Asymmetric Impact of International Trade on Consumption-Based Carbon Emissions in MINT Nations
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Degradation and Economic Growth
2.2. Environmental Degradation and Imports
2.3. Environmental Degradation and Export
3. Theoretical Framework, Data and Methods
3.1. Theoretical Framework
3.2. Data
3.3. Empirical Methods
3.3.1. BDS and Unit Root Test
3.3.2. NARDL
3.3.3. Gradual Shift Causality
4. Findings and Discussions
5. Conclusions and Policy Directions
5.1. Conclusions
5.2. Policy Directions
5.3. Study Limitation and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Bank. World Development Indicators. 2020. Available online: http://data.worldbank.org/country (accessed on 12 January 2021).
- Adebayo, T.S.; Kirikkaleli, D. Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: Application of wavelet tools. Environ. Dev. Sustain. 2021, 16, 1–26. [Google Scholar] [CrossRef]
- Khan, Z.; Ali, S.; Umar, M.; Kirikkaleli, D.; Jiao, Z. Consumption-based carbon emissions and international trade in G7 countries: The role of environmental innovation and renewable energy. Sci. Total Environ. 2020, 730, 138945. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Adebayo, T.S.; Bekun, F.V.; Agyekum, E.B.; Kumar, N.M.; Alhelou, H.H.; Al-Hinai, A. Beyond environmental Kuznets curve and policy implications to promote sustainable development in Mediterranean. Energy Rep. 2021, 7, 6119–61299. [Google Scholar] [CrossRef]
- Yuping, L.; Ramzan, M.; Xincheng, L.; Murshed, M.; Awosusi, A.A.; Bah, S.I.; Adebayo, T.S. Determinants of carbon emissions in Argentina: The roles of renewable energy consumption and globalization. Energy Rep. 2021, 7, 4747–4760. [Google Scholar] [CrossRef]
- Fatima, T.; Shahzad, U.; Cui, L. Renewable and nonrenewable energy consumption, trade and CO2 emissions in high emitter countries: Does the income level matter? J. Environ. Plan. Manag. 2021, 64, 1227–1251. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Adams, S.; Boateng, E. Do globalization and renewable energy contribute to carbon emissions mitigation in Sub-Saharan Africa? Sci. Total Environ. 2019, 677, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, K.R.; Shahbaz, M.; Jiao, Z.; Tufail, M. How energy consumption, industrial growth, urbanization, and CO2 emissions affect economic growth in Pakistan? A novel dynamic ARDL simulations approach. Energy 2021, 221, 119793. [Google Scholar] [CrossRef]
- Armeanu, D.S.; Joldes, C.C.; Gherghina, S.C.; Andrei, J.V. Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ groups. Renew. Sustain. Energy Rev. 2021, 142, 110818. [Google Scholar] [CrossRef]
- Gurtu, A.; Goswami, A. Emissions in different stages of economic development in nations. Smart Sustain. Built Environ. 2020, 12, 24–33. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Udemba, E.N.; Ahmed, Z.; Kirikkaleli, D. Determinants of consumption-based carbon emissions in Chile: An application of non-linear ARDL. Environ. Sci. Pollut. Res. 2021, 28, 43908–43922. [Google Scholar] [CrossRef]
- He, X.; Adebayo, T.S.; Kirikkaleli, D.; Umar, M. Consumption-based carbon emissions in Mexico: An analysis using the dual adjustment approach. Sustain. Prod. Consum. 2021, 27, 947–957. [Google Scholar] [CrossRef]
- Hasanov, F.J.; Liddle, B.; Mikayilov, J. The impact of international trade on CO2 emissions in oil exporting countries: Territory vs consumption emissions accounting. Energy Econ. 2018, 74, 343–350. [Google Scholar] [CrossRef]
- Liddle, B. Consumption-based accounting and the trade-carbon emissions nexus. Energy Econ. 2018, 69, 71–78. [Google Scholar] [CrossRef]
- Alola, A.A.; Bekun, F.V.; Sarkodie, S.A. Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe. Sci. Total Environ. 2019, 685, 702–709. [Google Scholar] [CrossRef]
- Ișik, C.; Ahmad, M.; Pata, U.; Ongan, S.; Radulescu, M.; Adedoyin, F.; Bayraktaroğlu, E.; Aydın, S.; Ongan, A. An evaluation of the tourism-induced environmental Kuznets curve (T-EKC) hypothesis: Evidence from G7 Countries. Sustainability 2020, 12, 9150. [Google Scholar] [CrossRef]
- Rehman, A.; Radulescu, M.; Ma, H.; Dagar, V.; Hussain, I.; Khan, M.K. The impact of globalization, energy use, and trade on ecological footprint in Pakistan: Does environmental sustainability exist? Energies 2021, 14, 5234. [Google Scholar] [CrossRef]
- Andrei, J.V.; Mieila, M.; Panait, M. The impact and determinants of the energy paradigm on economic growth in European Union. PLoS ONE 2017, 12, e0173282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jushi, E.; Hysa, E.; Cela, A.; Panait, M.; Voica, M.C. Financing growth through remittances and foreign direct investment: Evidences from Balkan Countries. J. Risk Financ. Manag. 2021, 14, 117. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Sharma, R.; Sinha, A.; Jiao, Z. Analyzing nonlinear impact of economic growth drivers on CO2 emissions: Designing an SDG framework for India. Energy Policy 2021, 148, 111965. [Google Scholar] [CrossRef]
- Shahzad, U. Environmental taxes, energy consumption, and environmental quality: Theoretical survey with policy implications. Environ. Sci. Pollut. Res. 2020, 27, 24848–24862. [Google Scholar] [CrossRef]
- Pata, U.K. Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: Testing the EKC hypothesis with a structural break. Environ. Sci. Pollut. Res. 2021, 28, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Zhang, B.; Cary, M. Linking economic globalization, economic growth, financial development, and ecological footprint: Evidence from symmetric and asymmetric ARDL. Ecol. Indic. 2021, 121, 107060. [Google Scholar] [CrossRef]
- Kihombo, S.; Vaseer, A.I.; Ahmed, Z.; Chen, S.; Kirikkaleli, D.; Adebayo, T.S. Is there a tradeoff between financial globalization, economic growth, and environmental sustainability? An advanced panel analysis. Environ. Sci. Pollut. Res. 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Su, Z.-W.; Umar, M.; Kirikkaleli, D.; Adebayo, T.S. Role of political risk to achieve carbon neutrality: Evidence from Brazil. J. Environ. Manag. 2021, 298, 113463. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Rjoub, H. Assessment of the role of trade and renewable energy consumption on consumption-based carbon emissions: Evidence from the MINT economies. Environ. Sci. Pollut. Res. 2021, 1–13. [Google Scholar] [CrossRef]
- Knight, K.W.; Schor, J.B. Economic growth and climate change: A cross-national analysis of territorial and consumption-based carbon emissions in high-income countries. Sustainability 2014, 6, 3722–3731. [Google Scholar] [CrossRef] [Green Version]
- Wahab, S.; Khan, Z.; Ali, M.; Kirikkaleli, D.; Jiao, Z. The impact of technological innovation and public-private partnership investment on sustainable environment in China: Consumption-based carbon emissions analysis. Sustain. Dev. 2020, 28, 1317–1330. [Google Scholar]
- Hasanov, F.J.; Khan, Z.; Hussain, M.; Tufail, M. Theoretical framework for the carbon emissions effects of technological progress and renewable energy consumption. Sustain. Dev. 2021, 4, 67–74. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adams, S. Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci. Total Environ. 2018, 643, 1590–1601. [Google Scholar] [CrossRef]
- O’Neill. Building Better Global Economic BRICs; Goldman Sachs: London, UK, 2001. [Google Scholar]
- Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef] [PubMed]
- Odugbesan, J.A.; Rjoub, H. Relationship among economic growth, energy consumption, CO2 emission, and urbanization: Evidence from MINT countries. SAGE Open 2020, 10, 2158244020914648. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in Honor of Peter Schmidt; Sickles, R.C., Horrace, W.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 281–314. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Adebayo, T.S. Do public-private partnerships in energy and renewable energy consumption matter for consumption-based carbon dioxide emissions in India? Environ. Sci. Pollut. Res. 2021, 28, 30139–30152. [Google Scholar] [CrossRef] [PubMed]
- Ayobamiji, A.A.; Kalmaz, D.B. Reinvestigating the determinants of environmental degradation in Nigeria. Int. J. Econ. Policy Emerg. Econ. 2020, 13, 52–71. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Awosusi, A.A.; Odugbesan, J.A.; Akinsola, G.D.; Wong, W.-K.; Rjoub, H. Sustainability of energy-induced growth nexus in Brazil: Do carbon emissions and urbanization matter? Sustainability 2021, 13, 4371. [Google Scholar] [CrossRef]
- Kanat, O.; Yan, Z.; Asghar, M.M.; Ahmed, Z.; Mahmood, H.; Kirikkaleli, D.; Murshed, M. Do natural gas, oil, and coal consumption ameliorate environmental quality? Empirical evidence from Russia. Environ. Sci. Pollut. Res. 2021, 12, 1–17. [Google Scholar] [CrossRef]
- Ramzan, M.; Adebayo, T.S.; Iqbal, H.A.; Awosusi, A.A.; Akinsola, G.D. The environmental sustainability effects of financial development and urbanization in Latin American countries. Environ. Sci. Pollut. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Kirikkaleli, D.; Adebayo, T.S.; Adeshola, I.; Akinsola, G.D. Modeling CO2 emissions in Malaysia: An application of Maki cointegration and wavelet coherence tests. Environ. Sci. Pollut. Res. 2021, 28, 26030–26044. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.F.; Adebayo, T.S.; Onbaşıoğlu, D.Ç.; Rjoub, H.; Mata, M.N.; Carvalho, P.V.; Rita, J.X.; Adeshola, I. Modeling the dynamic linkage between renewable energy consumption, globalization, and environmental degradation in south korea: Does technological innovation matter? Energies 2021, 14, 4265. [Google Scholar]
- Kirikkaleli, D.; Adebayo, T.S.; Khan, Z.; Ali, S. Does globalization matter for ecological footprint in Turkey? Evidence from dual adjustment approach. Environ. Sci. Pollut. Res. 2021, 28, 14009–14017. [Google Scholar] [CrossRef]
- Pata, U.K. Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. J. Clean. Prod. 2018, 187, 770–779. [Google Scholar] [CrossRef]
- Mikayilov, J.I.; Mukhtarov, S.; Dinçer, H.; Yüksel, S.; Aydın, R. Elasticity analysis of fossil energy sources for sustainable economies: A case of gasoline consumption in Turkey. Energies 2020, 13, 731. [Google Scholar] [CrossRef] [Green Version]
- Jebli, M.B.; Youssef, S.B. The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecol. Indic. 2017, 74, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Liu, X. The impact of renewable energy, trade, economic growth on CO2 emissions in China. Int. J. Environ. Stud. 2020, 78, 1–20. [Google Scholar] [CrossRef]
- Salman, M.; Long, X.; Dauda, L.; Mensah, C.N. The impact of institutional quality on economic growth and carbon emissions: Evidence from Indonesia, South Korea and Thailand. J. Clean. Prod. 2019, 241, 118331. [Google Scholar] [CrossRef]
- Khan, Z.; Ali, M.; Jinyu, L.; Shahbaz, M.; Siqun, Y. Consumption-based carbon emissions and trade nexus: Evidence from nine oil exporting countries. Energy Econ. 2020, 89, 104806. [Google Scholar] [CrossRef]
- Li, M.; Ahmad, M.; Fareed, Z.; Hassan, T.; Kirikkaleli, D. Role of trade openness, export diversification, and renewable electricity output in realizing carbon neutrality dream of China. J. Environ. Manag. 2021, 297, 113419. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.A.; Ucal, M. The role of trade and FDI for CO2 emissions in Turkey: Nonlinear relationships. Energy Econ. 2019, 81, 297–307. [Google Scholar] [CrossRef]
- Ali, M.; Kirikkaleli, D. The asymmetric effect of renewable energy and trade on consumption-based CO2 emissions: The case of Italy. Integr. Environ. Assess. Manag. 2021, 2, 12–36. [Google Scholar]
- Awosusi, A.A.; Kirikkaleli, D.; Akinsola, G.D.; Adebayo, T.S.; Mwamba, M.N. Can CO2 emissions and energy consumption determine the economic performance of South Korea? A time series analysis. Environ. Sci. Pollut. Res. 2021, 28, 38969–38984. [Google Scholar]
- Agboola, M.O.; Adebayo, T.S.; Rjoub, H.; Adeshola, I.; Agyekum, E.B.; Kumar, N.M. Linking economic growth, urbanization, and environmental degradation in China: What is the role of hydroelectricity consumption? Int. J. Environ. Res. Public Health 2021, 18, 6975. [Google Scholar]
- Ding, Q.; Khattak, S.I.; Ahmad, M. Towards sustainable production and consumption: Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations. Sustain. Prod. Consum. 2021, 27, 254–268. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Ben Youssef, S. The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia. Renew. Sustain. Energy Rev. 2015, 47, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, T.S.; Acheampong, A.O. Modelling the globalization-CO2 emission nexus in Australia: Evidence from quantile-on-quantile approach. Environ. Sci. Pollut. Res. 2021, 24, 1–16. [Google Scholar]
- Zivot, E.; Andrews, D.W.K. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J. Bus. Econ. Stat. 2002, 20, 25–44. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Nazlioglu, S.; Gormus, N.A.; Soytas, U. Oil prices and real estate investment trusts (REITs): Gradual-shift causality and volatility transmission analysis. Energy Econ. 2016, 60, 168–175. [Google Scholar] [CrossRef]
- Perron, P. Testing for a unit root in a time series with a changing mean. J. Bus. Econ. Stat. 1990, 8, 153–162. [Google Scholar]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Shahbaz, M.; Shahzad, S.J.H.; Mahalik, M.K.; Hammoudeh, S. Does globalisation worsen environmental quality in developed economies? Environ. Model. Assess. 2018, 23, 141–156. [Google Scholar] [CrossRef]
- Broock, W.A.; Scheinkman, J.A.; Dechert, W.D.; LeBaron, B. A test for independence based on the correlation dimension. Econom. Rev. 1996, 15, 197–235. [Google Scholar] [CrossRef]
- UNESCAP. United Nations Economic and Social Commission for Asia and the Pacific. In Report—Fourth South Asia Forum on the Sustainable Development Goals; UNESCAP: Bangkok, Thailand, 2021. [Google Scholar]
- Parker, S.; Bhatti, M.I. Dynamics and drivers of per capita CO2 emissions in Asia. Energy Econ. 2020, 89, 104798. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Akinsola, G.D.; Awosusi, A.A.; Kirikkaleli, D.; Umarbeyli, S.; Adeshola, I.; Adebayo, T.S. Ecological footprint, public-private partnership investment in energy, and financial development in Brazil: A gradual shift causality approach. Environ. Sci. Pollut. Res. 2021, 6, 1–14. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Weng-Wai, C.; Sheau-Ting, L.; Mohammed, A.H. Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecol. Indic. 2015, 48, 315–323. [Google Scholar] [CrossRef]
- Nathaniel, S.; Khan, S.A.R. The nexus between urbanization, renewable energy, trade, and ecological footprint in ASEAN countries. J. Clean. Prod. 2020, 272, 122709. [Google Scholar] [CrossRef]
- Manea, D.I.; Ţiţan, E.; Mihai, M.; Apostu, S.A.; Vasile, V. Good practices on air quality, pollution and health impact at EU level. Amfiteatru Econ. 2020, 22, 256–274. [Google Scholar]
- Wu, B.; Fang, H.; Jacoby, G.; Li, G.; Wu, Z. Environmental regulations and innovation for sustainability? Moderating effect of political connections. Emerg. Mark. Rev. 2021, 4, 32–44. [Google Scholar] [CrossRef]
- Wang, F.; Lu, Y.; Li, J.; Ni, J. Evaluating Environmentally Sustainable Development Based on the PSR Framework and Variable Weigh Analytic Hierarchy Process. Int. J. Environ. Res. Public Health 2021, 18, 2836. [Google Scholar] [CrossRef] [PubMed]
Scholars | Country of Study | Period | Methodology | Outcome(s) |
---|---|---|---|---|
Environmental Degradation and Economic Growth | ||||
[36] | India | 1990Q1–2015Q4 | DOLS and FMOLS | GDP → CCO2 (+) |
[27] | MINT | 1990–2017 | AMG and CS-ARDL | GDP → CCO2 (+) |
[12] | Mexico | 1990–2018 | Dual adjustment approach | GDP → CCO2 (+) |
[11] | Chile | 1990–2018 | NARDL | GDP+ → CCO2 (+) GDP− → CCO2 (+) |
[14] | 20 Asian Nations | 1990–2013 | CCEMG | GDP → CCO2 (+) |
[42] | South Korea | 1980–2018 | ARDL | GDP → CO2 (+) |
[53] | South Korea | 1965–2019 | ARDL, DOLS, FMOLS and GSB | GDP → CO2 (+) CO2 → GDP |
[39] | Russia | 1990–2016 | ARDL | GDP → CO2 (−) |
[54] | China | 1985–2019 | ARDL and GSB | EKC is valid GDP → CO2 |
[5] | Argentina | 1970–2018 | ARDL | EKC is valid CO2 → GDP |
[37] | Nigeria | 1971–2015 | FMOLS, ARDL and DOLS | GDP → CO2 (+) |
[40] | Latin America countries | 1980–2017 | DOLS and FMOLS | GDP → CO2 (+) |
[41] | Malaysia | 1960–2018 | FMOLS, ARDL and DOLS | GDP → CO2 (+) GDP → CO2 |
Environmental Degradation and Import | ||||
[3] | G7 Nations | 1990–2017 | CCEMG and DH causality approach | IMP → CCO2 (+) IMP → CCO2 |
[55] | G7 | 1990–2018 | CS-ARDL, AMG and DH causality | IMP → CCO2 (+) IMP → CCO2 |
[44] | Turkey | 1971–2014 | ARDL | IMP → CO2 (+) |
[46] | 24 sub-Saharan Africa Nations | 1980–2010 | ARDL | IMP → CO2 (−) IMP → CO2 |
[45] | Azerbaijan | 1995–2013 | ARDL | IMP → CCO2 (+) |
[47] | China | 1965–2016 | ARDL | IMP ≠ CO2 (+) |
Environmental Degradation and Export | ||||
[49] | 9 Oil exporting Nations | 1990–2018 | AMG and CS-ARDL | EXP → CCO2 (−) |
[50] | RCEP economies | 1990–2020 | CS-ARDL and DH causality | EXP → CCO2 (−) EXP ↔ CCO2 |
[51] | Turkey | 1974–2014 | NARDL | EXP+ ≠ CO2 (+) EXP− → CO2 (−) |
[56] | Tunisia | 1980–2009 | ARDL | EXP → CO2 (+) |
[52] | Italy | 1970Q1–2018Q4 | NARDL | EXP+ →CCO2 (−) EXP− ≠ CCO2 (−) |
Variables | Symbol | Measurement | Source |
---|---|---|---|
Consumption-based carbon emissions | CCO2 | Million tons of CO2 (MtCO2) | GCA |
Economic growth | GDP | GDP per capita (constant 2010$) | WDI |
Export | EXP | Exports % of GDP | WDI |
Import | IMP | Imports % of GDP | WDI |
ADF | PP | ZA | ||||||
---|---|---|---|---|---|---|---|---|
Level | Level | Level | Break | Break | ||||
Countries | Consumption-based Carbon Emissions (CCO2) | |||||||
Mexico | −2.7043 | −5.4187 * | −2.7043 | −5.9975 * | −4.2336 | 2001 | −5.1392 ** | 2002 |
Indonesia | −1.9509 | −6.9326 * | −1.9509 | −14.263 * | −4.1076 | 1998 | −6.4796 * | 2000 |
Nigeria | −2.7043 | −4.8610 * | −2.6715 | −5.5404 * | −4.3398 | 2001 | −6.4796 * | 2000 |
Turkey | −2.7834 | −6.9654 * | −2.7028 | −7.1955 * | −6.6078 * | 2004 | −5.8157 * | 2006 |
Export (EXP) | ||||||||
Mexico | −2.7641 | −4.1574 * | −2.7862 | −6.4263 * | −9.4949 * | 2013 | −7.4755 * | 2002 |
Indonesia | −2.5947 | −7.1712 * | −2.5005 | −7.8843 * | −4.7244 | 1998 | −8.6374 * | 1999 |
Nigeria | −3.0168 | −6.3409 * | −3.0067 | −6.8596 * | −4.2885 | 2010 | −7.5984 * | 2013 |
Turkey | −2.9446 | −3.1272 *** | −2.8167 | −6.0591 * | −4.2545 | I1998 | 5.5002 *** | 1998 |
Import (IMP) | ||||||||
Mexico | −2.9923 | −4.9987 * | −2.9342 | −6.2901 * | −6.1879 * | 2013 | −6.0742 * | 2001 |
Indonesia | −3.8091 ** | −6.0899 * | −3.7506 ** | −19.144 * | −5.9619 * | 1998 | −6.3923 * | 2001 |
Nigeria | −3.3028 | −6.3744 * | −3.7263 ** | −6.9954 * | −4.5952 | 2002 | −7.5984 * | 2013 |
Turkey | −4.0822 | −3.7211 ** | −2.9405 | −5.0779 * | −4.6374 | 1999 | −6.3257 * | 1998 |
Economic Growth (GDP) | ||||||||
Mexico | −2.9905 | −5.7186 ** | −2.9094 | −5.9389 * | −4.3558 | 2009 | −7.1468 * | 2009 |
Indonesia | −1.3092 | −3.8166 *** | −1.5367 | −3.7805 ** | −3.7219 | 1998 | −5.444 ** | 2000 |
Nigeria | −2.1610 | −3.6468 *** | −1.5363 | −3.2305 *** | −2.7051 | 2013 | −4.9622 *** | 2002 |
Turkey | −2.2931 | −4.3235 * | −2.3551 | −5.4527 * | −3.9633 | 1999 | −5.7577 ** | 2003 |
Mexico | Indonesia | Nigeria | Turkey | |
---|---|---|---|---|
Consumption-based Carbon Emissions (CCO2) | ||||
Z-stat [p-value] | Z-stat [p-value] | Z-stat [p-value] | Z-stat [p-value] | |
M2 | 12.773 * | 20.363 * | 15.416 * | 16.892 * |
M3 | 12.973 * | 20.352 * | 15.803 * | 16.943 * |
M4 | 13.927 * | 20.289 * | 15.962 * | 16.963 * |
M5 | 15.771 * | 20.404 * | 16.096 * | 17.149 * |
M6 | 17.365 * | 21.862 * | 16.506 * | 17.897 * |
Export (EXP) | ||||
M2 | 7.4547 * | 5.4087 * | 12.948 * | 5.7665 * |
M3 | 7.8080 * | 4.5381 * | 13.629 * | 6.8405 * |
M4 | 8.5657 * | 2.9154 * | 13.779 * | 7.5088 * |
M5 | 9.6666 * | 2.2312 * | 14.678 * | 8.1398 * |
M6 | 11.171 * | 2.3661 * | 14.350 * | 8.7539 * |
Import (IMP) | ||||
M2 | 11.120 * | 2.2117 * | 4.5426 * | 10.218 * |
M3 | 11.319 * | 0.2035 * | 5.5921 * | 10.619 * |
M4 | 10.667 * | −2.2163 * | 7.0517 * | 11.130 * |
M5 | 12.010 * | −3.7727 * | 7.9781 * | 11.459 * |
M6 | 14.354 * | −3.8840 * | 8.7830 * | 11.962 * |
Economic Growth (GDP) | ||||
M2 | 13.633 * | 19.866 * | 19.360 * | 18.012 * |
M3 | 13.687 * | 19.246 * | 19.271 * | 18.172 * |
M4 | 14.557 * | 18.959 * | 18.996 * | 18.140 * |
M5 | 15.641 * | 18.781 * | 19.115 * | 18.128 * |
M6 | 16.895 * | 18.676 * | 19.462 * | 18.484 * |
Countries | F-Statistic | Lower Bound 95% | Upper Bound 95% | Decision |
---|---|---|---|---|
Mexico | 5.4158 * | 3.15 | 4.43 | Co-integration |
Indonesia | 9.2748 * | 2.79 | 4.10 | Co-integration |
Nigeria | 5.1103 * | 3.15 | 4.43 | Co-integration |
Turkey | 6.5816 * | 4.29 | 5.61 | Co-integration |
Long-Run Outcomes | ||||||||
---|---|---|---|---|---|---|---|---|
Mexico | Indonesia | Nigeria | Turkey | |||||
Variables | Coefficient | T-Prob | Coefficient | T-Prob | Coefficient | T-Prob | Coefficient | T-Prob |
GDP (+) | 2.2462 | 3.2558 * | 1.0954 | 2.9222 *** | 2.4518 | 1.8935 *** | 0.5010 | 2.826 *** |
GDP (−) | −0.2295 | −0.5326 | 0.3524 | 1.5625 | −2.4599 | −0.7976 | −0.3728 | −1.3685 |
IMP (+) | 0.8622 | 2.2792 ** | 0.6844 | 4.3300 *** | 0.1239 | 3.4775 * | 0.2754 | 3.8105 * |
IMP (−) | −0.2919 | −2.0879 *** | −1.1286 | −2.6982 ** | −0.3556 | −2.1450 *** | −0.2143 | −5.8619 * |
EXP (+) | −0.4697 | −2.0086 *** | −1.0779 | −1.8283 *** | −0.2510 | −4.9991 * | −0.5025 | −8.4306 * |
EXP (−) | 0.2084 | −0.3488 | 1.3091 | 2.6699 | −0.4369 | −2.0855 *** | −0.2775 | −4.391 * |
Dummy | 0.1208 | 1.3135 | 0.2403 | 1.8558 *** | 0.2067 | 3.7366 * | 1.5934 | 1.4521 |
C | 1.1091 | 3.8893 | 2.0736 | 4.6304 | 2.1859 | 3.6451 | 2.5293 | 7.4473 |
Short-Run Outcomes | ||||||||
Variables | Coefficient | T-Prob | Coefficient | T-Prob | Coefficient | T-Prob | Coefficient | T-Prob |
GDP (+) | 0.1839 | 4.8365 ** | 3.3524 | 2.4804 ** | 2.4518 | 2.8206 ** | 0.5010 | 4.4580 * |
GDP (−) | 0.1967 | 1.1139 | 0.6844 | 2.6685 ** | −4.4599 | −2.2061 ** | −1.5934 | −1.3263 |
IMP (+) | 0.6785 | 6.152* | 1.8518 | 2.1591 *** | 3.5135 | 3.1035 * | 0.5788 | 7.4219 * |
IMP (−) | −1.2680 | −3.3445 * | −2.0203 | −5.4797 * | −0.1279 | −0.9870 | −0.2143 | −8.3428 * |
EXP (+) | −0.4697 | −9.7456 * | −1.3910 | −1.2360 | −0.1283 | −1.2173 | −0.5025 | −10.643 * |
EXP (−) | 1.2680 | 6.7677 * | 2.7024 | 5.9162 * | 0.4369 | 3.1457 ** | 0.2765 | 3.1036 ** |
ECT (−1) | −0.6193 | −7.9162 * | −0.8478 | −7.4353 * | −0.4307 | −5.3803 | −0.4793 | −4.6377 * |
C | 1.5936 | 5.9686 | 2.0736 | 4.3718 | 2.1859 | 5.4310 | 3.5293 | 4.5235 |
Mexico | Indonesia | Nigeria | Turkey | |
---|---|---|---|---|
R2 | 0.98 | 0.99 | 0.96 | 0.99 |
Adjusted R2 | 0.97 | 0.98 | 0.95 | 0.98 |
DW | 2.589 | 2.256 | 2.465 | 2.461 |
J-B Normality | 1.301 [0.521] | 1.488 [0.475] | 0.828 [0.376] | 1.488 [0.475] |
χ2 LM | 1.907 [0.185] | 2.487 [0.138] | 2.397 [0.152] | 2.470 [0.154] |
χ2 ARCH | 0.032 [0.858] | 0.007 [0.931] | 0.090 [0.755] | 0.003 [0.952] |
χ2 RESET | 0.404 [0.534] | 0.001 [0.951] | 1.001 [0.340] | 0.562 [0.491] |
CUSUM | Stable at 5% | Stable at 5% | Stable at 5% | Stable at 5% |
CUSUM of Square | Stable at 5% | Stable at 5% | Stable at 5% | Stable at 5% |
Mexico | Indonesia | |||||||
---|---|---|---|---|---|---|---|---|
Long-run | Short-run | Long-run | Short-run | |||||
Variables | Chi-square | p-value | Chi-square | p-value | Chi-square | p-value | Chi-square | p-value |
GDP | 1.212 | 0.297 | 1.068 | 0.322 | 2.005 | 0.156 | 3.233 *** | 0.0722 |
EXP | 9.560 * | 0.006 | 7.072 ** | 0.016 | 7.204 * | 0.007 | 3.917 ** | 0.0478 |
IMP | 5.994 ** | 0.031 | 4.646 ** | 0.057 | 8.613 * | 0.003 | 3.965 ** | 0.0464 |
Nigeria | Turkey | |||||||
Variables | Chi-square | p-value | Chi-square | p-value | Chi-square | p-value | Chi-square | p-value |
GDP | 0.643 | 0.449 | 0.665 | 0.430 | 2.215 | 0.154 | 2.428 | 0.145 |
EXP | 5.196 *** | 0.057 | 0.115 | 0.740 | 5.506 ** | 0.037 | 7.436 ** | 0.026 |
IMP | 8.971 ** | 0.011 | 5.806 ** | 0.047 | 6.098 ** | 0.027 | 4.448 ** | 0.049 |
Causality Movement | Wald-Stat | No of Fourier | p-Value | Decision Rule |
---|---|---|---|---|
Mexico | ||||
GDP → CCO2 | 13.239 *** | 2 | 0.066 | Reject Ho |
CCO2 → GDP | 3.449 | 2 | 0.841 | Do not Reject Ho |
EXP → CCO2 | 2.054 | 2 | 0.956 | Do not Reject Ho |
CCO2 → EXP | 31.210 * | 3 | 0.000 | Reject Ho |
IMP → CCO2 | 58.420 * | 1 | 0.000 | Reject Ho |
CCO2 → IMP | 10.562 | 3 | 0.158 | Do not Reject Ho |
Indonesia | ||||
GDP → CCO2 | 526.162 * | 2 | 0.000 | Reject Ho |
CCO2 → GDP | 29.760 * | 2 | 0.000 | Reject Ho |
EXP → CCO2 | 15.836 ** | 1 | 0.027 | Reject Ho |
CCO2 → EXP | 68.732 * | 1 | 0.000 | Reject Ho |
IMP → CCO2 | 96.003 * | 3 | 0.000 | Reject Ho |
CCO2 → IMP | 21.308 * | 3 | 0.003 | Reject Ho |
Nigeria | ||||
GDP → CCO2 | 47.668 * | 3 | 0.000 | Reject Ho |
CCO2 → GDP | 18.286 ** | 3 | 0.011 | Reject Ho |
EXP → CCO2 | 3.907 | 1 | 0.790 | Do not Reject Ho |
CCO2 → EXP | 5.237 | 2 | 0.631 | Do not Reject Ho |
IMP → CCO2 | 51.427 * | 1 | 0.000 | Reject Ho |
CCO2 → IMP | 4.094 | 1 | 0.769 | Do not Reject |
Turkey | ||||
GDP → CCO2 | 4.816 | 3 | 0.682 | Do not Reject Ho |
CCO2 → GDP | 30.531 * | 3 | 0.000 | Reject Ho |
EXP → CCO2 | 12.603 *** | 1 | 0.082 | Reject Ho |
CCO2 → EXP | 33.399 * | 1 | 0.000 | Reject Ho |
IMP → CCO2 | 21.226 * | 2 | 0.003 | Reject Ho |
CCO2 → IMP | 33.259 * | 2 | 0.000 | Reject Ho |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adebayo, T.S.; Awosusi, A.A.; Rjoub, H.; Panait, M.; Popescu, C. Asymmetric Impact of International Trade on Consumption-Based Carbon Emissions in MINT Nations. Energies 2021, 14, 6581. https://doi.org/10.3390/en14206581
Adebayo TS, Awosusi AA, Rjoub H, Panait M, Popescu C. Asymmetric Impact of International Trade on Consumption-Based Carbon Emissions in MINT Nations. Energies. 2021; 14(20):6581. https://doi.org/10.3390/en14206581
Chicago/Turabian StyleAdebayo, Tomiwa Sunday, Abraham Ayobamiji Awosusi, Husam Rjoub, Mirela Panait, and Catalin Popescu. 2021. "Asymmetric Impact of International Trade on Consumption-Based Carbon Emissions in MINT Nations" Energies 14, no. 20: 6581. https://doi.org/10.3390/en14206581
APA StyleAdebayo, T. S., Awosusi, A. A., Rjoub, H., Panait, M., & Popescu, C. (2021). Asymmetric Impact of International Trade on Consumption-Based Carbon Emissions in MINT Nations. Energies, 14(20), 6581. https://doi.org/10.3390/en14206581