Selective Identification and Localization of Voltage Fluctuation Sources in Power Grids
Abstract
:1. Introduction
2. Algorithm for Selective Identification and Localization of Voltage Fluctuation Sources
3. Selected Configurations of Low-Voltage Networks
4. Verification of the Algorithm for Selective Identification and Localization of Voltage Fluctuation Sources
- identification of a “slow” voltage fluctuation source (changing its operating state with a frequency lower than the power frequency) and a “fast” voltage fluctuation source (changing its operating state with a frequency greater than the power frequency), which are supplied from the same supply point or a separate supply point;
- identification of two “slow” sources of voltage fluctuation, which are supplied from the same supply point or a separate supply point;
- identification of a “slow” source of voltage fluctuation and a “fast” source of voltage fluctuation, which result in a flicker of the same frequency and are supplied from a separate supply point.
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AM | Amplitude modulation. |
EEWT | Enhanced empirical wavelet transform. |
u(t) | Instantaneous values of voltage. |
e(t) | Instantaneous values of sinusoidal (undistorted) nominal supply voltage. |
Power frequency (50 or 60)—nominal voltage frequency (carrier frequency). | |
Estimated fundamental frequency of i-th modulating signal component in period of discrimination. | |
Estimated j-th amplitude of i-th modulating signal component in period of discrimination. | |
Mean of estimated amplitudes of i-th modulating signal component in period of discrimination (excluding outliers). | |
N | Number of voltage modulating signal components obtained using EEWT. |
l | Distance from power station. |
Distance from power station of supply point of i-th disturbing load. | |
Short-term flicker indicator. | |
i-th supply point of loads in the power grid. | |
Line impedance per unit length. | |
Load impedance at time t. | |
Load admittance at time t. | |
The maximum change in rms value of voltage in the period of discrimination. | |
LV | Low voltage. |
MV | Medium voltage. |
S | Cable/overhead line cross-section. |
R | Cable/overhead line resistance of the length . |
X | Cable/overhead line reactance of the length . |
Z | Cable/overhead line impedance of the length . |
SCP | Short-circuit power. |
SSR | Solid-state relay. |
References
- 6th CEER Benchmarking Report on all the Quality of Electricity and Gas Supply 2016. 2016. Available online: https://www.ceer.eu/ (accessed on 1 September 2021).
- Voltage Fluctuation. International Electrotechnical Commission Standard IEV Number 161-08-05. 2003. Available online: http://std.iec.ch/iec60050 (accessed on 1 September 2021).
- Mindykowski, J.; Tarasiuk, T. Problems of power quality in the wake of ship technology development. Ocean Eng. 2015, 107, 108–117. [Google Scholar] [CrossRef]
- Ghaseminezhad, M.; Doroudi, A.; S.H. Hosseinian, A.J. Analysis of voltage fluctuation impact on induction motors by an innovative equivalent circuit considering the speed changes. IET Gen. Transm. Distrib. 2017, 11, 512–519. [Google Scholar] [CrossRef]
- Jhala, K.; Natarajan, B.; Pahwa, A. The Dominant Influencer of Voltage Fluctuation for Power Distribution System. IEEE Trans. Power Syst. 2019. [Google Scholar] [CrossRef]
- Geiger, D.L.; Halpin, S.M. Flicker Limit Compliance Assessment in the Presence of Background Disturbances. IEEE Trans. Power Deliv. 2018, 33, 3028–3035. [Google Scholar] [CrossRef]
- Otomanski, P.; Wiczynski, G.; Zajac, B. Flicker Vision of Selected Light Sources. Meas. Sci. Rev. 2017, 17, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Geiger II, D.L.; Halpin, S.M. Assessing Voltage Fluctuations and Lamp Flicker Using RMS Voltages. IEEE Trans. Power Deliv. 2017, 32, 2481–2488. [Google Scholar] [CrossRef]
- Putz, L.; Bednarek, K.; Nawrowski, R. Disturbances Generated by Lighting Systems with LED Lamps and the Reduction in Their Impacts. Appl. Sci. 2019, 9, 4894. [Google Scholar] [CrossRef] [Green Version]
- Petrinska, I.; Ivanov, D. Estimation of Flicker of Contemporary LED Lamps and Luminaires. In Proceedings of the 2019 11th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 11–14 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Petrinska, I.; Ivanov, D.; Pavlov, D.; Kassev, K. Photometric Flicker of LED Luminaires According to Driver Type. In Proceedings of the 2020 21st International Symposium on Electrical Apparatus Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Alam, M.R.; Bai, F.; Yan, R.; Saha, T.K. Classification and Visualization of Power Quality Disturbance-Events using Space Vector Ellipse in Complex Plane. IEEE Trans. Power Deliv. 2020. [Google Scholar] [CrossRef]
- Maksic, M.; Papic, I.; Blazic, B. Simple Continuous Assessment of Transmission-Network Flicker Levels Caused by Multiple Sources. IEEE Trans. Power Deliv. 2016, 31, 2546–2552. [Google Scholar] [CrossRef]
- Bastos, A.F.; Santoso, S. Universal Waveshape-Based Disturbance Detection in Power Quality Data Using Similarity Metrics. IEEE Trans. Power Deliv. 2020, 35, 1779–1787. [Google Scholar] [CrossRef]
- Hanzelka, Z.; Chmielowiec, K.; Firlit, A.; Swiatek, B. New challenges for voltage quality studies. Prz. Elektrotechniczny 2013, 89, 17–25. [Google Scholar]
- Wiczynski, G. Voltage-Fluctuation-Based Identification of Noxious Loads in Power Network. IEEE Trans. Instrum. Meas. 2009, 58, 2893–2898. [Google Scholar] [CrossRef]
- Wiczynski, G. Determining location of voltage fluctuation source in radial power grid. Electr. Power Syst. Res. 2020, 180. [Google Scholar] [CrossRef]
- Kuwalek, P. Trace of Flicker Sources by Using Non-Parametric Statistical Analysis of Voltage Changes. In Proceedings of the 2020 19th International Conference on Harmonics and Quality of Power (ICHQP), Dubai, United Arab Emirates, 6–7 July 2020; pp. 1–6. [Google Scholar]
- Eghtedarpour, N.; Farjah, E.; Khayatian, A. Intelligent identification of flicker source in distribution systems. IET Gener. Transm. Dis. 2010, 4, 1016–1027. [Google Scholar] [CrossRef]
- Dejamkhooy, A.; Dastfan, A.; Ahmadyfard, A. Source detection and propagation of equal frequency voltage flicker in nonradial power system. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 1351–1370. [Google Scholar] [CrossRef]
- Axelberg, P.G.V.; Bollen, M.H.J.; Gu, I.Y. Trace of Flicker Sources by Using the Quantity of Flicker Power. IEEE Trans. Power Deliv. 2008, 23, 465–471. [Google Scholar] [CrossRef]
- Senderovich, G.A.; Diachenko, A.V. A method for determining location of voltage fluctuations source in electric grid. Electr. Eng. Electromechan. 2016, 58–61. [Google Scholar] [CrossRef]
- Feola, L.; Langella, R.; Papic, I.; Testa, A. Selective Interharmonic Compensation to Improve Statcom Performance for Light Flicker Mitigation. IEEE Trans. Power Deliv. 2018, 33, 2442–2451. [Google Scholar] [CrossRef]
- Hanzelka, Z. Single Point Methods for Location of Electromagnetic Disturbances in Power System. Prz. Elektrotechniczny 2015, 91, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hanzelka, Z.; Slupski, P.; Piatek, K.; Warecki, J.; Zielinski, M. Single Point Methods for Location of Distortion, Unbalance, Voltage Fluctuation and Dips Sources in a Power System. In Power Quality; Zobaa, A., Canteli, M., Bansal, R., Eds.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Wilkosz, K. Single point measurement localization of prevailing harmonic sources in a power system. In Proceedings of the 2012 11th International Conference on Environment and Electrical Engineering, Venice, Italy, 18–25 May2012; pp. 1–6. [Google Scholar]
- Inamdar, J.J.; Annapoorani, K.I. A Review of Methods Employed to Identify Flicker Producing Sources. Telkomnika Telecommun. Comput. Electron. Control 2018, 16, 465–480. [Google Scholar]
- Górecki, K.; Szmajda, M.; Mroczka, J. The methodology of source disturbances detection on an electroprecipitator example. In Proceedings of the 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal, 17–19 October 2011; pp. 1–6. [Google Scholar]
- Wiczynski, G. Sectional Approximation of the Flickermeter Transformation Characteristic for a Sinusoidal Modulating Signal. IEEE Trans. Instrum. Meas. 2008, 57, 2355–2363. [Google Scholar] [CrossRef]
- Wiczynski, G. Simple Model of Flickermeter Signal Chain for Deformed Modulating Signals. IEEE Trans. Power Deliv. 2008, 23, 1743–1748. [Google Scholar] [CrossRef]
- Karawia, H.; Mahmoud, M.; Sami, M. Flicker in distribution networks due to photovoltaic systems. CIRED—Open Access Proc. J. 2017, 2017, 647–649. [Google Scholar] [CrossRef]
- Alizade, A.; Noshahr, J. Evaluating noise and DC offset due to inter-harmonics and supra-harmonics caused by back-to-back converter of (DFIG) in AC distribution network. CIRED—Open Access Proc. J. 2017, 2017, 629–632. [Google Scholar] [CrossRef]
- Shi, X.; Key, T.; Huque, A. Can Photovoltaic Plants Cause Voltage Flicker?—Field Measurement and Screening. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 1549–1555. [Google Scholar] [CrossRef]
- Faranadia, A.H.; Omar, A.M.; Noor, S.Z. Voltage flicker assessment of 15.3kWp grid connected photovoltaic systems. In Proceedings of the 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 4–5 August 2017; pp. 110–115. [Google Scholar] [CrossRef]
- Kus, V.; Peroutka, Z.; Drabek, P. Non-characteristic harmonics and interharmonics of power electronic converters. In Proceedings of the CIRED 2005—18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2005; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kuwalek, P. AM Modulation Signal Estimation Allowing Further Research on Sources of Voltage Fluctuations. IEEE Trans. Ind. Electron. 2020, 67, 6937–6945. [Google Scholar] [CrossRef]
- Kuwalek, P. Estimation of Parameters Associated with Individual Sources of Voltage Fluctuations. IEEE Trans. Power Deliv. 2021, 36, 351–361. [Google Scholar] [CrossRef]
- Kuwalek, P. The Application of Kernel Density Estimation for Aided the Process of Locating Sources of Voltage Fluctuations. Prz. Elektrotechniczny 2019, 95, 70–74. [Google Scholar] [CrossRef]
- Duda, K.; Bien, A.; Szyper, M.; Zielinski, T. Analysis of voltage disturbances caused by simultaneous amplitude and phase modulation in electric power network. In Proceedings of the 2004 11th International Conference on Harmonics and Quality of Power (IEEE Cat. No. 04EX951), Lake Placid, NY, USA, 12–15 September 2004; pp. 199–204. [Google Scholar] [CrossRef]
- Polish Power System PSE. Distribution of Hourly Frequency Deviations—Report for 2017. Available online: https://www.pse.pl/ (accessed on 1 September 2021).
- Flickermeter—Functional and Design Specifications; International Electrotechnical Commission Standard IEC 61000-4-15:2010; International Electrotechnical Commission: Geneva, Switzerland, 2010.
- Wiczynski, G. Estimation of Pst indicator value for a simultaneous influence of two disturbing loads. Elect. Power Syst. Res. 2017, 147, 97–104. [Google Scholar] [CrossRef]
- Kuwalek, P. Increase of Diagnostic Capabilities of Voltage Fluctuation Indicies. In Proceedings of the 2020 19th International Conference on Harmonics and Quality of Power (ICHQP), Dubai, United Arab Emirates, 6–7 July 2020; pp. 1–6. [Google Scholar]
- Kuwalek, P.; Jesko, W. Recreation of Voltage Fluctuation Using Basic Parameters Measured in the Power Grid. J. Electr. Eng. Technol. 2020, 15, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Wiczynski, G. Analysis of Voltage Fluctuations in Power Networks. IEEE Trans. Instrum. Meas. 2008, 57, 2655–2664. [Google Scholar] [CrossRef]
- Chmielowiec, K.; Wiczynski, G.; Rodziewicz, T.; Firlit, A.; Dutka, M.; Piatek, K. Location of power quality disturbances sources using aggregated data from energy meters. In Proceedings of the 2020 12th International Conference and Exhibition on Electrical Power Quality and Utilisation- (EPQU), Cracow, Poland, 14–15 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
Parameter | SCP | Type | (m) | S () | R (m) | X (m) | Z (m) |
---|---|---|---|---|---|---|---|
Power System | 80 MVA | - | - | - | 0.0 | 2.2 | 2.2 |
Transformer | 315 kVA | - | - | - | 9.2 | 21.5 | 23.3 |
Section I | - | Cable line—Al | 200 | 120 | 51.0 | 13.4 | 52.7 |
Section II | - | Overhead line—Al | 200 | 70 | 87.4 | 66.0 | 109.5 |
Section III | - | Overhead line—Al | 200 | 50 | 122.7 | 66.0 | 139.4 |
Section IV | - | Cable line—Cu | 25 | 10 | 45.8 | 2.0 | 45.8 |
Parameter | SCP | Type | (m) | S () | R (m) | X (m) | Z (m) |
---|---|---|---|---|---|---|---|
Power System | 200 MVA | - | - | - | 0.0 | 0.9 | 0.9 |
Transformer | 630 kVA | - | - | - | 3.8 | 10.8 | 11.4 |
Section I | - | Cable line—Al | 200 | 240 | 25.6 | 13.2 | 28.8 |
Section II | - | Cable line—Al | 200 | 120 | 51.0 | 13.4 | 52.7 |
Section III | - | Cable line—Al | 200 | 120 | 51.0 | 13.4 | 52.7 |
Section IV | - | Cable line—Cu | 25 | 25 | 28.8 | 1.9 | 28.8 |
Parameter | SCP | Type | (m) | S () | R (m) | X (m) | Z (m) |
---|---|---|---|---|---|---|---|
Power System | 60 MVA | - | - | - | 0.0 | 2.9 | 2.9 |
Transformer | 100 kVA | - | - | - | 35.2 | 62.7 | 71.9 |
Section I | - | Overhead line—Al | 200 | 70 | 87.4 | 66.0 | 109.5 |
Section II | - | Overhead line—Al | 200 | 50 | 122.7 | 66.0 | 139.4 |
Section III | - | Overhead line—Al | 200 | 35 | 175.3 | 66.0 | 187.3 |
Section IV | - | Cable line—Al | 25 | 16 | 47.0 | 1.9 | 47.0 |
Parameter | SCP | Type | (m) | S () | R (m) | X (m) | Z (m) |
---|---|---|---|---|---|---|---|
Power System | 200 MVA | - | - | - | 0.0 | 0.9 | 0.9 |
Transformer | 630 kVA | - | - | - | 3.8 | 10.8 | 11.4 |
Section I | - | Overhead line—Al | 300 | 70 | 150.0 | 31.4 | 153.3 |
Section II | - | Overhead line—Al | 250 | 50 | 150.0 | 31.4 | 153.3 |
Section III | - | Overhead line—Al | 100 | 35 | 100.0 | 69.1 | 121.6 |
Section IV | - | Cable line—Al | 50 | 16 | 50.0 | 2.1 | 50.0 |
Section V | - | Overhead line— Al | 100 | 35 | 100.0 | 69.1 | 121.6 |
Section VI | - | Cable line—Al | 50 | 16 | 50.0 | 2.1 | 50.0 |
Case No. | Disturbing Load | |||
---|---|---|---|---|
3 kW Convection Heating System with SSR TRIAC Control System | 2 kW Convection-Radiation Heating System with SSR MOSFET Control System | |||
Rate of Change in Operating State (Hz) | Point of Disturbance Sources Supply on Line 1–4 | Rate of Change in Operating State (Hz) | Point of Disturbance Sources Supply on Line 1–3 (Line 4) | |
I | 0.5 | 100.5 | () | |
II | 0.5 | 91.2 | () | |
III | 0.5 | 8.8 | () | |
IV | 0.5 | 91.2 | () | |
V | 0.5 | 8.8 | () |
Case No. | Distancefrom the Power Station l (m) | Modulating Signal Components Associated with Individual Disturbing Load | (–) | (V) | |||
---|---|---|---|---|---|---|---|
(t) | (t) | ||||||
(Hz) | (–) | (Hz) | (–) | ||||
I | 0 | 0.5 | 0.000 | 99.5 | 0.000 | 0.12 | 0.3 |
300 | 0.5 | 0.003 | 100.5 | 0.002 | 0.73 | 1.6 | |
550 | 0.5 | 0.008 | 100.5 | 0.005 | 1.95 | 4.3 | |
650 | 0.5 | 0.014 | 100.5 | 0.005 | 3.62 | 7.3 | |
700 | 0.5 | 0.014 | 100.5 | 0.005 | 3.62 | 7.3 | |
II | 0 | 0.5 | 0.000 | 91.2 | 0.000 | 0.23 | 0.4 |
300 | 0.5 | 0.003 | 91.2 | 0.002 | 1.18 | 2.2 | |
550 | 0.5 | 0.008 | 91.2 | 0.005 | 3.26 | 6.0 | |
650 | 0.5 | 0.014 | 91.2 | 0.005 | 4.58 | 9.6 | |
700 | 0.5 | 0.014 | 91.2 | 0.005 | 4.58 | 9.6 | |
III | 0 | 0.5 | 0.000 | 8.8 * | 0.000 | 0.16 | 0.2 |
300 | 0.5 | 0.003 | 8.8 | 0.002 | 1.75 | 2.3 | |
550 | 0.5 | 0.007 | 8.8 | 0.005 | 4.56 | 6.0 | |
650 | 0.5 | 0.014 | 8.8 | 0.005 | 5.56 | 9.0 | |
700 | 0.5 | 0.014 | 8.8 | 0.005 | 5.56 | 9.0 | |
IV | 0 | 0.5 | 0.000 | 91.2 | 0.000 | 0.18 | 0.3 |
300 | 0.5 | 0.003 | 91.2 | 0.002 | 1.14 | 2.1 | |
550 | 0.5 | 0.007 | 91.2 | 0.005 | 3.16 | 5.9 | |
650 | 0.5 | 0.014 | 91.2 | 0.009 | 5.97 | 11.2 | |
700 | 0.5 | 0.014 | 91.2 | 0.009 | 5.97 | 11.2 | |
V | 0 | 0.5 | 0.000 | 8.8 * | 0.000 | 0.16 | 0.2 |
300 | 0.5 | 0.003 | 8.8 | 0.002 | 1.73 | 2.3 | |
550 | 0.5 | 0.007 | 8.8 | 0.005 | 4.50 | 5.9 | |
650 | 0.5 | 0.014 | 8.8 | 0.010 | 8.43 | 10.9 | |
700 | 0.5 | 0.014 | 8.8 | 0.010 | 8.43 | 10.9 |
Case No. | Distancefrom the Power Station l (m) | Modulating Signal Components Associated with Individual Disturbing Load | (–) | (V) | |||
---|---|---|---|---|---|---|---|
(t) | (t) | ||||||
(Hz) | (–) | (Hz) | (–) | ||||
0 | 0.5 | 0.000 | 100.5 | 0.000 | 0.10 | 0.2 | |
200 | 0.5 | 0.002 | 100.5 | 0.001 | 0.42 | 1.0 | |
I | 400 | 0.5 | 0.004 | 100.5 | 0.002 | 1.07 | 2.5 |
600 | 0.5 | 0.007 | 100.5 | 0.002 | 1.74 | 3.8 | |
625 | 0.5 | 0.007 | 100.5 | 0.002 | 1.74 | 3.8 | |
0 | 0.5 | 0.000 | 91.2 | 0.000 | 0.18 | 0.3 | |
200 | 0.5 | 0.001 | 91.2 | 0.001 | 0.77 | 1.5 | |
II | 400 | 0.5 | 0.004 | 91.2 | 0.002 | 1.80 | 3.4 |
600 | 0.5 | 0.007 | 91.2 | 0.002 | 2.32 | 4.8 | |
625 | 0.5 | 0.007 | 91.2 | 0.002 | 2.32 | 4.8 | |
0 | 0.5 | 0.000 | 8.8 * | 0.000 | 0.07 | 0.1 | |
200 | 0.5 | 0.001 | 8.8 | 0.001 | 0.88 | 1.2 | |
III | 400 | 0.5 | 0.004 | 8.8 | 0.003 | 2.50 | 3.3 |
600 | 0.5 | 0.007 | 8.8 | 0.003 | 2.90 | 4.6 | |
625 | 0.5 | 0.007 | 8.8 | 0.003 | 2.90 | 4.6 | |
0 | 0.5 | 0.000 | 91.2 | 0.000 | 0.16 | 0.2 | |
200 | 0.5 | 0.001 | 91.2 | 0.001 | 0.73 | 1.4 | |
IV | 400 | 0.5 | 0.004 | 91.2 | 0.002 | 1.76 | 3.3 |
600 | 0.5 | 0.007 | 91.2 | 0.004 | 2.83 | 5.4 | |
625 | 0.5 | 0.007 | 91.2 | 0.004 | 2.83 | 5.4 | |
0 | 0.5 | 0.000 | 8.8 * | 0.000 | 0.07 | 0.1 | |
200 | 0.5 | 0.001 | 8.8 | 0.001 | 0.88 | 1.2 | |
V | 400 | 0.5 | 0.004 | 8.8 | 0.003 | 2.50 | 3.3 |
600 | 0.5 | 0.007 | 8.8 | 0.003 | 2.90 | 4.6 | |
625 | 0.5 | 0.007 | 8.8 | 0.003 | 2.90 | 4.6 |
Case No. | Distancefrom the Power Station l (m) | Modulating Signal Components Associated with Individual Disturbing Load | (–) | (V) | |||
---|---|---|---|---|---|---|---|
(t) | (t) | ||||||
(Hz) | (–) | (Hz) | (–) | ||||
I | 0 | 0.5 | 0.001 | 100.5 | 0.001 | 0.28 | 0.7 |
200 | 0.5 | 0.006 | 100.5 | 0.004 | 1.46 | 3.2 | |
400 | 0.5 | 0.012 | 100.5 | 0.008 | 3.15 | 6.9 | |
600 | 0.5 | 0.021 | 100.5 | 0.008 | 5.63 | 11.1 | |
625 | 0.5 | 0.021 | 100.5 | 0.008 | 5.63 | 11.1 | |
II | 0 | 0.5 | 0.001 | 91.2 | 0.001 | 0.58 | 1.1 |
200 | 0.5 | 0.005 | 91.2 | 0.004 | 2.56 | 4.7 | |
400 | 0.5 | 0.012 | 91.2 | 0.008 | 5.29 | 9.7 | |
600 | 0.5 | 0.021 | 91.2 | 0.008 | 7.21 | 14.4 | |
625 | 0.5 | 0.021 | 91.2 | 0.008 | 7.21 | 14.4 | |
III | 0 | 0.5 | 0.001 | 8.8 | 0.001 | 0.59 | 0.8 |
200 | 0.5 | 0.005 | 8.8 | 0.004 | 3.36 | 4.4 | |
400 | 0.5 | 0.011 | 8.8 | 0.008 | 7.27 | 9.4 | |
600 | 0.5 | 0.021 | 8.8 | 0.008 | 8.67 | 13.6 | |
625 | 0.5 | 0.021 | 8.8 | 0.008 | 8.67 | 13.6 | |
IV | 0 | 0.5 | 0.001 | 91.2 | 0.001 | 0.54 | 1.0 |
200 | 0.5 | 0.005 | 91.2 | 0.004 | 2.49 | 4.7 | |
400 | 0.5 | 0.012 | 91.2 | 0.008 | 5.21 | 9.6 | |
600 | 0.5 | 0.021 | 91.2 | 0.014 | 9.09 | 16.5 | |
625 | 0.5 | 0.021 | 91.2 | 0.014 | 9.09 | 16.5 | |
V | 0 | 0.5 | 0.001 | 8.8 | 0.001 | 0.59 | 0.8 |
200 | 0.5 | 0.005 | 8.8 | 0.004 | 3.29 | 4.3 | |
400 | 0.5 | 0.001 | 8.8 | 0.008 | 7.12 | 9.2 | |
600 | 0.5 | 0.021 | 8.8 | 0.014 | 12.70 | 16.2 | |
625 | 0.5 | 0.021 | 8.8 | 0.014 | 12.70 | 16.2 |
Case No. | Distancefrom the Power Station l (m) | Modulating Signal Components Associated with Individual Disturbing Load | (–) | (V) | |||
---|---|---|---|---|---|---|---|
(t) | (t) | ||||||
(Hz) | (–) | (Hz) | (–) | ||||
I | 0 | 0.5 | 0.000 (0.000) | 100.5 | 0.000 (0.001) | 0.03 (0.28) | 0.1 (0.6) |
300 | 0.5 | 0.008 (0.009) | 100.5 | 0.004 (0.004) | 2.23 (2.36) | 5.4 (5.1) | |
550 | 0.5 | 0.018 (0.017) | 100.5 | 0.009 (0.008) | 4.52 (4.55) | 10.8 (10.0) | |
650 | 0.5 | 0.018 (0.017) | 100.5 | 0.012 (0.013) | 4.74 (4.77) | 11.6 (11.5) | |
700 | 0.5 | 0.018 (0.017) | 100.5 | 0.012 (0.013) | 4.74 (4.74) | 11.6 (12.1) | |
650 | 0.5 | 0.022 (0.023) | 100.5 | 0.009 (0.008) | 5.95 (6.30) | 13.9 (14.8) | |
700 | 0.5 | 0.022 (0.023) | 100.5 | 0.009 (0.008) | 5.95 (6.32) | 13.9 (13.6) | |
II | 0 | 0.5 | 0.000 (0.001) | 91.2 | 0.000 (0.001) | 0.09 (0.38) | 0.1 (0.8) |
300 | 0.5 | 0.007 (0.009) | 91.2 | 0.004 (0.005) | 3.34 (3.35) | 7.0 (6.9) | |
550 | 0.5 | 0.015 (0.017) | 91.2 | 0.009 (0.009) | 6.76 (6.47) | 13.9 (14.3) | |
650 | 0.5 | 0.015 (0.017) | 91.2 | 0.012 (0.013) | 8.31 (8.13) | 16.0 (17.1) | |
700 | 0.5 | 0.015 (0.017) | 91.2 | 0.012 (0.013) | 8.31 (8.08) | 16.0 (16.0) | |
650 | 0.5 | 0.022 (0.024) | 91.2 | 0.009 (0.009) | 7.91 (7.83) | 16.8 (17.3) | |
700 | 0.5 | 0.022 (0.024) | 91.2 | 0.009 (0.009) | 7.91 (7.85) | 16.8 (18.1) | |
III | 0 | 0.5 | 0.000 (0.001) | 8.8 | 0.000 (0.000) | 0.07 (0.59) | 0.1 (0.9) |
300 | 0.5 | 0.007 (0.009) | 8.8 | 0.005 (0.006) | 4.89 (5.53) | 7.9 (7.4) | |
550 | 0.5 | 0.015 (0.017) | 8.8 | 0.011 (0.012) | 9.90 (10.57) | 15.7 (14.1) | |
650 | 0.5 | 0.015 (0.017) | 8.8 | 0.013 (0.017) | 12.59 (14.0) | 18.0 (16.4) | |
700 | 0.5 | 0.015 (0.017) | 8.8 | 0.013 (0.017) | 12.59 (14.0) | 18.0 (16.0) | |
650 | 0.5 | 0.022 (0.023) | 8.8 | 0.011 (0.012) | 10.76 (11.51) | 18.7 (11.5) | |
700 | 0.5 | 0.022 (0.023) | 8.8 | 0.011 (0.012) | 10.76 (11.51) | 18.7 (11.5) | |
IV | 0 | 0.5 | 0.000 (0.000) | 91.2 | 0.000 (0.001) | 0.08 (0.38) | 0.1 (0.9) |
300 | 0.5 | 0.007 (0.009) | 91.2 | 0.004 (0.004) | 3.32 (3.33) | 7.0 (7.1) | |
550 | 0.5 | 0.015 (0.017) | 91.2 | 0.009 (0.009) | 6.72 (6.43) | 13.8 (12.8) | |
650 | 0.5 | 0.020 (0.023) | 91.2 | 0.012 (0.013) | 8.98 (9.09) | 18.1 (18.7) | |
700 | 0.5 | 0.020 (0.022) | 91.2 | 0.012 (0.013) | 8.97 (9.07) | 18.1 (19.5) | |
650 | 0.5 | 0.015 (0.016) | 91.2 | 0.009 (0.009) | 7.01 (6.49) | 14.4 (13.8) | |
700 | 0.5 | 0.015 (0.016) | 91.2 | 0.009 (0.009) | 7.01 (6.51) | 14.4 (13.8) | |
V | 0 | 0.5 | 0.000 (0.001) | 8.8 | 0.000 (0.001) | 0.07 (0.59) | 0.1 (0.9) |
300 | 0.5 | 0.007 (0.009) | 8.8 | 0.005 (0.006) | 4.86 (5.47) | 7.9 (7.5) | |
550 | 0.5 | 0.015 (0.017) | 8.8 | 0.010 (0.012) | 9.83 (10.46) | 15.6 (14.2) | |
650 | 0.5 | 0.020 (0.023) | 8.8 | 0.014 (0.017) | 13.10 (14.67) | 20.3 (19.0) | |
700 | 0.5 | 0.020 (0.023) | 8.8 | 0.014 (0.017) | 13.10 (14.61) | 20.3 (20.0) | |
650 | 0.5 | 0.015 (0.017) | 8.8 | 0.010 (0.012) | 10.04 (10.47) | 16.2 (14.9) | |
700 | 0.5 | 0.015 (0.017) | 8.8 | 0.010 (0.012) | 10.04 (10.48) | 16.2 (14.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuwałek, P. Selective Identification and Localization of Voltage Fluctuation Sources in Power Grids. Energies 2021, 14, 6585. https://doi.org/10.3390/en14206585
Kuwałek P. Selective Identification and Localization of Voltage Fluctuation Sources in Power Grids. Energies. 2021; 14(20):6585. https://doi.org/10.3390/en14206585
Chicago/Turabian StyleKuwałek, Piotr. 2021. "Selective Identification and Localization of Voltage Fluctuation Sources in Power Grids" Energies 14, no. 20: 6585. https://doi.org/10.3390/en14206585
APA StyleKuwałek, P. (2021). Selective Identification and Localization of Voltage Fluctuation Sources in Power Grids. Energies, 14(20), 6585. https://doi.org/10.3390/en14206585