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Abstract: The real-time application research on the Fuzzy Logic Systems (FLSs) and Artificial Neural
Networks (ANN) is vast and, in this paper, a technique for a photovoltaic failure analysis using
the type 2 FLS and ANN is proposed. The method is proposed to build T2 FLS with a guaranteed
value equal to or lower than T2 and ANN. Several explanations are conducted to illustrate the
effectiveness of the methodologies. It is found that both the type 2 Fuzzy and ANN can be configured
for productive actions in applications for a PV fault analysis, and choice is typically applied. The
methods discussed in this paper lay the groundwork for developing FLSs and ANNs with durable
characteristics that will be extremely useful in many functional applications. The result demonstrates
that specific fault categories can be detected using the fault identification method, such as damaged
PV modules and partial PV unit shades. The average detection performance is similar in both
ANN and fuzzy techniques. In comparison, both systems evaluated show approximately the same
performance during experiments. The architecture of the type 2 fuzzy logic system and ANN with
radial basic function, including the roles of the output port and the rules for identifying the type of
defect in the PV structure is slightly different.

Keywords: type 2 fuzzy logic systems; artificial neural network; machine learning; photovoltaic (PV)
fault detection

1. Introduction

Multiple sequences and parallel PV panels construct the PV series. PV panels have an
estimated lifespan of 20–30 years. In regions with a severe environment, solar panels are
often installed. Therefore, PV arrays can be quickly affected by environmental conditions
such as extreme humidity, strong winds, heavy rain, and harvest, that may result in decay
or harm to the soil. Long-term exposure to UV light can intensify the aging of PV materials.
PV sequence faults include short circuit breakdown, incomplete flashing, aging defect,
the lack of an open connection, arc malfunction, trouble spots, etc. The DC side of the
PV network is usually connected to conventional shielding devices, such as the Current
Protective Equipment (CPD), Generator Functions, interrupters, Arc loss circuit breakers,
etc., to avoid faults from impacting the PV network.
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Several variables, including weather conditions, partial shadowing, dust/snow buildup
on the modules, wire losses, age, or the malfunctioning of any system component, may have
an impact on the dependability of a PV system. Occasionally, problems may be unnoticed
by the operators for an extended length of time. Furthermore, it can decrease the electricity
output by 18.9 percent. Because of this, it is critical to progress. Techniques for detecting
and diagnosing the development of faults in photovoltaic (PV) systems. The Direct Current
(DC) side of a PV system may have problems, as can the Alternate Current (AC) side. It is
possible for solar PV modules, converters, the Maximum Power Point Tracking (MPPT),
and storage system on the solar array to be affected on the DC side. PV module failures are
very important since they are the generating unit of a PV system. Faults that happen to the
output power of this gadget may considerably affect the PV settings. Additionally, it has
the potential to be harmful based on its effectiveness and longevity.

However, detecting early stage faults and compensating for a broad range of faults is
difficult for current PV array protection systems. In addition, inverter MPPT technology
may also influence the efficiency of these safety products. Therefore, the electronic pho-
tovoltaic fault management device is one of the most critical problems to fix. To ensure
a maximum energy conservation and an efficient electricity output, regulators and the
frequent monitoring of grid-connected photovoltaic systems are necessary. Because of the
vast number of PV systems today, the production of diagnostic methods for identifying
malfunctions in the conduction of PV systems will improve their efficiency. The failures in
the PV network primarily involve PV, MPPT modules, DC/ AC, an inventory, and reverse
grid generators. In this analysis, the PV series are checked for errors. A modern protection
method is implemented to detect faults in photovoltaic devices. The algorithm can be used
to classify a defective PV module with a PV array, a defective PV package, a faulty MPPT
sequence, and other shading conditions. The proposed algorithm compares two different
methods for classifying failure conditions.

1. Artificial Neural Network: ANN has already been extended to specific areas, includ-
ing pattern detection, signal processing, etc. ANN is used as a fault analysis method
inside the PV array in this paper.

2. Fuzzy Logic Fault Classification Approach: Fuzzy logical systems (FLSs) are popular
for their linguistic capacity and device inconsistencies. Owing to this power, FLSs
have been successfully used for identification, model-based regulation, I/O mapping,
and feature approximation, to name some, which resulted in their usage in numerous
application modeling and control approaches such as medical science, finance and
communication, and organizational analysis. In recent years, the usage of FLSs in
modern technologies has become increasingly significant. Two forms of fuzzy control
systems are involved: Mamdani and Sugeno. Using the type 2 device improvement
schemes will improve the process efficiency.

This paper is structured as follows: Section 1 addresses the PV device failures in
the photovoltaic field. The related existing methodologies are depicted in Section 2. The
technique used for the fault identification is defined in Section 3, while the findings and
explanation for the study are in Section 4. Section 5, ultimately, summarizes the paper.

2. Related Works

Ahmadi et al. [1] concluded that a high-frequency portion analysis technique is pro-
posed to identify the serial arc fault incidence of the voltage signals obtained from the
Kalman filter. A criterion, for this reason, is described by the energy variations of the
harmonics calculated. Akram et al. [2] proposed a new method to identify defects in EL
pictures, which results in a state-of-the-art 93.02 percent of solar cell data collection in EL
photos, which the light convolutional neural network architecture implements.

Amaral and Pires [3] suggested a new detection process. It focuses on the study
of pattern detection. In this way, the PV module posing an issue in the tracker can be
identified by the many solar panels. After the pre-processing phase is implemented, the
orientation of the PV modules is calculated using the centroid of the PV cells. The angle



Energies 2021, 14, 6584 3 of 19

may be determined by mathematical moments or by the pitch of the line linking two central
cells from the PV panel. Several research cases are sent to check the approach’s efficacy.
Benkercha and Moulahoum [4] proposed a new method to identify and diagnose faults in
the GCPVS and focus on the decision tree algorithm.

Bonsignore et al. [5] presented the Photovoltaic Systems (PVS) defect detection process.
This solution is measured using a neuro-Fuzzy method to measure the parameter sets of a
PV module under different operating conditions. Chen et al. [6] identified disruption events
on the micro-distribution network, and suggest using the fractional-order dynamic-error-
based fuzzy Petri net (FPN). The conversion of photovoltaic energy relies on solar radiation
and temperature, and uses the optimum monitoring power point regulation for reliable
power generation and stress at micro-distribution lots. Only a bisection-based technique
monitors the PVECS voltage by changing the buck–boost converter job ratios when the
required peak voltage is calculated. The maximum power drops are used to identify faults
on the DC side relative to smart metering equipment. The RF-based diagnostic models
suggested take the fault features of the PV arrays which do not apply to the environment
conditions, only the real-time activity voltage and string currents (Chen et al. [7]). In order
to simplify the RF function parameters by the minimizing calculation of out-of-bag errors, a
grid-search approach is often used to enhance the process of error diagnosis. Due to the non-
linear performance characteristics and various PV arrays, various fault-diagnostic methods
centered on machine learning were suggested by Chen et al. [8]. Nevertheless, several
problems remain: the efficiency of fault diagnostics is still restricted because of inadequate
information; fault diagnostic models are not successful for training and updating; fault
data samples identified by field experiments are difficult to achieve.

Chine et al. [9] proposed the early fault identification and analysis of PV arrays
were investigated using the Random Forest (RF) learning algorithm. The problem of the
time-dependent non-linear filter induces a randomly dependent nonlinearity due to the
setting and the combination of the Bernoulli white distributed series and the Type 2 T–S
(Takagi–Sugeno) fuzzy system, with the solution of a repeated linear pattern equal by
eliminating the signal from the sensor and the neighbor. We can see that prior studies have
examined a wide range of faults in PV systems, but it seems to be more difficult to find
fault diagnostic techniques implemented on integrated circuits. This is because, according
to existing research, these methods have high costs and extensive hardware requirements.
Dhimish and Badran [10] submitted the creation of a new circuit for current limiters that
can reduce the existing flow of the mismatched PV units, such as partial shade and the
phenomena of hot spotting. The base of the suggested circuit consists, mainly, of an input
buffer that makes high input impedance pressures and the regulation of the current flow
of a built-in metal-oxide-semiconductor field-effect transistor (MOSFET). Therefore, it is
possible to monitor the quantity of the current flow through the PV sub-strings and improve
the production of output electricity. Comprehensive circuit simulations and numerous
experiments demonstrate the efficiency of the circuit. Dhimish et al. [11] designed a fault
detection algorithm for a multi-group array photovoltaic array. Various parameters are
calculated using a statistical model, including power, voltage, and current, for different
circumstances, such as solar radiation and PV temperature.

Dhimish et al. [12] showed that the PV Bypass diode should be graded based on
Mamdani’s fuses process, which focuses on analyzing the PV board’s Vdrop, Voc, and Isc
curves. The fluctuating logic scheme is based on the following three sections: the PVD, the
POCV, and the PSCC. The new fuzzy system identifies up to 13 different errors of faulty or
non-defeat bypass diodes. Fazai et al. [13] considered a machine learning combined with
the hypothesis of statistical testing for improved photovoltaic (PV) device failure detection
results. The tool developed uses the Gaussian Process Regression (GPR) methodology
as a simulation paradigm when adding a GLRT map to identify PV device failures. The
GPR-dependent generalized likelihood ratio test (GLRT) method developed is evaluated
using simulated PV data to measure the main PV (current, voltage, and power) device
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variables. In order to determine the efficiency of the solution suggested, the estimation
period, missing detection rate (MDR), and false warning rate (FAR) are computed.

Fenz et al. [14] proposed a new way of detecting arches in dc microgrids using a
streamlined sensing idea by their High-Frequency (HF) spectral pattern. Hajji et al. [15]
developed an improved PV device’s fault FDD technique. The rising FDD procedure
typically requires two essential steps: isolation, detection, and diagnosis of defects. For
multivariate statistical systems, tracking the multivariate extraction and collection of
features is quite critical. The simulation aspect can be that, and the tracking performance
can be increased. Therefore, the key component analysis (PCA) methodology is used with
the proposed FDD method to isolate and pick the most important multivariate attributes,
and the SML classifiers for error diagnosis are added to the supervised machine learning
system.

Janarthanan et al. [16] proposed a rational framework both for suggesting and for
faulty reasoning mechanisms for coping with this issue. Two laws are similar, where the
second is created by transposing one or more first rule proposals with a separate sign on
the other side of the inference. The ad hoc reasoning algorithm for the chained fluidized
method aims to take care of the check’s difficulty and decide the shooting state of chained
laws. Finally, the basic form of the thought method is used as a Petri-like net that eliminates
the difficulty of rule shooting and order selection for clustered laws. Janarthanan et al.
in [17,18] proposed the stretched propositional syntaxes and semantics, with fluctuating
reasons, to transform/re-structure both of these laws into a fitting shape (by a rejection of
and transposition of proposals from antecedent to consequent and vice versa), in order to
instantiate (refute) the positive (negative) evidence in the previous proposals in order to
render it necessary to make forward (backward) shooting clauses. For forward/backward
logic, the subsequent fused compositional law of inference is used. Therefore, if the rules
are embedded in a fuzzy network such as a framework of Petri net, the rules appear to fire
arbitrarily in the forward or backward direction while holding a topological order.

Jia et al. [19] investigated the photovoltaic system’s direct current (DC) arc loss iden-
tification. The DC arc fault in the photovoltaic device should be observed immediately
to prevent the possibility of fire being triggered by the arc breakdown in the solar power
supply. The power supply shuts down automatically until an arc loss is found. There are
several on-the-ground studies under different conditions to collect arc defect current data
from the photovoltaic system. Specific sensors measure the cable frequency, arc distance,
and results. The three most critical aspects of this paper are specific circumstances. Kim
et al. [20] presented a recent arc fault model series, for example, in order to ensure accurate
photovoltaic simulations. The concept is drawn from the different physical arc environ-
ments that contribute to particular air frequency spectrums. The model is based on pink
interference used to derive the actual noise level, which is inversely proportional to the
square frequency root on various routes in keeping with the physical condition of the arc.

Madeti and Singh [21] proposed a modern strategy for fault identification that analyzes
the abnormalities of terminal functionality and the resulting sequence of defective PV
strings. The terminal stress gap between the healthy string module and the unsafe string
module is used to diagnose faulty modules. Madeti and Singh [22] proposed a photovoltaic
(PV), k-nearest neighbors’ algorithm (kNN) rule-based fault identification, and a diagnostic
technique for the string stage is suggested. It identifies and classifies in real-time open-
circuit defects, line–line (L–L) errors, partial shading with diode defects and outputs, and
partial shading with inverted bypass diode errors. Chine et al. (2016) developed a modern
defect diagnostics technique for photovoltaic systems focused on ANN. Many parameters
such as the temperature, voltage, and the sum of current–voltage (I–V) peaks on the PV
strings are calculated with a simulation model for a particular solar and photovoltaic
(PV) defect.

Mehrizi-Sani and Teymouri [23] research proposed a strategy for using an approx-
imate malfunction prediction algorithm in real-time for the Cascaded H-bridge (CHB)-
based PV converter to robust sensor malfunctions. This method is supported by MAT-
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LAB/SIMULINK simulation studies and operating machine experiments. There is proof
that a nine-tier PV device based on CHB will work even when there is no sensor calculation.
Mekki et al. [24] in part shadowed environments, implement a fault detection system for
the photovoltaic board. This requires using an artificial neural network to predict the
photovoltaic strength and voltage production under varying operating conditions. The
calculated data were used at the REL Clean Energy Laboratory, University of Jijel, Algeria
(solar radiation, cell temperature, photovoltaic current, and voltage).

Yadav and Tummuru [25] proposed a DC microgrid protection system relying on
the DC circuit breaker activity and the failure clearance times, which rely on the circuit
breaker’s speed. Yi and Etemadi [26] present a photovoltaic (PV) array identification
scheme for a DC side short circuit error consisting of several PV panels attached to a
serial/parallel system.

One similar work (Chine, W.; Mellit, A et al 2016) by Zhao et al [27] is also inspired with
such type of approach. Zhao et al. [28] proposed that the FCM algorithm effectively defines
various forms of fault distribution characteristics, decides how a fugitive Membership
algorithm identifies the PV array operating parameters, and the benefit of the proposed
approach is that the fault data from ordinary working data may be defined without prior
knowledge. Zhu et al. [29] proposed a fault diagnostic approach: the photovoltaic array
output characteristics and electric prophecy distributors are effectively evaluated under
normal fault conditions, and (ii) device efficiency and kernel feature in fuzzy implies that
the algorithm to boost operation smoothness of the unmonitored panel for various forms.

From the above considerations, it is critical to develop techniques for detecting and
diagnosing faults in photovoltaic (PV) systems. For this reason, the authors of this article
present a fault detection method that combines artificial neural networks and fuzzy logic
to identify short-circuited modules and disconnected strings in a photovoltaic (PV) power
plant. It is critical to detect this kind of problem because it has the potential to significantly
reduce power production. However, detecting this fault type may be time-consuming,
particularly in large-scale power plants.

It is worth noting that the suggested approach is appropriate and trustworthy when
pre-existing sensors are used and that the training dataset is acquired via a simulation
rather than lengthy data from an actual PV system, which is a significant benefit of this
study. Furthermore, since the technique does not need a comparison of simulated outcomes
with observed data, it is simpler to understand and use.

However, for the kind of devices we use in the real world and the IoT, it is essential
to use hardware for diagnostic methods. IoT-enabled applications are internet-based
software that are easy to administer and keep track of. This article’s primary advantage
is introducing a simple, easy-to-implement NARX neural network-based method with a
non-linear autoregressive exogenous fuzzy inference component. The system’s algorithm
attempts to find and isolate any errors that happen in a PV system. A system forecasts a PV
system’s maximum output power using the NARX network and fuzzy inference algorithm.
This system uses the maximum output power to diagnose and classify problems in the
PV system. This method is now known to be usable on an inexpensive microcontroller.
The algorithm finds out about errors that may ruin the PV system, such as a poor MPPT,
open circuits, and short circuits. Beyond that, patterns with non-linear relations such as
radiation and temperature can be estimated.

3. Materials and Methods

The reason for identifying and representing the general fault detection algorithm of
the PV data acquisition method was to implement the artificial neural network design and
the Fuzzy logic interface method. Appendix A can be refereed to see designed algorithms.

3.1. PV Data Acquirement

The PV network is a grid-connected PV component consisting of five polycrystalline
silicon PV modules, each with a nominal capacity of 220 WP. The PV modules are linked in
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sequence. The photovoltaic string has the maximum power point tracker (MPPT) capability
of no less than 95.0%. Internal sensors for calculating current and voltage used the FLEXmax
MPPT sensor. The Vantage Pro tracking kit provided the Global Solar Radiance estimated
from the pyrometer’s weather station. An external temperature monitor from Davis
and the electric data for each photovoltaic chain were used for smoother temperature
acquisition. The way LabVIEW uses dataflow naturally lends itself to parallel computation.
If the application wants to perform more than one thing at a time, such as monitoring
a temperature limit while collecting pressure information, LabVIEW makes this simple
by putting in several parallel loops. Therefore, the proposed system uses the LabVIEW
platform. The Lab VIEW program was used for the application of PV device data collection
and tracking. The overall design of the photovoltaic network in seen in Figure 1. The
averaged measurements, obtained at 1 Hz over one minute, were measured in real time.
Electricity, voltage, and power levels were measured at one-minute intervals.
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3.2. Designing a Type 2 Fuzzy Logic Controller System

The fuzzy controller was used for producing a good response i.e., fast monitoring of
set-point shifts, brief raises, and minor over-shooting. The fuzzy controller output was
indifferent to differences in parameters. The error (e) and expected error (Ee) were all input
parameters used for this control procedure, and the output feature was the plant order (u).
The saturation blocks reduced the dynamic spectrum of these variables. The type 1 fuzzy
package was used to improve the current type 1 network as a type 2 fuzzy package version.
An FLS type 2, which uses at least one fuzzy type 2, was called by a specified FLS. Type 1
FLSs cannot specifically discuss incoherence of rules since they are other vague type 1
collections. On the other side, type 2 FLSs was useful because it was challenging to calculate
exact metric differences. Type 2 fuzzy settings minimized rule-based FLS ambiguity. Type
2 fuzzy sets were sometimes challenging to use and understand and are, thus, not popular.
Type 2 FLS was the type 2 fuzzy system in which the rule-based inference system integrates
the defuzzer with the output processor. A Form Reducer and type 2 defuzzy were used in
the output processor; it provided the type 1 fuzzy set performance (from the type reducer)
and a crisp number (from the defuzzifier). The IF-THEN law, again, defined an FLS type
2, but its background was now Type 2. FLSs Type 2 can be used where situations are too
unpredictable for precise membership grades to be calculated. We had the same features
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when implementing Type 2 FLC as that of the Type 1 FLC, so that we now used Type 2
Fuzzy sets as input and output membership settings.

Systematic and Practical Design of the Stable Fuzzy Controller

The deliberate type 2 fuzzy logic system is represented in Figure 2. For our description,
we considered the issue with the identification of a PV failure detection stabilization system.
It was necessary to evaluate the state variables and their angular distance. The actual
dynamic equation of the device, which we believe to be unknown:

N(O)
..
O + D

(
O,

.
O
) .

O + g(O ) = φ (1)
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We assumed that the exact equation was unknown to implementing the Fuzzy Lya-
punov synthesis method, and only the following limited data on implementation seem to
be available. The system may have two degrees of freedom, α and

.
α, which are referred to

as x1 and x2.
To facilitate our control design, we supposed no gravity effect in our model:

ml2 ..
o = φ (2)

Our objective was to design the rule base of a fuzzy controller that would detect the
PV fault conditions:

V(x1 , x2) = 1/2(x1̂ 2) (x2̂ 2) (3)

By differentiating V, we obtained:

.
v = x1.

.
x1+x2.

.
x2 (4)

Hence,
.
v = x1.

.
x1+x2.

.
x2 = 0 (5)

We now received appropriate requirements to sustain the state: if x1 and x2 have
opposite signs, then x1, x2 < 0 and if

.
x2 = 0; if x1 and x2 are both positive, then (5) will hold

if
.

x2 < 0 x1; if x1 and x2 are both negative, and equation (5) will hold if
.

x2 < 0 x1.
We could translate these conditions into the following fuzzy rules:

# If x1 is positive and x2 is positive, then
.

x2 must be negative big.
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# If x1 is negative and x2 is negative, then
.

x2 must be positive big.
# If x1 is positive and x2 is negative, then

.
x2 must be zero.

# If x1 is negative and x2 is positive, then
.

x2 must be zero.

However, from the information that
.

x2 is proportional to u, we could substitute x = 2
by u for the stabilizing controller to obtain a fuzzy rule base: If x1 is nice and x2 worse, then
the negative will be more. If x1 is negative and x2 is negative, u will be major positive. If x1
is positive and x2 is negative, u shall be zero. When x1 is negative and x2 is positive, then u
has to be 0. Interestingly, the fuzzy x1 partition x2 and u elegantly obeyed Expression (4).
Since

.
v =(x1 +

.
x2) ∗ x1, and because we needed V to be negative, it is customary to look

at the signs of x1 and x2; thus, the obvious fuzzy division was true, negative. When the
true, negative, for x1 and x2 in (4), the fuzzy type 2 partition, which seemed to be negative
large, zero, true large, was obtained. In order to guarantee that

.
x2 ≤ −x1

( .
x2 ≥ −x1

)
,

even though the exact magnitude of x1 is unknown, just to be optimistic (negative), we
had to set

.
x2 to negative high. Of course, a pre-defined partition for the variables could

also be applied to continue and then apply increasing value to the expression to find the
laws. However, whatever occurred first, we found that the Fuzzy Lyapunov Synthesis
transformed Lyapunov’s classical synthesis into the system with terminology from the
field of precise quantitative quantities. In order to model the linguistic terms in rules
and to determine whether to interpret the controller principle, we needed a diminishing
membership. Type 1 membership functioned for the type 1 fuzzy logic controller and
Type 2 membership functionality described the linguistic terms positive, low, firm, zero,
and heavy.

3.3. ANN Controller Implementation

Fuzzy logical controller data processing is a complex task involving high time and
power computing. Hence, ANN is also preferred. In order to mimic design and function,
ANN offers a theoretical structure for the simulation of human brain cells.

Figure 3 displays the ANN structure. The ANN type is a neural transmission network
with three layers. A backpacking algorithm and down gradient approach for weight setting
were used to reduce learning errors. ANN seems to be an easy algorithm, with quick
calculation speed, and good validation accuracy. ANN has also been used in many areas
such as pattern detection, signal processing, etc. There are usually three critical stages to
the ANN process. They, respectively, practice data processing, computer testing, and ANN
validation. The neural network is a non-linear model that is mathematically developable.
There are two levels in the form of the neural network. The first layer consists of two
neurons, and the second layer consists of a neuron. The “transigmoid” moves in the first
layer, and “pure dimensional” transfer features are in the second. For a compilation of
research datasets, sampling points were determined first. The cause mechanism during
ANN training is the tangent sigmoid process, the input–output of the nodes. The MPPT
optimization algorithm for tuning ANN and the fuse controls were interpreted for each
node under radiation.

Oj(l) =
f mj(l)− f−mj(l)
f mj(l) + f−mj(l)

(6)

where Oj(l) is the input information to node j at the k-th sampling. Input Ij(l) is given by
the weighted sum of input nodes as follows:

Ij(l)= ∑K wJK l(Ok(l)) (7)

where (Ok(l)) is the performance of j node and wJK is the connection weight of j—node k.
During preparation, the relation weights wJK were recursively calibrated to ensure the best
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match for input/output trends, based on the minimum value of the amount of the squared
error defined in Equation (8).

SSE =
k

∑
l=1

(t(l)−O(l))2 (8)

where t is the cumulative number of patterns in instruction, (t(l)) is the real lth perfor-
mance, and O(l) is the approximate number. The error feature was assessed, and the linking
weights were modified in each ANN training cycle to minimize the error represented in (8).

Energies 2021, 14, 6584 9 of 20 
 

 

 
Figure 3. Architecture of ANN. 

𝑂(𝑙) = 𝑓ೕ(𝑙) − 𝑓ିೕ(𝑙)𝑓ೕ(𝑙) + 𝑓ିೕ(𝑙) (6)

where 𝑂(𝑙) is the input information to node j at the k-th sampling. Input 𝐼(𝑙) is given 
by the weighted sum of input nodes as follows: 𝐼(𝑙)=∑ 𝑤 𝑙(𝑂(𝑙)) (7)where ൫𝑂(𝑙)൯  is the performance of 𝑗  node and 𝑤  is the connection weight of 𝑗— 𝑛𝑜𝑑𝑒 𝑘. During preparation, the relation weights 𝑤 were recursively calibrated to 
ensure the best match for input/output trends, based on the minimum value of the amount 
of the squared error defined in Equation (8). 

𝑆𝑆𝐸 = ൫𝑡(𝑙) − 𝑂(𝑙)൯ଶ
ୀଵ  (8)

where 𝑡 is the cumulative number of patterns in instruction, ൫𝑡(𝑙)൯ is the real lth perfor-
mance, and 𝑂(𝑙) is the approximate number. The error feature was assessed, and the link-
ing weights were modified in each ANN training cycle to minimize the error represented 
in (8). 

3.4. Modelling a PV Module 
A PV cell generates energy when illuminated by photons. The P–N junction is the 

core feature for photovoltaic cells and can consume solar radiation. It arises when the 
photon crosses the gap from the material section. The loads saved travel through the array 
directly as the load of the solar cell is connected to it before the light stops. The model 
consists of a current source, diode, and some resistance; Equation (9) reveals that the cur-
rent provided by the solar cell in the series resistance of 𝑅௦ was relatively small and that 
the shunt one of 𝑅௨௦ℎ was relatively high. These two resistors were not taken into con-
sideration in order to make the simulation simpler. 𝐼 = 𝐼ோೞ - 𝐼ௗ + 𝐼ோೞ (9)

3.4.1. PV System under Partial Shading Conditions and Tuning 
Using the MPPT method, whale optimization could be used to evaluate partial shad-

ing conditions in the panel. Whale optimization (WOA) (Mirjalili and Lewis [30]) is a mod-
ern strategy in optimization, since whales have specific cells similar to human brain cells. 

Figure 3. Architecture of ANN.

3.4. Modelling a PV Module

A PV cell generates energy when illuminated by photons. The P–N junction is the core
feature for photovoltaic cells and can consume solar radiation. It arises when the photon
crosses the gap from the material section. The loads saved travel through the array directly
as the load of the solar cell is connected to it before the light stops. The model consists of a
current source, diode, and some resistance; Equation (9) reveals that the current provided
by the solar cell in the series resistance of Rs was relatively small and that the shunt one of
Rush was relatively high. These two resistors were not taken into consideration in order to
make the simulation simpler.

I = IRs−Id +IRsh (9)

3.4.1. PV System under Partial Shading Conditions and Tuning

Using the MPPT method, whale optimization could be used to evaluate partial shading
conditions in the panel. Whale optimization (WOA) (Mirjalili and Lewis [30]) is a modern
strategy in optimization, since whales have specific cells similar to human brain cells. A
whale is one of the conscious species. As in other optimization methods, the approach
begins with random solutions for customized parameters (four controller parameters)
and deciding the correct objective function. In WOP, the search agents have modified the
location for any iteration, and the goal function is defined based on that change. The cycle
is replicated until most iterations respond and the best answer is processed. The flow chart
of WOA for optimal tuning of control parameters is given in Figure 4.
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WOA believes that target prey are the most effective option at the moment, since
humpback whales can detect the prey’s position and encircle it. The best search agent
is then identified, and other search agents adjust their locations to come closer to the
best search agent throughout an increasing number of iterations from the beginning to a
maximum number of iterations. The WOA method began with a collection of randomly
generated solutions to the problem. At the end of each iteration, search agents updated
their locations about either a randomly selected search agent or the best solution found
so far. For exploration and exploitation, the parameter was lowered from 2 to 0 to offer
the appropriate level of service. When |A| > 1, a random search agent was picked, and
when |A| 1, the best solution was selected for updating the position of the search agents.
When |A| 1, the best solution was selected for updating the position of the search agents.
WOA can transition between a spiral and a circular movement based on the value of p in
the equation. After that, the WOA algorithm ended by satisfying termination criteria that
were established.

The WOA method of optimization can be broken into three phases: 1—surrounding
beast whales. At first, the bumper whales know the position and then circle the beast.
First of all, WOAs estimation assumes the optimal answer as above the highest. When the
answer is the strongest, other whales seek to adjust their position in the best way possible.
The WOA algorithm was developed upon the methodology of whale hunting. A bubble net
feeding technique was named the following method. Humpback whales tend to capture
tiny fish below the surface by having a net of bubbles expand around the prey in a circular
route. The mathematical presentation of the whales surrounding prey methodology can be
defined as:

P =

∣∣∣∣∣∣−−→N ×
−−−−−−−−→
X× (T)−

→
X (T)

∣∣∣∣∣∣ (10)

X(T + 1) =
→
X × (T) −

→
A × P (11)
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where T is an iteration, is the vector,
→
A is the vector optimal solution,

→
X* is the variable,

→
X a

position variable and N is the absolute value. Until a better solution is sought, the current
solution’s location vector was modified:

→
A = 2

→
a × →

s − →
a (12)

→
N = 2 × →

s (13)

where
→
s which absolutely remained in Equations (12) and (13) was diminished in amount

from 2 to 0, which became an unspecified variable in the context of (0, 1) throughout the
testing which processing processed. This function was modified to preserve the equilibrium
between the running and research phases. Whale and prey were balanced here; whales

were allegedly fulfilling the position of each other (Mafarja and Mirjalili [31]).
→
A was used

to render the search agent push further from the reference whale with random values
greater than 1 or less than −1. The search agent status changed by a randomly chosen
search agent at the inquiry level rather than by the most robust search agency open to
it. The quest phase was manually based on the vector fluctuation. Based on one another,
humpback whales were searching blindly for the best position. For the optimal global
position, the mathematical expression can be written as follows:

P =
→
X −

→
AGrand (14)

From that, the optimal solutions were obtained, where
→
Xrand a random whale position

vector is selected from the current population. The controller’s transition function is usually
written as an Equation (15):

p(s)
e(s)

= Kp+Ki/s= Kp

(
1 +

1
ki

s
)

(15)

3.4.2. SEPIC Converter

To function in a stable condition, the SEPIC converter was needed. SEPIC was con-
sidered working in this work to achieve a stable state. The second balance inductor volt
theory was that the net inductor voltage should be negative in a single switching step at
a continuous mode of conduction and stable state. For a condenser, the total condenser
current in one switching time must be zero, according to the second-ampere balance theory.
The SEPIC simulation was implemented in MATLAB SIMULINK applications with the
State Space Reportation and is represented by Equation (16):

X′= ax + bx + c (16)

where X′ is the state variable. When the phase feedback for SEPIC was added, the response
is obtained from SEPIC. A delay period L = 0.005 s and period constants T = 0.051 s were
obtained by the phase response from the SEPIC. Drawing a tangent line at the intersection
of the phase address and evaluating the intersections of the tangent with the time axis and
the line output reaction decided the delay period and period constant. The controller’s
input and output were the faults in the output voltage and the service cycle of the power
switch S, as depicted in Table 1.

Throughout this situation, the inverter-based speed regulation of the pulse width
variation operated for a series of ‘ON to OFF’ pulses, which changed the operating duration,
the percentage of time the output voltage was ‘ON’ relative to ‘OFF’; thus, keeping a steady
frequency. Dependent on its input voltage, the PWM sensor in the inverter corrected the
pulse width of the switching pulse. It canceled the shifts in the output voltage and allowed
the inverter a constant output voltage independent of load properties.
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Table 1. Controller’s input and output.

Controller Kp Kp Td

Fuzzy T
l α 0

ANN 0.9T
l

l
0.3 0

3.5. PV Fault Detection Algorithm

• Fault detection using designed ANN

Therefore, a classification system and an ANN methodology were selected to distin-
guish defects or faults in fault detection. For that, the models were stepped as follows.

â Collection of input and output variables;
â Normalization of the dataset;
â Selection of the network connections structures;
â Preparation for the network;
â Network evaluation.

Using the MATLAB simulation tool, a collection of 775 patterns was developed.
Furthermore, 80% of the patterns were used for preparation, while 20% were used for
layout checking. In order to select the most appropriate architecture for ANN, it was going
to be tested first; both the fuzzy and ANN systems are commonly used to identify failures,
and had to be contrasted. The PV fault detection was based on the Multilayer Perceptron
(MLP) and the Radial Base Function (RBF). The MLP consists of three neurons on the input
layer, corresponding to the voltage value calculated, maximum current point (COP), and
maximum voltage point ratio. The input layer comprises three neurons. The fault class is
equated by one neuron in the output layer. The number of secret layers and the number of
neurons in each layer are determined through the training phase; the logarithmic sigmoid
method was used for moving this layer.

The Levenberge–Marquardt (LM) algorithm is a training network. Three levels of the
RBF design. The input layer has four neurons corresponding to the four-fault groups, the
output layer has four neurons, and the hidden layer includes M neurons. Each neuron
calculates a kernel function, normally a Gaussian function, defined according to its center
and distance. Both parameters were calculated by a K-means clustering algorithm, while a
pseudo-inverse process estimated weights between the center layers and the output layer.

The radial basis feature network with fuzzy was built to decide the fault that existed
in the plants. Radial-base feature networks (RBANN) represented a three-stage neural feed
network type. The weight could be calculated as represented in Equation (17):

weight_val
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= 1/(x(clu(JJ), i) + e) (17)

They had an input layer, a hidden layer, and an output layer via the transfer.

P(X) = g(||x− c||̂ 2) (18)

where ||x− c||2 is the function of distance from the specified center. The functions
on the radial basis were based on the principle of approximation. The efficiency of such
algorithms depended on the parameter choices. For convenience, the default settings were
used here. The effects of modeling neural networks explicitly relied heavily on the used
algorithm. The transfer function converts a Euclidean summation (s = 1 to L) for each
node to provide an output. This Gaussian function also had a width of ςs (s = 1 to L). The
resulting output from the kth node:

ps= exp
(
−iŝ2

σ2

)
(19)
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• Fault detection using designed Type 2 fuzzy logic system

The first is a linear ANN solution, while the second relies on the FLS method. Even
in fuzzy regression, two groups are separated. The first class minimizes the complete
vagueness of the expected performance values. The second section includes FLS methods
for the reduction in the cumulative error square of the calculated values. Here, the fuzzy
square form, which can be represented as in Equation (20):

FLS = AaFr(S−ArUl(Ti − Ta) (20)

Noise rates defined the input variables and perturbances in a PV device were defined
(diode small, lower Earth defect, upper Earth defect, partial shades). The resulting variables
were described by X, and specific values were assumed in ideal, standard, and faults
conditions. The remaining elements were the generic components and were evaluated:

RNeid,NL = Xid − XML (21)

RNid,FT = Xid − XFT (22)

where RNid,FT represents the output variables, Xid represents the fault values, XML repre-
sents the normal values, and XFT represents the fault condition values. The regular check
involved assessing the values of all parameters Nn in normal condition and Nf for each
form of defect, for each PV temperature, and irradiation value. Thus, two Euclidean real
standards could be defined:

DN=
√

∑6
I=1(RNeid,NL )̂ 2 (23)

DF=
√

∑6
I=1(RNeid,FT )̂ 2 (24)

where DN represents the number value of the standard determined by a distinction between
an ideally conditioned Neuro-Fuzzy PV model and a typical Neuro-Fuzzy PV model;
DF represents the number value measured by a distinction between an optimal Neuro-
Fuzzy PV and a faulty PV variant of the Neuro-Fuzzy PV type. By using DF, the faulty
condition could be calculated.

Two ratios were defined by using the two methods. For the categorization of the fault
domain. The following two factors were the Power Ratio (PR) and VR: (1) both can be
changed if PV fault (2) reaches zero, even if PV modules have accessible voltage, they also
have a value. They are the only ones that can be adjusted if PV faults. The power and
voltage levels display as follows:

PR =
ptheoritical
pmeasured

(25)

VR =
Vtheoritical
Vmeasured

(26)

where ptheoretical is the theory of the PV system output, pmeasured is the calculated PV chain
output strength, the PV theoretical output voltage is the PV system, Vtheoritical is the DC output
voltage of the PV chain calculated and Vmeasured is the calculated output. The controller ratio
for the analyzed PV unit was estimated at a theoretical 4% output error tolerance for internal
MPPT sensors at a conversion error rate of 97%, giving the maximum theoretical error. The
following calculations indicated the resistance of MPPT units and the amount of PV modules
in the PV sequence at a maximum and minimum power/voltage ratio.

FDMAX= ptheoritical/pmeasured ×MPPT tolerance rate (27)

This was because the fault algorithm decided whether the MPPT device had a flaw
or whether the whole PV device was entirely different from the PV array when the PR
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exceeded 50. To diagnose which form of defect in the PR area had occurred, the voltage
ratio value was taken into account. Similarly, the fuzzy logic interface and ANN rules
obtained were equivalent to 10, where the fuzzy law incorporated the same concept as the
fuzzy reasoning principle of the Mamdani. The machine design of Sugeno used a Max–Min
strategy for the deflation phase of the centroid form.

4. Result and Discussion

Findings were documented by using the fault detection algorithm. Furthermore, the
controller rules for fuzzy logic and the ANN framework explained in this section the
difference between presented machine learning strategies and other ANN systems and
fuzzy logic systems by several researchers. The laws of the fused logic system is if and
else statement. Using a case scenario shown in Table 2, the fuzzy logic device code is
implemented. However, the performance membership functions were split into five sets:
PS (0–0.2), one PV module defective (0.2–0.4), two PV modules defective (0.4–0.6), three PV
module defective (0.6–0.8), and four PV modules defective (0.8–1.0).

Table 2. Input and output membership function variable.

Input Membership Function Variable Output Membership Function Variable

VR PR
PS PS PS
1 1 1
2 2 2
3 3 3
4 4 4

The PS was used at the same levels as all PV units. During the study, the PS state was
supplemented. The majority of calculated data were represented by a third-order polyno-
mial between high and low theoretical detection limits. For this particular analysis, PR and
VR ratios were specified. Therefore, all VR and PR ratios rose marginally throughout the
test, as the PS state of the device increased. Both ratios may be calculated in addition to
ratios. The specificity of detection for the proposed algorithm is shown by (28):

Efficiency of the algorithm =
measured output power

theoretical power
(28)

DA = ((total samples-out of region samples)/total samples) (29)

Figure 5 shows the results against theoretical curve limitations. The technically high
and low limit polynomial feature of the third order was defined, and the minimum deciding
factor (R) seemed to be 99.9 %.
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As represented in Figure 6, there were four faulty PV module conditions. As a result
of one of the PV strings being removed from the PV array, the PV system generated an
open circuit fault, causing the PV system to fail, which was considered as fault one; fault
two was considered as a short circuit faults. Fault three was considered as degradation
faults in the PV system. Fault four was represented as a fault-free operation under the
PV system.
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As can be seen, the calculated data were contrasted with the theoretical curve limits
for the specific experiments. The bulk of the calculated data during the study duration
fell beyond the theoretical curves’ high and low detection limits. The DA was determined
and listed in Table 3 and Figure 6. The overall DA was 99.8 percent for Type 2 Fuzzy
and ANN, respectively. To check the efficiency of the proposed Fuzzy and ANN, it can
be compared with other existing fault detection methodologies. Akram et al. (2019)
proposed a novel CNN for fault detection in PV also, and Chen et al. (2018) proposed
a random forest algorithm for detecting the faults. Hence, when compared to the other
existing methodologies, the implemented algorithms detection accuracy was also high,
the implemented methodology outperformed the other detection mechanisms, shown in
Figure 7.

Table 3. Detection accuracy of two proposed mechanisms.

Scenario Including The Fuzzy
And ANN

Fuzzy Detection
Accuracy

(Proposed)

ANN Detection
Accuracy

(Proposed)

PS effects 6 99.5 99.4

One faulty PV
module and PS 7 99.6 99.7

Two faulty PV
module and PS 9 99.8 99.8

Three faulty PV
module and PS 5 99.4 99.5

Four faulty PV
module and PS 6 99.52 99
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Figure 7. Comparison of the detection accuracies of proposed and existing mechanisms.

An Artificial Neural Network (ANN) and a fuzzy logic system interface for the
detection of defects in photovoltaic (PV) systems were created. It should be noted, however,
that both machine learning methods performed poorly on the PV system that was utilized
for the performance analysis (1.1 kWp). If we compared the output of the fuzzy logic
systems (all examined faults were correctly detected) to ANN, ANN’s maximum detection
accuracy of 99.27% was obtained for the fourth ANN structure, which contained two
inputs and nine outputs and used two hidden layers, and the output of the fuzzy logic
systems was accurate 99.18% (all examined faults were correctly detected). Therefore, it
was concluded that the ANN structure was slightly better than the Fuzzy Logic.

The input membership functions of the fuzzy logic system could become much more
complex if the investigated PV installation had a large number of PV modules (more than
100 PV modules), since each PV module has the potential to influence the total input
membership function. To test the technique, all the faulty simulated faulty scenarios
were used, with 2779 experimental samples. The three faulty cases’ accuracy was just
98.27 percent. This experimental circumstance was made evident by the strange weather
circumstances, which included episodes of inconsistent irradiance. In the 0, 1, 8, and
9 faulty instances, which delivered 100% accuracy, it was found that a greater precision
was present. Of course, we discovered every flaw we studied using the tools’ findings—the
short-circuited fault detection accuracy of 99.28% using the suggested technique. We could
see that the output power decreased if we isolated one string.

Our tests revealed that the MPP’s power output did not rise proportionally with the
irradiance, demonstrating a design defect.

We extracted the data allowed for the verification of the suggested fault detection
technique. We also tried using a truncating method in conjunction with ANN for system
two. The algorithm was to blame for taking the ANN output and highlighting how
many unconnected strings there were on the system. The proposed technique is to be
used with any PV plant and does not require the use of large datasets from previously
installed systems. The input variables were the amount of irradiance, the temperature of
the environment, and the power at the maximum power point. The output of ANN was fed
into a Sugeno-type fuzzy logic classifier, which determined, with pinpoint accuracy, how
many short-circuited PV modules were present on a particular PV array. System 1 revealed
a fantastic accuracy of 99.28 percent, which was a great achievement. In this particular
instance, the collected findings demonstrated an accuracy of 99.43 percent. As a result of
these results, we were able to infer that the suggested approach, which combined artificial
neural networks and fuzzy logic systems, was accurate for identifying short-circuited PV
modules and unconnected strings. Furthermore, it is worth noting that the suggested
technique did not require the installation of any additional sensors beyond those already
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in place on a big PV power plant, and that it can be used with any PV system. As a result,
it is simpler to put the suggested approach into practice.

5. Conclusions

The research suggested a new RBFANN with a complex type 2 fuzzy fault detection
algorithm. The defect detection algorithm was suggested that recognizes disordered PV
modules and PS conditions affecting PV systems. A 1.1 kW PV system was evaluated using
the fault recognition algorithm. When the VR vs. PR calculated was below the measurement
threshold, the fuzzy and RBFANN system samples were evaluated by the last layer. This
research predominantly focused on failure prediction that relied on voltage and PV device
control variations. For fault detection on PV systems, this article offers a dependable and
simple technique that may be used to identify short-circuited PV modules, as well as a
string disconnection. It consists of two machine learning algorithms, which work together.
The first was an artificial neural network, while the second was a fuzzy logic inference
system. This particular ANN is a multilayer feedforward neural network, and the training
procedure was carried out with the assistance of a simulated dataset. The technique may
now be used with any PV plant as a result of this, and it also does not need lengthy datasets
from previously installed systems. The input variables were the amount of irradiance, the
temperature of the environment, and the power at the maximum power point. The output
of ANN was fed into a Sugeno-type fuzzy logic classifier, which determined, with pinpoint
accuracy, how many short-circuited PV modules were present on a particular PV array. The
number of modules analyzed and the voltage and current sensor uncertainties in certain
PR and VR calculations were included. A fuzzy and ANN classification method were also
available using PV fault detection algorithms, and, accordingly, a simple, precise, and fast
classification framework can be used again using specific PV systems implemented in the
study. The findings suggested that much of the calculated data were sensed inside the
fault detection algorithm’s theoretical limits specified by polynomial third-order functions.
The precision of the calculation was, therefore, achieved by identifying faults. In future
extension of this work, it is suggested to enhance the detection and diagnostic capability of
large-scale systems via experimental and real-time monitoring.
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Appendix A

Pseudocode (Fuzzy fault detection)
Input: Gate-level circuit and a variables list
Output: Fault detection result

1: Repeat {
2: Select a variable from the list
3: Assessment of the variable
4: Replace the variable
5: Redefine Xid, XML, XFT
6: }
7: Run to find the faulty condition
8: If (found) {
9: Run fuzzy simulator to verify and select patterns to detect the faulty conditions
10: Return {test variables, vectors}
11: }
12: Else
13: Return (if no faults)
14: } Until repeat up when all faults to be checked

Pseudocode (ANN fault detection)
Input: PV Data
Output: Fault detection result

1: Begin
2: Obtain the training set
3: Normalize the training data
4: Calculate the weight of the training samples using Equation (17)
5: Combining the parameters
6: For=1 to n
7: Train Gaussian values
8: End for
9: While i>n and i< end do
10: ps= key metric data
11: Fault detection using (19)
12: i++/;
13: End while
14: End
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