and ah are appropriately chosen coefficients to ensure
that the GMSD window has the largest sidelobes damping for a given H. Relationships (8)
and (9) are equivalent, as shown in [31]. To derive the solution of the method in [31], (8) is
used, and for practical use, the more convenient form (9).

The signal y(t) from (7) is processed in an A/D converter operating at a sampling rate
f s (T = 1/f s is the sampling period) and N signal samples yn = y(nT) are obtained at the
A/D output. After introducing normalized frequencies λm = fmNT in (bins) or (cycles in
range (CiR)) (and in general, λ = fNT) the estimation of f 1 is equivalent to the estimation of
λ1. The use of λ in place of f and λm in place of fm simplifies the mathematical model and
allows a direct frequency reference of f 1 from the power network signal to the duration of
the signal measurement (time window duration). For example, the value of λ1 = 2.5 bin
means that a time window of NT (N samples obtained every sampling period T) contains
2.5 periods of the power network signal.

Applying the time window (8) and (9) to the signal samples (7) reduces to multiplying
yn by wn for all n and then the discrete-time Fourier transform (DtFT) is calculated, i.e., Xλ

defined by:

Xλ = X(λ) =
N−1

∑
n=0

ynwne−j2πnλ/N for any λ (10)

The spectrum Xλ for natural values of λ is a commonly known discrete Fourier
transform (DFT), which is usually calculated with the FFT algorithm. However, the IpDFT
method from [31] requires knowledge of the spectrum X(λ) for λ = 0, 0.5, 1, 1.5, etc. (i.e.,
with a step of 0.5 bin), which is obtained by the FFT algorithm in so-called double zero
padding technique [27].

The most important result in [31] is the dependencies on λ̂1 (and consequently on
f̂1 = λ̂1/NT):

λ̂2
1 = l2

1 + Re{ε1} (11)

ε1 = (m + 2)
(m + 2 + 4l1)Xl1+1 + 2mXl1 + (m + 2− 4l1)Xl1−1

4(Xl1+1 − 2Xl1 + Xl1−1)
(12)
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where:
l1 = 1, 1.5, 2, 2.5, . . . (13)

This solution means that the spectrum interpolation procedure uses three DtFT spec-
trum points obtained with a step of 1 bin. The value of l1 should be close to the value of λ1,
as this condition minimizes the variance of the estimator and hence the error due to noise
in the signal.

The value λ̂1 differs from λ1 due to the presence of systematic errors (which even
occur for pure sine wave), the influence of harmonics and interharmonics, the presence of
noise in a real measured signal and other signal disturbances. The determination of the
impact of typical disturbances occurring in the power network on the obtained frequency
estimation accuracy f 1 is the goal of the research presented in Section 5 in accordance with
the methodology presented in Section 4.

4. Research Methodology
4.1. Assumptions for IpDFT
4.1.1. Measurement Time (Time Window Duration) NT

Based on the properties of the IpDFT method presented in [31], it was assumed in
this study that the NT time of the power network signal measurement with frequency
f 1 = 50 Hz is NT = 50 ms. This means that the normalized frequency λ1 = 2.5 bin, i.e., that
the measurement window (time window) covers 2.5 periods of the power network signal.
The value of the measurement time NT = 50 ms was chosen in the study as a compromise
value between aiming for the shortest possible measurement time and aiming for the
highest possible accuracy. The IpDFT method of [31] allows accurate signal measurement
for several times smaller measurement times, but then the effect of signal harmonics on
the estimation accuracy increases, causing a significant reduction in accuracy. For such
smaller measurement times (of the order of 1–2 signal periods) it is necessary, to maintain
high accuracy, to use filtering that reduces the influence of harmonics, and this would
degrade the dynamic properties of the method. As demonstrated by the studies presented
in Section 5 adoption of NT = 50 ms (λ1 = 2.5 bin) maintains high estimation accuracy
without the need for additional filtering at the input of the method. In practice the time
window will not cover exactly 2.5 signal periods due to the power network frequency
variation f 1 and because of the characteristics of the A/D converters used, for which a
change in sampling frequency f s = 1/T is not possible continuously, but only among a
limited set of values. However, the most important advantage of IpDFT methods is that
there is no need to precisely synchronize the duration of the measurement window with the
current frequency f 1 of the supply network. This is an essential feature of IpDFT methods
that distinguishes them from methods with so-called coherent sampling. The adoption
of NT = 50 ms is also the condition furthest from coherent sampling, since in coherent
sampling, the duration of the measurement window must be equal to an integer multiple
of the signal period. The lack of significant sensitivity of the IpDFT method tested in
Section 5 to changing the duration of the time window is shown in Section 5.1, where the
accuracy of the method was tested for NT = 50 ms and for two values differing by ca. ± 3%:
NT = 48.44 ms and NT = 51.65 ms. In the other studies (Sections 5.2–5.7), it was also found
that a similar change in NT measurement time does not significantly affect the estimation
results, and therefore only the case of NT = 50 ms was included in the presented graphs to
maintain the readability of the presented figures.

4.1.2. Number of Signal Samples N and Sampling rate f s = 1/T

For most studies in Section 5, the number of samples was assumed to be equal to
N = 1024 and N = 2048. This means, with measurement time NT = 50 ms, that the sampling
rate is, respectively f s = 20,480 Hz and f s = 40,960 Hz. The accuracy of the method for wide-
spectrum signal disturbances (Section 5.3) is also shown for f s = 2,621,440 Hz ≈ 2.62 MHz
(for N = 217), to show that the error for smaller values of f s is caused by the fact that the
conditions of Shannon’s sampling theorem regarding the minimum value of the sampling
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frequency are not satisfied. The increase in the error due to the failure to satisfy the
conditions of Shannon’s sampling theorem is eliminated in practice by the use of an
antialiasing filter at the input of the A/D converter and partly by the limited spectrum of
the coupling systems between the network and the measuring system. With the limited
frequency spectrum of the power network signal, it is possible to use smaller values of N
and f s. For the studies presented in Sections 5.1, 5.2 and 5.5, the following are presented in
addition to the two fundamental cases N = 1024 and 2048 (f s = 20,480 Hz and 40,960 Hz
providing NT = 50 ms) and the results for N = 128, 256 and 512 (f s = 2560 Hz, 5120 Hz and
10,240 Hz providing NT = 50 ms). The presentation of results for five different values of N
from 128 to 2048 provided a better representation of how the parameters N and f s at the
given NT affect the accuracy of the estimation. In many cases, low values of N and f s allow
to obtain satisfactory estimation accuracy under the condition of limited power network
signal bandwidth (e.g., due to the use of antialiasing low-pass filter) and fulfillment of
the condition of Shannon’s theorem for the minimum sampling frequency. It should also
be remembered that increasing the number of samples of the signal N (i.e., increasing the
sampling frequency of f s at a constant NT measurement time value) reduces the effect of
noise on the estimation accuracy, as shown in Section 5.7.

4.1.3. The m Parameter of GMSD Window

The basic parameter of the IpDFT method from [31] is, in addition to N and f s, the m
parameter of the GMSD window defined by (8) and (9). In the studies presented in Section 5
a fixed value of m = 3 was adopted as a compromise between the desire to suppress the
sidelobes as much as possible (long-range spectral leakage) and to widen the main lobe
width as little as possible. An increase in the value of m also results in an increase in the
variance of the estimator, i.e., the error due to noise in the signal. The authors’ studies have
shown that the value of m = 3 is the optimum case for many applications of power network
parameter estimation and can be treated as a universal condition when there is no more
specific other rationale for adopting a different value of m. A study of the effect of other
values of m in the presence of the disturbances considered in Section 5, in the opinion of the
authors, should be studied for individual target applications, which is beyond the scope
of this paper, which aims to present the basic properties of the method for a wide class of
applications.

4.1.4. The Effect of Signal Phase and Sliding Window

The phase ϕ1 of the power network signal described by (7) has important implications
on the accuracy of the estimation. In the case of continuous observation of the signal
(Figure 12), as is the case in network parameter monitoring systems, the phase of the
signal changes over time as the measurement window of duration NT includes the last
N samples of the signal relative to the current instant of time (Figure 12b). Each such
set of consecutive N samples can be referred to as a data frame (Figure 12c). As shown
in [31], the computation time required in a typical DSP system to determine the frequency
f 1 based on a single data frame is much smaller than the NT time of measuring that frame,
which is a well-known advantage of IpDFT methods. Therefore, in this study, it is assumed
that the computation time is negligibly small and that the current estimate f 1 appears
in the output of the method with the last sample of a given frame, i.e., with the end of
the measurement time of that frame. The next estimate f 1 is calculated after a sampling
period T and it takes into account the last N samples of the signal. This updating of the
estimate f 1 with each successive signal sample was adopted in the study in Section 5, in
order to accurately demonstrate the effect of the phase ϕ1 value, which changes with a
small step for successive data frames. In practice, the calculation of the frequency f 1 can be
performed less frequently because successive data frames differ by only one sample, i.e.,
they overlap to a large extent. Frequency calculation of f 1 with every kth sample reduces
the computational power requirements of the DSP system by k times. For example, in the
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DSP system used in [31], the frequency f 1 is updated every second sample of the signal,
i.e., every 2T ≈ 90.7 µs, where T = 1/f s ≈ 45.4 µs (f s = 22.05 kHz).
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the fundamental component relative to the origin point t0 of the window; (c) updating of the estimate f 1 every sampling
period T for successive data frames.

4.2. Assumptions for Zero Crossing Method

The zero-crossing (ZC) method was used as a reference method for the investigated
IpDFT method from [31], since it is one of the most popular methods for estimating the
frequency of a power network signal. This frequency is calculated in the ZC method based
on the last two transitions of the signal through zero, thus by determining the duration
of one half-period of the signal (Figure 13). It is possible to reduce the estimation error by
taking into account many half-periods in one measurement instead of one, but the essential
properties of the ZC method do not change significantly, and additionally the dynamic
properties of the method deteriorate. Therefore, this paper is limited to the determination
of a single signal half-period. In order to precisely determine the moment when the signal
passes through zero, linear interpolation was used (Figure 13b), as is usually the case in the
ZC method.
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∣∣∣ f̂1 − f1

∣∣∣
with low-pass prefiltering: (a) three prefiltering options (ZC1, ZC2 and ZC3); (b) estimation of f 1 in ZC method with linear
interpolation.

In the ZC method, low-pass filtering of the input signal is necessary, because without
such filtering any high-frequency (impulse) disturbance introduces too large errors into
the frequency estimation result. A digital filter of order 4–6 is most commonly used;
however, results presented in Section 5.2 showed that higher-order filters are necessary
to significantly reduce the errors of the zero-crossing method for disturbances due to
interharmonics. In the studies presented in Section 5, three versions of a digital Butterwoth
low-pass filter were adopted, each consisting of 1, 2, or 3 sections, respectively, of a 6th-
order Butterworth filter with a cutoff frequency of f c = 60 Hz (Figure 13a). The signal
obtained as a result of such filtering is labeled in Section 5 with the labels ZC1, ZC2 and
ZC3 (Figures 14b and 15b), and this filtering introduces a signal delay that depends on
the filter order (Figure 14b). The results of the frequency estimation of f 1 obtained using
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these three types of filtering are also labeled in Section 5 with the labels ZC1, ZC2 and ZC3
(Figures 14f, 15d–f, 16e, 17e, 18d, 19e,g,i and 20b,c).
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brought on by 6th-order (ZC1), 12th-order (ZC2) and 18th-order (ZC3) filters for ZC; (c–e) frequency estimation by IpDFT
for m = 3 and of N samples at measurement times of 50 ms, 48.44 ms and 51.65 ms; (f) comparison of the accuracy of the
IpDFT method for m = 3 and NT = 50 ms with the ZC method for N = 128, 256, 512, 1024 and 2048.

The ZC method is sensitive to the phase shift ϕ0 of the first sample considered in the
calculations with respect to the point where the signal passes through zero (Figure 13b).
Therefore, in the studies in Section 5 for the zero-crossing method, the maximum value of
the estimation error was determined from the set of values calculated for multiple values
of ϕ0.

5. Results
5.1. The Influence of Harmonics

The study of harmonics influence was carried out for a signal containing 12 consecutive
odd harmonics with parameters defined in Table 2 and with THDSU = 10.3% (Figure 9a).
For the duration of the measurement window of 50 ms, the maximum estimation error
depends on the phase ϕ1 of the power network signal relative to the beginning of the time
window, which results in a variation of the estimated value of f 1 on the time axis. Changing
the measurement time by a few (or even by several percent) does not significantly affect
the estimation accuracy (Figure 14c–e illustrates this effect for NT = 48.44 ms, 50 ms and
51.65 ms). In addition, the change in f 1 (as is the case in practice) at a constant NT value
will not result in a significant change in accuracy, since the decisive factor in both of the
above cases (i.e., changing NT at a constant f 1 and the change of f 1 at constant NT) is
the value λ1 = f 1NT = NT/T1, and thus the ratio of the NT window duration to the signal
period of T1. The number of samples N does not affect the error values due to harmonics
in the signal (Figure 14c–e). This property occurs when the condition of the sampling
theorem is satisfied and when the dominant component of the estimation is the error due
to harmonics in the signal. For the ZC method, a different situation occurs because the
estimation error depends on the number of samples N. For N = 128. the estimation error is
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larger than for the IpDFT method, for N = 256 it is, depending on the phase ϕ1, smaller or
larger, and for N ≥ 512, the estimation error for the ZC method is almost always smaller
than for the IpDFT method (Figure 14f). This ability to decrease the estimation error with
increasing N for the ZC method is a beneficial property of the method, but it comes at the
expense of the additional delay (Figure 14b) introduced by the low-pass filtering shown in
Figure 13a. In the case of errors due to harmonics, the order of the filter used (6 for ZC1, 12
for ZC2 and 18 for ZC3) does not affect the results of the ZC estimation (Figure 14f). For
the IpDFT method and for the adopted parameters of this method, the estimation error
does not exceed, depending on the quotient NT/T1 the value, ca. 0.0003 Hz (Figure 14c),
ca. 0.0002 Hz (Figure 14d) and ca. 0.0001 Hz (Figure 14e).

5.2. The Influence of Interharmonics

The study of the effect of harmonics was performed for a signal containing a group
of interharmonics with parameters defined in Table 4 (Figure 15a). The influence of the
interharmonic group on estimation accuracy of f 1 is larger than for the harmonics group.
For the IpDFT method, the estimation error is less than ca. 0.0015 Hz and it does not
depend, as in Section 5.1, on the number of samples N (Figure 15c). For the ZC method, in
order to eliminate the influence of interharmonics, a 12th-order low-pass filter is necessary
(ZC2, Figure 15e) for N < 512, because the filter of order 6 causes a significant increase in
estimation error (ZC1, Figure 15d). For N ≥ 512, a full minimization of errors caused by
interharmonics in the ZC method requires a filter order of 18 (ZC3, Figure 15f), which is
done at the expense of a higher signal delay (the signal with interharmonics after filtering
is shown in Figure 15b, and the values of delays contributed by the filters ZC1, ZC2 and
ZC3 are provided in Figure 14b).
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Figure 15. Effect of interharmonics on estimation results: (a) 50 Hz power network signal disturbed by interharmonics;
(b) signals at the output of 6th-order (ZC1), 12th-order (ZC2) and 18th-order (ZC3) filters for ZC; (c) IpDFT frequency
estimation for m = 3 at a measurement time of 50 ms and for N = 128, 256, 512, 1024 and 2048; (d–f) comparison of the
accuracy of the IpDFT method for m = 3 and NT = 50 ms with the ZC method for N = 128, 256, 512, 1024 and 2048 and for
the 6th-order (ZC1), 12th-order (ZC2) and 18th-order (ZC3) filters.
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5.3. The Influence of Transient Overvoltages—High-Frequency Pulse

To study the effect of transient overvoltages of short duration, i.e., wide frequency
band, the model (4) with oscillations of 1 MHz was used. Such a signal (Figure 16a) was
added to the power network signal (Figure 16b) and the signal amplitude was limited
to ± 400 V, due to the saturation effect of the input circuits and the A/D converter itself
that occurs in practice. For N = 1024 (f s = 20.48 kHz for NT = 50 ms), the maximum
estimation error of f 1 is 0.1 Hz (Figure 16c). An increase of N by a factor of two to 2048
(i.e., increase by a factor of two of f s) causes the reduction of the maximum error by ca.
two times, i.e., to a value of ca. 0.05 Hz (Figure 16c). However, only adopting N = 217,
f s > 2 × 1 MHz eliminates errors caused by failure to satisfy Shannon’s sampling theorem
(Figure 16d). The comparison of the accuracy of the IpDFT method with the ZC method
shows (Figure 16e) that the maximum errors are at a similar level, but the return to very
low values of the estimation errors after the occurrence of the high-frequency pulse is much
faster for the IpDFT method than for the ZC method. Taking into account the principle
of the ZC method, it is obvious that it is not possible to use this method for this kind of
disturbances without low-pass filtering at the input of the method. For the IpDFT method,
however, the presented results indicate that it is advisable to apply an antialiasing filter
at the input of the A/D converter in order to reduce the impact of such interference on
the result of the estimation, but this is not a necessary condition—when it is not met, the
maximum error is ca. 0.1 Hz (Figure 16c).

Energies 2021, 14, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 16. Effect of high-frequency pulse disturbance on estimation results: (a) disturbing pulse; (b) 50 Hz power network 
signal disturbed by the pulse and limited in amplitude to ± 400V; (c,d) estimation result of IpDFT method for m = 3 at 50 
ms measurement time and for N = 1024, 2048 and 131072; (e) comparison of accuracy of IpDFT method for m = 3 and NT 
= 50 ms with ZC method for N = 1024 and 2048. 

5.4. The Influence of Transient Overvoltages—Low-Frequency Pulse 
To study the effect of transient overvoltages with long duration, i.e., narrow fre-

quency band, model (5) with 1 kHz oscillations was used. Such a signal (Figure 17a) was 
added to the power network signal (Figure 17b). For N = 1024 and 2048, the conditions of 
Shannon’s theorem for sampling frequency are satisfied, and the maximum error of esti-
mation of f1 in the IpDFT method does not exceed 0.5 Hz and practically does not depend 
on N (Figure 17c). The return to very low estimation errors after a low-frequency pulse is 
much faster for the IpDFT method than for the ZC method (Figure 17d,e). The pulse mod-
eled by (5) results in larger estimation errors than that modeled by (4), even though the 
condition of Shannon’s theorem on sampling frequency is satisfied, because the energy 
contributed by pulse (5) is much larger than that by pulse (4). Similar to the study in Sec-
tion 5.3, it is clear from the performance of the ZC method that it is not possible to apply 
this method to low-frequency pulse disturbances without low-pass filtering at the input 
of the method. On the other hand, for the IpDFT method, the results presented show that 
the error rate does not exceed ca. 0.5 Hz with a rapid return to low values after the cessa-
tion of the disturbance. 

Figure 16. Effect of high-frequency pulse disturbance on estimation results: (a) disturbing pulse; (b) 50 Hz power network
signal disturbed by the pulse and limited in amplitude to ± 400V; (c,d) estimation result of IpDFT method for m = 3 at
50 ms measurement time and for N = 1024, 2048 and 131072; (e) comparison of accuracy of IpDFT method for m = 3 and
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5.4. The Influence of Transient Overvoltages—Low-Frequency Pulse

To study the effect of transient overvoltages with long duration, i.e., narrow frequency
band, model (5) with 1 kHz oscillations was used. Such a signal (Figure 17a) was added to
the power network signal (Figure 17b). For N = 1024 and 2048, the conditions of Shannon’s
theorem for sampling frequency are satisfied, and the maximum error of estimation of
f 1 in the IpDFT method does not exceed 0.5 Hz and practically does not depend on N
(Figure 17c). The return to very low estimation errors after a low-frequency pulse is much
faster for the IpDFT method than for the ZC method (Figure 17d,e). The pulse modeled by
(5) results in larger estimation errors than that modeled by (4), even though the condition
of Shannon’s theorem on sampling frequency is satisfied, because the energy contributed
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by pulse (5) is much larger than that by pulse (4). Similar to the study in Section 5.3, it is
clear from the performance of the ZC method that it is not possible to apply this method to
low-frequency pulse disturbances without low-pass filtering at the input of the method.
On the other hand, for the IpDFT method, the results presented show that the error rate
does not exceed ca. 0.5 Hz with a rapid return to low values after the cessation of the
disturbance.
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5.5. The Influence of Frequency Changes

The impact of a step change in f 1 on the estimation results was examined for a signal
for which the frequency changed in steps from 42.5 Hz every ca. 0.25–0.35 s (Figure 18a).
Since the IpDFT method determines f 1 based on the last N samples of the signal, then after
time NT the estimation error caused by the frequency step decreases to zero (Figure 18b,c).
In this case, the IpDFT method also recovers much faster after a frequency step to very low
values than the ZC method (Figure 18d).
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Figure 18. Effect of frequency stepping on the estimation results: (a) frequency change from 42.5 Hz to 57.5 Hz every
15 periods; (b,c) estimation result of IpDFT method for m = 3 at 50 ms measurement time and for N = 128, 256, 512, 1024 and
2048; (d) comparison of accuracy of IpDFT method for m = 3 and NT = 50 ms with ZC method for N = 128, 256, 512, 1024
and 2048.
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5.6. The Composition of Harmonics, Pulse and Voltage Fall and Rise

To compare the influence of different types of disturbances, the estimation accuracy
was determined for the signal in which harmonics, transient overvoltages and voltage dips
occur, with the parameters defined in Table 5 (Figure 19a). In the IpDFT method, there are
large changes in the estimation result (Figure 19d) due to the low-frequency pulse (at time
instants 0.6 s and 1.2 s) and smaller changes due to the amplitude step change (at time
instants 0.7, 0.9, 1.1 and 1.3 s). The determination of the type of disturbance only based on
changes in the estimation result of f 1 does not seem simple, but in combination with the
estimation of the signal amplitude (Figure 19f) there appears, as an effect of the application
of the IpDFT method, an additional possibility of real-time detection and classification
of the types of disturbances of the power network signal. Even the simplest estimation
of the power network signal amplitude seems to be sufficient to perform such detection
and classification. For example, Figure 19f shows the result obtained after determining
the value of the complex spectrum for the determined f 1 (Figure 19d). For this purpose,
one of the methods of determining one point of the spectrum for a given frequency, e.g.,
Goertzel’s algorithm, can be used. The plot of the estimation error on the logarithmic scale
(Figure 19h) shows good dynamic properties of the IpDFT method, i.e., a fast return to very
small estimation errors after the disturbance disappears.
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Figure 19. Effect of the sum of distortions by harmonics, low-frequency pulse, voltage dip, and
voltage rise on the estimation results: (a) time domain signal distorted with harmonics and two
pulses (at 0.6 s and 1.2 s) and four voltage steps (at 0.7 s, 0.9 s, 1.1 s and 1.3 s); (b,c) filter output
signals for ZC method; (d,h) estimation result of IpDFT method for m = 3 at 50 ms measurement
time and for N = 1024 and 2048; (f) rms measurement of fundamental component for voltage step
detection; (e,g,i) comparison of accuracy of IpDFT method for m = 3 and NT = 50 ms with ZC method
(for ZC1 and ZC3) for N = 1024 and 2048.
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The ZC method gives more than ten times larger estimation errors of f 1 than the IpDFT
method for dip-type disturbances (Figure 19e). The ZC method also has significantly worse
dynamic properties in this case (Figure 19g,i).

5.7. The Influence of Noise

The effect of Gaussian white noise on frequency estimation errors in the IpDFT method
of [31] is described in more detail in [31]. For comparison with the ZC method, sample
noise was added to a signal composed of several disturbances and shown in Section 5.6
and Figure 19a. The estimation results of such a signal with example noise are shown in
Figure 20. According to the properties of the method described in [31] for a pure sinusoid
with noise, the IpDFT method is unbiased, i.e., the error component due to noise is domi-
nant. Moreover, the properties of the method in [31] show that the variance of the frequency
estimator decreases with increasing number of N samples. The results in Figure 20 confirm
these properties. At the moments of interference mentioned in Section 5.6, the estimation
errors caused by these disturbances are larger than those caused by noise in the signal
(Figure 20a). The properties of the IpDFT method for the noisy signal are also clearly more
favorable than in the ZC method (Figure 20b,c) for both values of N (1024 and 2048) and
regardless of the filter order in the ZC method.
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6. Conclusions

The paper presents the use of the IpDFT spectrum interpolation method for estimating
the fundamental frequency of power waveforms. The zero-crossing method with pre-
filtering by three types of low-pass filters was used as a reference method. The waveforms
created on the basis of recorded disturbances occurring in low-voltage power networks
were used as test models of signals. The models included: voltage harmonics and inter-
harmonics, oscillatory transient overvoltages exponentially damped with high and low
frequency pulses, frequency spikes and disturbances consisting of harmonics, voltage dips,
transient overvoltages and noise. The results of frequency estimation in the presence of
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modeled disturbances were analyzed as a function of the number of samples—sampling
frequency, measurement window length and in the case of the ZC method for three types
of filters.

Conducted research indicates that there is no significant influence of nonsynchronous
sampling in the case of the IpDFT method, as it is in case of the ZC method. For a larger
number of samples (above 512), the frequency estimation error for the ZC method is smaller
than for IpDFT. A simplified summary of the obtained results are demonstrated in Table 6.

Table 6. Maximum frequency estimation level errors for the grid disturbances described in Section 5. For two cases of N
(1024 and 2048), NT = 50ms and for the presented IpDFT method with the use of GMSD window with parameter m = 3 and
the reference zero-crossing method (ZC1 for one 6th-order filter section, ZC2 and ZC3—for two and three, respectively, filter
sections).

Type of Disturbance Type of Method
For Number of Samples N

Data Source
1024 2048

The influence of harmonics (THDSu
= 10.3%)

IpDFT 3.4 × 10−4 Hz Figure 14f

ZC1 . . . 3 2.0 × 10−6 Hz 1.8 × 10−7 Hz Figure 14f

The influence of interharmonics

IpDFT 0.0016 Hz Figure 15d–f

ZC1 0.0052 Hz Figure 15d

ZC2 9.2 × 10−6 Hz 8.1 × 10−6 Hz Figure 15e

ZC3 1.4 × 10−6 Hz 2.4 × 10−7 Hz Figure 15f

The influence of transient
overvoltages—high-frequency pulse

IpDFT 0.10 Hz in pulse
(above 0.001 Hz for 43 ms 1)

0.051 Hz in pulse
(above 0.001 Hz for 41 ms 1) Figure 16e

ZC1 0.14 Hz in pulse
(above 0.001 Hz for 60 ms 1)

0.068 Hz in pulse
(above 0.001 Hz for 50 ms 1) Figure 16e

ZC2 0.13 Hz in pulse
(above 0.001 Hz for 80 ms 1)

0.067 Hz in pulse
(above 0.001 Hz for 70 ms 1) Figure 16e

ZC3 0.14 Hz in pulse
(above 0.001 Hz for 90 ms 1)

0.071 Hz in pulse
(above 0.001 Hz for 80 ms 1) Figure 16e

The influence of transients
overvoltages—low-frequency pulse

IpDFT 0.41 Hz in pulse (above 0.001 Hz for 45 ms 1) Figure 17d,e

ZC1 0.55 Hz in pulse (above 0.001 Hz for 60 ms 1) Figure 17e

ZC2 0.54 Hz in pulse (above 0.001 Hz for 90 ms 1) Figure 17e

ZC3 0.58 Hz in pulse (above 0.001 Hz for 100 ms 1) Figure 17e

The influence of frequency changes

IpDFT 3.8 Hz in pulse (above 0.001 Hz for 45 ms 1) Figure 18c,d

ZC1 4.1 Hz in pulse (above 0.001 Hz for 100 ms 1) Figure 18d

ZC3 5.0 Hz in pulse (above 0.001 Hz for 150 ms 1) Figure 18d

The influence of voltage fall and rise

IpDFT 0.13 Hz in pulse (above 0.001 Hz for 41 ms 1) Figure 19g–i

ZC1 2.3 Hz in pulse (above 0.001 Hz for 81 ms 1) Figure 19g

ZC3 3.8 Hz in pulse (above 0.001 Hz for 120 ms 1) Figure 19i

The influence of noise
IpDFT 0.014 Hz 0.008 Hz Figure 20a

ZC1 . . . 3 0.020 Hz 0.012 Hz Figure 20b,c
1 The time in milliseconds of the temporary increase of the error above the level 0.001 Hz in the transient state caused by the disturbance.
This time allows us to present the dynamic property of the compared methods.

The effect of harmonics (Section 5.1) in the ZC method is minimal, due to the use of
input prefilters, while for the IpDFT method it does not exceed 0.34 mHz for the harmonic
disturbance model used. The precision of fundamental frequency estimation is similar for
both methods.

In the presence of interharmonic interference in the signal model (Section 5.2), the
frequency estimation error increases from 0.34 mHz to a maximum of 1.6 mHz in the
case of IpDFT. For the ZC method, better accuracies are obtained with higher filter orders
(minimum 12th-order) and larger sample numbers (minimum 256). For example, for the
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filter order 6 (ZC1), the estimation precision is about 5.2 mHz, representing over three
times higher frequency estimation error than for IpDFT.

In the presence of high-frequency damped oscillatory pulses (Section 5.3), the fre-
quency estimation errors are at a comparable level when the disturbance occurs. In contrast,
once the disturbance disappears, the IpDFT method reaches its initial accuracy much faster.
The IpDFT method reaches its initial accuracy after only 43 ms (N = 1024), while the ZC
method with the lowest-order filter reaches it after about 60 ms (N = 1024 ZC1) or 90 ms
(N = 1024 ZC3). It is also noticeable that there is a characteristic short oscillation in the
frequency estimated waveform for IpDFT immediately after the disturbance, which can be
used to identify the disturbance.

Low-frequency pulses (Section 5.4) have a greater impact on the fundamental fre-
quency estimation than do high-frequency pulses. In the former case, the estimation error
is 0.1 Hz (N = 1024), compared to 0.41 Hz (N = 1024) in the latter case. The value of the
error depends primarily on the energy of the disturbance. Comparing with the ZC method,
one observes, similarly to the high-frequency pulse, a significantly increased recovery time
to the original accuracy after the occurrence of the pulse. The situation is very similar when
stepping the frequency (Section 5.5). The time to return to the initial accuracy is at least
three times faster for the IpDFT method than for the ZC method.

Finally, the IpDFT method has better dynamic performance under all types of dis-
turbances (Section 5.6) with good estimation of the fundamental frequency. Moreover,
based on the analysis of frequency estimation error variations and instantaneous amplitude
variations of the fundamental frequency component, it is possible to determine the type of
disturbances: pulse type, rms variations and frequency variations. Tests in the presence of
noise (Section 5.7) also prove better dynamic properties of the IpDFT method in comparison
to ZC, and the frequency estimation accuracy is higher for the first method.

In conclusion, the IpDFT method may find application in protection systems and
measuring devices monitoring rapid changes of the fundamental frequency, even in the
presence of significant disturbances of the power waveform voltage.
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