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Abstract: Recent studies have demonstrated that ammonia is an emerging energy vector for the
distribution of hydrogen from stranded sources. However, there are still many unknown parameters
that need to be understood before ammonia can be a substantial substitute in fuelling current power
generation systems. Therefore, current attempts have mainly utilised ammonia as a substitute for
natural gas (mainly composed of methane) to mitigate the carbon footprint of the latter. Co-firing of
ammonia/methane is likely to occur in the transition of replacing carbonaceous fuels with zero-carbo
options. Hence, a better understanding of the combustion performance, flame features, and radical
formation of ammonia/methane blends is required to address the challenges that these fuel combi-
nations will bring. This study involves an experimental approach in combination with numerical
modelling to elucidate the changes in radical formation across ammonia/methane flames at various
concentrations. Radicals such as OH*, CH*, NH*, and NH2* are characterised via chemiluminescence
whilst OH, CH, NH, and NH2 are described via RANS κ-ω SST complex chemistry modelling. The
results show a clear progression of radicals across flames, with higher ammonia fraction blends
showing flames with more retreated shape distribution of CH* and NH* radicals in combination with
more spread distribution of OH*. Simultaneously, equivalence ratio is a key parameter in defining
the flame features, especially for production of NH2*. Since NH2* distribution is dependent on
the equivalence ratio, CFD modelling was conducted at a constant equivalence ratio to enable the
comparison between different blends. The results denote the good qualitative resemblance between
models and chemiluminescence experiments, whilst it was recognised that for ammonia/methane
blends the combined use of OH, CH, and NH2 radicals is essential for defining the heat release rate
of these flames.

Keywords: ammonia; hydrogen; combustion; methane; radicals; chemiluminescence; CFD

1. Introduction

Ammonia has received considerable attention due to its potential to decarbonise power
generation systems at land, sea, and air. Ammonia’s characteristics (e.g., being in a liquid
state at −33 ◦C under atmospheric pressure, or ~0.8 MPa at atmospheric temperature [1]),
its hydrogen content [2], and the extensive and mature infrastructure that exists worldwide
make it a good candidate for these applications [3]. Currently, comparisons with other
fuels have shown that ammonia’s versatility can enable its use for combustion or in fuel
cell devices [4], potentially delivering greater hydrogen quantities than other options (i.e.,
liquid organic hydrogen carriers, LOHC) at lower costs. Similarly, life cycle analyses
denote how ammonia-fuelled systems present great potential to deliver green, sustainable
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stranded hydrogen [5–7] whilst reducing greenhouse emissions in support of the reduction
in large carbon footprint scenarios.

However, there are remaining technical challenges before ammonia can be used for
large scale power generation. Toxicity, corrosivity, and large production of nitrogen oxides
(NOx) seem to be the greatest of the current barriers for full deployment of the molecule as
an energy vector. Furthermore, poor flame stability complicates the use of this molecule as
a replacement for fossil fuel.

Interestingly, detailed reports [8,9] show that ammonia is a chemical that can be easier
to handle than other options (such as LPG) when fuelling transportation devices, whilst the
chemical’s lower diffusivity can also be beneficial when compared with pure hydrogen in
the context of leakages [10]. Further analyses also show that ammonia’s ignition probability
in collision is considerably lower than most hydrocarbons [11]. However, it is agreed
that ammonia is highly toxic for aquatic life [12] and that it has impacts on human health
more in relation to corrosive-dehydrating processes through the respiratory tract [13]. This
is a considerable problem under confined conditions that do not necessarily need to be
employed for large power generation concepts. In terms of corrosion of materials, removal
of copper-based components with advanced coating can alleviate this barrier.

However, emissions (especially nitrogen oxides), pollution (particle formation), and
flame stability pose a more fundamental issue. For this reason, considerable research
is underway to understand the reaction mechanism of ammonia blends. Work ranges
from micro generation to large scale production [14], and in terms of gas turbines, con-
siderable work has been progressing since the resurrection of the concept in Japan [15].
Pure ammonia blends, despite being more difficult to burn, have been successfully used
for medium-size applications [16,17], whilst ammonia/hydrogen blends have provided
results with potential for reduction in emissions, improved flame stability, and enhanced
operability range [18]. The addition of other agents, such as steam, may also play a role in
mitigating emissions via the production of O, H, and OH radical pools under rich condi-
tions to further bring down NOx [19]. Injection strategies in combination with new cycles
have also elucidated the complexity of hydrogen–nitrogen–oxygen reactions that can be
manipulated to enhance stability whilst avoiding the production of large concentrations
of NOx emissions [20,21]. Similarly, considerable effort has been dedicated to the use of
ammonia/methane or other hydrocarbon combinations for co-firing. Although methane
is the base of natural gas, ammonia is intended as a decarbonising co-firing agent that
ensures a pronounced reduction in CO2 emissions whilst enabling minimum retrofitting
in current units, thus making ammonia/methane blends crucial for the progression of
the technology at industrial scale. Initial work on the use of units capable of utilising am-
monia/methane blends stem from initial ammonia/kerosene studies [22] that progressed
to methane/ammonia experimental campaigns in a 50 kW power unit [23,24]. Results
denoted the intrinsic instability of using two fuels with different reaction characteristics.
Furthermore, research advanced towards the use of various blends at various equiva-
lence ratios have shown a reduced operability range at low Reynolds numbers with a
unitary swirl number, a dynamic process that at higher ammonia concentrations would
improve through a sudden change of combustion dynamics [25]. Simultaneously, other
studies with ammonia/methane showed that the region of 1.05–1.20 equivalence ratio
would be the best for operation of these blends, as the production of NO decreases due
to the excess in ammonia and amidogen radicals (which recombine with NO produced
downstream). Under these rich conditions, CO production can still be controlled through
post-combustion [23,26,27]. Recent studies also suggest the formation of soot whilst high-
lighting the need for a better understanding between fuel–nitrogen interactions [28]. These
works have been accompanied by novel kinetic modelling [29] and comparisons between
models in which complex 3D numerical rigs were made [30]. Further research has also
assessed new methods and geometries employed at various scales and optimised for
ammonia combustion, from micro-combustors [31] to large power systems [32,33].
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Novel and ingenious advances have been proposed for the application of these funda-
mentals in the use of ammonia/methane blends for robust engine designs [34]. However,
there are still many unknown parameters in the use of these blends, and further research is
needed to acknowledge the impacts of replacing fuels, especially with ammonia/methane
blends. Therefore, the present work intended to characterise various ammonia/methane
blends and to describe how the changes in flame, radical formation, and stability can
affect swirling burners—the most deployed technology for fluid stabilization in gas tur-
bines. This research focused on the recognition of flame modes, thus informing developers
on how a change in blend composition can impact the flame, whilst providing data for
retrofitting purposes.

2. Methods

A tangential swirl burner was employed at 8 kW power and 1.05 swirl, as shown
by Figure 1. The unit was fed using Bronkhorst mass flow controllers that enabled a
precision of 0.5% within the 15–95% range of the mass flow rate. The unit was fed using
hydrogen, ammonia, and methane, as detailed in Table 1. Various conditions were assessed
to determine the impact of equivalence ratio on temperature, emissions, spectroscopy, and
radical formation.
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Figure 1. Tangential combustor with measuring techniques and control systems.

Table 1. Experimental and numerical (*) boundary conditions.

Parameter Value Parameter Value

Blends CH4/NH3 (vol%) 20/80, 40/60, 60/40 Quartz Temperature 1185, 1177, 1190 K
Mixing Fully pre-mixed Burner section Symmetry (120◦)

Equivalence Ratios (Φ) 0.8, 1.0 *, 1.2 Swirler walls Adiabatic
Power 8 kW Ignition Temperature 3000 K

Inlet Temperature 300 K Turbulence 10%
Inlet Pressure 0.11 MPa Walls No-slip

Outlet Pressure 0.10 MPa Method Segregated Flow
Swirl 1.05 Mechanisms Okafor
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Sections of the velocity flow field were measured through laser doppler anemometry
(LDA) using Dantec Dynamics Flowlite optical systems and processors in conjunction with
Windows Software Package-BSA Flow Software. For the section of interest, a 1000-point
grid was used with 1 mm horizontal interval and 1mm vertical interval. For every mea-
surement point, the tracer particles used for seeding the fluid i.e., aluminium oxide, were
maintained at 10,000, which is above the minimum accuracy threshold count of 2000 [35].

Experiments were conducted at atmospheric pressure and inlet temperature. A pair
of LaVision CCD cameras were employed to obtain chemiluminescence traces of various
species. The units were triggered simultaneously at a frequency of 10 Hz and a gain
of 85%. Various Edmond filters were used for each species—namely, OH* (310 nm),
CH* (420 nm), NH* (336 nm), and NH2* (630 nm). LaVision Davis v12 was used to gather
500 frames per flame, which were then post-processed using a MATLAB script designed
to conduct Abel deconvolution averaging. Temperature profiles were obtained via K
and R type thermocouples plugged into an RS data logger that was directly linked to a
computer. The thermocouples were previously calibrated showing an average error of 3%.
These temperature readings were used as boundary conditions in the CFD simulations.
Nitrogen oxides (NO) and carbon monoxide (CO) emissions were measured using a
bespoke Emerson CT5100 Quantum Cascade Laser analyser at a frequency of 1 Hz, a
repeatability of ±1%, 0.999 linearity, and sampling temperature of up to 190 ◦C. A heated
sampling line at 160 ◦C was employed to avoid condensation. These emissions were used
for validation purposes between experiments and models.

All chemiluminescence images were standardised through conversion to greyscale.
Using a custom script demonstrated by previous studies [23], the background was removed
from the image and the CoG was then calculated through extracting the pixel intensity, I(i,j)
and position positions (i,j). The CoG, further defined in other studies [36], is given by

CoG =

[
∑i,j i · I(i, j)

∑i,j I(i, j)
,

∑i,j j · I(i, j)

∑i,j I(i, j)

]
(1)

After calculating the CoG with respect to every pixel in the image, the resulting value
is the pixel location of the intensity-weighted centre of the flame.

A Reynolds averaged Navier–Stokes (RANS) simulation with a finite rate chemistry
was conducted using Star-CCM+ v20.1.3 software. Chemistry was described through
Okafor’s reduced reaction mechanism (42 species and 130 reactions), validated by laminar
burning velocity of ammonia/methane mixtures. The κ-ω SST model is utilised for its
superior performance for boundary layers under adverse pressure gradients, hence being
especially suitable for tangential swirling flows [37,38]. Second-order discretization was
employed for convection of segregated flows, whilst curvature correction was applied to
the turbulence model to account for the effects of streamline curvature on the evolution
of turbulent quantities. For the resolution of combustion, reacting species transport was
employed in combination with Eddy Dissipation combustion modelling An eight-core
workstation reduced computational time through parallel processing. CFD simulations
were only performed on the stoichiometric (ϕ = 1) cases.

Combustion analyses were validated using emission results from the experimental
campaigns. A computational grid consisting of 4.1 million cells and representing one-third
of the burner section was used to represent the entire geometry, as shown in Figure 2,
with periodic interface boundaries used to replicate the rotational symmetry of the burner.
Through local mesh refinement techniques, the mesh was refined downstream of the burner
at the nozzle at the edges of the CRZ and shearing flow formation regions [39]. Preliminary
characterisation was conducted for a mesh independency analysis, comparing a coarse grid
of ~3.1 million cells, a medium grid of 4.1 million cells, and a fine grid of 7.5 million cells.
The intermediate mesh demonstrated similar results to the fine mesh, even at 2/3s of the
time for resolution, while residuals were maintained below 10-4 for the solved simulation.
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Initial calculations were compared with isothermal experiments in order to determine
whether the hydrodynamics of the systems were in accord with those of the numerical
model. The results, Figure 3, show evidence of good accuracy between the model and
experiments, with the same trends, peak values, and shearing flow location. Therefore,
having confidence in the hydrodynamics of the flow, the study progressed into the use of
combustion for evaluation of the reduced mechanism. Results, given by Figure 4, show
adequate correlation between species (CO, CO2, and NH3; NO was not possible to validate
since its values were out of range of the emissions analyser during the experimental
campaign). It is notorious that CO and CO2 are higher in the CFD simulations than in the
experiments for the cases 40/60 and 60/40 (methane/ammonia). It is believed that this is
a consequence of the heterogeneous temperature of the confinement, which would need
very detailed temperature profiles in the simulations, in combination with the impact of
complex structures and surface reactions that RANS modelling cannot account for. These
effects have considerable impact on the emissions, as explored elsewhere [40], making
the topic an active area of research. However, ammonia is well predicted, whilst CO and
CO2 are determined at similar orders of magnitude. Hence, there was a sufficient level of
confidence for using these simulations for further analyses.
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3. Results

Changes in flame profile were analysed for the various blends described in Table 1.
Chemiluminescence data were gathered for CH*, OH*, NH*, and NH2* species (Figure 5).
However, the results show great variety of changes between species. Hence, the results
were analysed further using CoG characterisation (Figure 6). It is shown how the change in
methane/ammonia concentration affects the flame position and radical production. Start-
ing with CH*, it is clear that the increase in methane concentration pushes the production
of the radical to outer regions, a trend that is also evident with NH* and OH*. As would be
expected, stoichiometric and lean conditions would lead to more spread and wider OH
radical formation compared with rich conditions where most OH* is localised within the
inner core of the flame as a consequence of oxygen depletion at upper, farther away layers.
Similarly, NH production, which is heavily correlated with the presence of OH radicals in
ammonia flames, follows a similar trend to OH*. However, the scenario changes for CH
formation, where the CH* radicals show wider spread under lean conditions compared
with rich or stoichiometric cases. The result reveals the greater tendency of methane to
react better in the presence of more oxygen content, as expected, thus producing more CH
radicals under these conditions. It is emphasized that the correlation values in Figure 6
can be improved by adding more samples to the analysis. This is currently under scrutiny
by this research group. However, there are clear insights into some prominent trends, as
expressed above.
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NH2* acts contrary to those scenarios, which not only seems better correlated with
equivalence ratio instead of blend type but also appears to be produced at higher levels
under stoichiometric conditions, widening further away from the flame zone and at lower
locations under rich and lean conditions, respectively. It was initially predicted that NH2*
would follow a similar trend to that of NH*, especially since the latter is a product of
NH2+OH→ NH + O/H/H2O reactions. However, the results show that NH2 undergoes
further reactions with other species. Moreover, this species is more concentrated within the
inner regions of the flame under rich conditions, whilst leaner cases denote a wider, less
concentrated distribution of the radical.

The previous results were correlated with flame and radical profiles using CFD mod-
elling, given by Figures 7–9. This part of the study only focused on stoichiometric (ϕ = 1)
conditions. Figure 7 confirms that the increase in methane in the blend leads to higher
temperatures, an expected outcome product of the higher reactivity of methane. This is
also accompanied by a shorter flame that shrinks due to the consumption of reactants as
a consequence of higher reaction temperatures and faster flames [23]. Interestingly, the
trend follows the distribution of OH*, CH*, and NH* (Figure 6), with a more intense flame
moving towards the far-right location of the system. Simultaneously, mean NH2 mole
fraction, Figure 8, is considerably enhanced for the high ammonia blends, also an expected
trend. However, the distribution of NH2 across the highest ammonia blend (i.e., 20/80)
is less consistent with its counterparts at lower ammonia fractions, potentially a result of
the lower reactivity of ammonia and wider spread flames. Therefore, although amidogen
(NH2) is highly abundant in the 20/80 case, its concentration across the flame front is
well-defined only at higher methane contents with less flipping along the flame brush. It
must be emphasized that the higher NH2 concentration remains in the interior part of the
flame, a region that is in close contact with recirculation zones and hot products. This
region, closer to the centre of the field, also follows similar trends to the NH2* findings in
Figure 6, with a profile close to the far left of the diagram.

Mean OH mole fraction was also obtained to determine the progression of this species
across the flow field. Figure 9 shows how the increase in methane fraction enhances the
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concentration of OH radicals, spreading their appearance across the field. Interestingly,
the lower concentration of OH in high ammonia blends is also accompanied by high NH2
concentration, shown by Figure 8. OH results denote the low concentration of the species at
the far-right of the field at high ammonia concentrations (20/80), whilst OH concentration
at higher methane spreads across the field, shifting the centre of gravity of the radical
to the right, in accord with Figure 6. Although chemiluminescence measurements of
OH*, CH*, NH*, and NH2* are not equal to ground base species location, there exists a
correlation between both molecules that can be employed for further understanding of
these flames [41]. Hence, it can be said that chemiluminescence results and CoG analyses
were able to qualitatively follow the distribution of major species in ammonia-based flames.
The finding can be exploited for fast improvement in design methodologies and higher
control in radical interaction.
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In parallel, the CFD results gave support for the definition of an adequate methane/
ammonia blend that can be employed for high temperature profiles with elevated rad-
ical formation (which can be used for DeNOxing applications or higher combustion ef-
ficiencies [42]). It must be noticed that mole fractions of NH2 and OH at 40/60 (vol%)
methane/ammonia conditions are extremely high in comparison with the 20/80 and the
60/40 cases, respectively. Simultaneously, temperatures in the 40/60 condition remain
above 2000 K, thus elucidating a mixture that not only is capable of high radical formation
to enhance emissions reduction in the post-combustion zone [43] but also can provide
elevated temperatures useful for engine applications.

Further analysis of the CFD results showed more intrinsic interactions between rad-
icals and other parameters. A point of interest is the heat release rate (HRR) generated
by these radicals and their reactions. Instantaneous results, Figure 10, demonstrate that
the highest HRR values are achieved at higher methane content. Simultaneously, the
level of heat release at high ammonia concentration is just slightly lower compared with
the former.
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Most studies that employ methane-based flames for tracing thermoacoustic insta-
bilities use OH and CH as markers for heat release, as these two radicals have a direct
relationship to the heat release that affects flow fluctuations in the field. Within a com-
bustor, the method of determining these instabilities is using the flame transfer function
(FTF), which is correlated with heat release and flow fluctuations through the following
equation: 109

Q′
Q

= FTF
U′
U

(2)

where Q′ represents instantaneous heat release, U′ represents instantaneous velocity in the
combustor, and Q and U represent their mean values accordingly. Non linearities in the
combustion zone are known to be triggered by this heat release oscillation [44], which can
be in phase with the dynamic pressure of the combustion system, energising the acoustic
field and vice versa.

In the case of high ammonia content (20/80), the CH traces are considerably low
(Figure 11). Hence, the high HRR observed in Figure 10 should be related to OH. However,
this also contradicts the findings in Figure 9, where the whole field is saturated by hydroxyl
(OH) radicals. Thus, the correlation [NH2]*[OH] was explored (Figure 12). The results
demonstrate that it is the combination of amidogen and hydroxyl radicals that shows an
almost identical, high intensity profile to that of HRR observed in Figure 10. These findings
lead to the conclusion that HRR needs to be addressed, evaluating both CH, OH, and NH2
when ammonia flames are characterised.
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4. Conclusions

Experimental and numerical studies were conducted on a variety of methane/ammonia
blends. The use of methane/ammonia at different concentrations was explored separately
in other works. However, the comparison of various blends in swirling flows through
flame characteristics, radical formation, and complex numerical modelling was attempted
for the first time in this research. Results show that:

• Chemiluminescence imaging of OH*, CH*, NH*, and NH2* radicals in these flames
denotes complex evolution of species that can be better understood using centre of
gravity (CoG) assessments;

• The presence of NH2* follows different trends to CH*, NH*, and OH*. NH2* tends to
concentrate at the core of the flame under rich conditions, whilst lean conditions show
a wider distribution towards the end of the flame zone;

• A blend of 40/60 (vol%) methane/ammonia shows the best potential for use in
combustion applications, with the formation of large pools of radicals that can be
employed for second-stage combustion. Additionally, the temperatures are sufficiently
high for these blends to be employed as a substitute for fossil fuels;

• Heat release rates (HRR) need to be addressed in methane/ammonia blends using not
only OH and CH signatures but also NH2, as the combination of these three molecules
shows to be more in line with the high HRR produced by ammonia blends.
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