Chemically Influenced Self-Preservation Kinetics of CH4 Hydrates below the Sub-Zero Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup and Materials
2.2. Procedure and Data Processing
3. Results
3.1. Constant Ramping Experiments
3.2. The Onset of the Dissociation Temperature (Td)
3.3. Induction Time
3.4. Total Gas Uptake above 0 °C
3.5. Self-Preservation Kinetics at T < 0 °C
3.6. Practical Implications
4. Conclusions
- At T > 0 °C, histidine showed a weaker promotion ability compared to methionine. Promotion ability improved slightly by increasing the pressure or concentration. Optimal gas uptake for methionine was observed at a concentration of 3000–10,000 ppm. The difference in hydrophobicity of the amino acids did not affect the dissociation temperature of the hydrate, and the change in dissociation temperature was independent of the change in concentration;
- The ability to promote CH4 hydrate in the presence of amino acids depends on concentration, reactor design, degree of mechanical agitation, and temperature. The influence of these parameters on the promotion ability is more evident for hydrophilic amino acids;
- The CH4 hydrate promotion abilities in the presence of histidine improved dramatically when the temperature dropped below 0 °C. L-methionine promoted the growth of CH4 hydrate even with a lower driving force than histidine. Maximum gas uptake was measured at concentrations between 3000 and 10,000 ppm;
- The dissociation temperature of the CH4 hydrate was independent of the type or concentration of amino acids;
- The ability of CH4 hydrate to self-preserve is affected by the presence of amino acids and their concentration. An increase in amino acid concentration increases the metastability of CH4 hydrate. Hydrophobic amino acids showed better metastability compared to hydrophilic amino acids. The effect of amino acids on metastability was more evident at a concentration of 10,000 ppm or greater.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
PCH4 (bar) | Teq (°C) | To (Water) (Fresh) | To (Water) (Memory) |
---|---|---|---|
120 | 14.4 | 13.0 | 13.2 |
100 | 12.9 | 10.5 (90 bar) | 10.8 (90 bar) |
80 | 10.9 | 8.4 (70 bar) | 8.6 (70 bar) |
60 | 8.2 | 5.4 (50 bar) | 5.5 (50 bar) |
P = 120 bar | P = 100 bar | |||
---|---|---|---|---|
Histidine (ppm) | T0 (°C) | ME | T0 (°C) | ME |
100 | 10.7 | 0.4 | 11.4 | 0.9 |
1000 | 12.2 | 2.7 | 11.2 | 1.8 |
3000 | 12.3 | - | 11.3 | - |
10,000 | 11.7 | - | 11.5 | 0.9 |
20,000 | 12.4 | 0.4 | 11.2 | 2.7 |
MSE | 0.23 | 0.01 |
P = 100 bar | P = 80 bar | P = 60 bar | ||||
---|---|---|---|---|---|---|
Methionine (ppm) | T0 (°C) | ME | T0 (°C) | ME | T011 (°C) | ME |
100 | 11.1 | 0.9 | 9.3 | 0.4 | 6.6 | 0.4 |
1000 | 11.2 | 0.9 | 9.3 | 0.9 | 6.5 | 0.4 |
3000 | 11.0 | 2.2 | 9.3 | 0.9 | 6.9 | 0.0 |
10,000 | 10.8 | 4.0 | 9.1 | 1.3 | 6.6 | 0.4 |
20,000 | 10.7 | 0.0 | 9.1 | 0.0 | 6.5 | 0.9 |
MSE | 0.01 | 0.002 | 0.02 |
Chemical Type | Methionine | Histidine | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Concentration (in ppm) | 100 bar | ME | 80 bar | ME | 60 bar | ME | 120 bar | ME | 100 bar | ME |
100 | 13.1 | 0 | 11.1 | 0.9 | 8.4 | 0 | 14.7 | 0 | 13.1 | 0.4 |
1000 | 13.2 | 0 | 11.1 | 0 | 8.3 | 0 | 14.6 | 0 | 13.2 | 1.8 |
3000 | 13.1 | 0.4 | 10.9 | 0.4 | 8.4 | 0.45 | 14.6 | 0 | 13.1 | 0.9 |
10,000 | 13.1 | 0.4 | 11.0 | 0.4 | 8.4 | 0.45 | 14.6 | 0.4 | 13.1 | 0.4 |
20,000 | 13.0 | 0.4 | 10.9 | 0.4 | 8.2 | 0 | 14.5 | 0 | 13.0 | 0.4 |
MSE | 0.002 | 0.005 | 0.005 | 0.001 | 0.002 |
Chemicals | L-histidine | L-methionine | ||||||
---|---|---|---|---|---|---|---|---|
P = 120 bar | P= 100 | P = 80 bar | P = 60 bar | |||||
Concentrations (ppm) | Fresh | Memory | Fresh | Memory | Fresh | Memory | Fresh | Memory |
100 | NH | NH | NH | NH | NH | NH | NH | NH |
1000 | NH | NH | 4.5 | 7.8 | 4.3 | 8.0 | 5.5 | 12.3 |
3000 | 174 | NH | 2.8 | 6.0 | 2.8 | 6.5 | 4.0 | 8.0 |
10,000 | 142 | 114 | 1.3 | 4.0 | 1.8 | 4.0 | 2.8 | 4.3 |
20,000 | 6.5 | 12 | <1 | <1.1 | <1.5 | <1.6 | <2.5 | <2.6 |
Fresh Run | Memory Run | |||
---|---|---|---|---|
nCH4(H) | ∆P | nCH4(H) | ∆P | |
P1 = 100 bar | ||||
100 | 0.014 | 6.9 | 0.009 | 4.6 |
1000 | 0.011 | 5.6 | 0.008 | 4.3 |
3000 | 0.014 | 6.9 | 0.011 | 5.5 |
10,000 | 0.011 | 5.6 | 0.008 | 4.1 |
20,000 | 0.012 | 6.1 | 0.011 | 5.4 |
MSE | 0.0000086 | 1.4 | 0.00000152 | 0.28 |
P1 = 120 bar | ||||
100 | 0.014 | 6.8 | 0.010 | 4.8 |
1000 | 0.011 | 5.4 | 0.009 | 4.4 |
3000 | 0.033 | 16.6 | 0.010 | 4.8 |
10,000 | 0.043 | 21.5 | 0.048 | 23.9 |
20,000 | 0.042 | 20.9 | 0.020 | 10.1 |
MSE | 0.00031 | 7.9 | 0.00015 | 37.5 |
Fresh | Memory | |||||
---|---|---|---|---|---|---|
ΔnCH4(H) (mol) | ME | ∆P | ΔnCH4(H) (mol) | ME | ∆P | |
P1 = 60 bar | ||||||
100 | 0.015 | 0.002 | 8.8 | 0.009 | 0.001 | 5.5 |
1000 | 0.052 | 0.004 | 31.7 | 0.045 | 0.004 | 28.0 |
3000 | 0.053 | 0.003 | 32.3 | 0.046 | 0.005 | 28.6 |
10,000 | 0.050 | 0.008 | 30.4 | 0.044 | 0.000 | 27.0 |
20,000 | 0.052 | 0.003 | 31.7 | 0.045 | 0.004 | 28.0 |
MSE | 0.00011 | 43.4 | 0.00065 | 41.8 | ||
P1 = 80 bar | ||||||
100 | 0.014 | 0.001 | 7.4 | 0.008 | 0.004 | 4.5 |
1000 | 0.072 | 0.003 | 41.3 | 0.041 | 0.038 | 22.6 |
3000 | 0.071 | 0.008 | 40.3 | 0.066 | 0.001 | 38.0 |
10,000 | 0.064 | 0.001 | 35.8 | 0.059 | 0.009 | 33.6 |
20,000 * | 0.063 | - | 35.1 | 0.054 | - | 30.7 |
MSE | 0.0003 | 107.1 | 0.00147 | 59.12 | ||
P1 = 100 bar | ||||||
100 | 0.012 | 0.002 | 6.2 | 0.007 | 0.004 | 3.3 |
1000 | 0.072 | 0.014 | 37.6 | 0.064 | 0.024 | 33.9 |
3000 | 0.069 | 0.001 | 36.3 | 0.065 | 0.007 | 34.5 |
10,000 | 0.065 | 0.000 | 33.9 | 0.060 | 0.008 | 31.5 |
20,000 * | 0.063 | - | 32.8 | 0.056 | - | 29.1 |
MSE | 0.0013 | 80.0 | 0.00124 | 89.3 |
100 bar | 120 bar | |||||||
---|---|---|---|---|---|---|---|---|
Conc (ppm) | ΔnCH4(H) | ΔnCH4(Hb) | ΔnCH4(R) | R | ΔnCH4(H) | ΔnCH4(Hb) | ΔnCH4(R) | R |
100 | 0.009 | 0.018 | 0.010 | 58% | 0.010 | 0.015 | 0.013 | 89% |
1000 | 0.008 | 0.056 | 0.031 | 56% | 0.009 | 0.027 | 0.021 | 78% |
3000 | 0.011 | 0.057 | 0.022 | 38% | 0.010 | 0.058 | 0.014 | 24% |
10,000 | 0.008 | 0.048 | 0.017 | 36% | 0.048 | 0.119 | 0.028 | 23% |
20,000 | 0.011 | 0.045 | 0.006 | 13% | 0.020 | 0.048 | 0.005 | 10% |
MSE | 0.00000152 | 0.000158 | 0.000068 | 0.000151 | 0.000835 | 0.000059 |
T > 0 °C | T < 0 °C | T < 0 °C | |||
---|---|---|---|---|---|
Pressure | Concentration | ΔnCH4(H) | ΔnCH4(Hb) | ΔnCH4(Re) | R |
60 bar | 100 | 0.009 | 0.019 | 0.003 | 13% |
1000 | 0.045 | 0.056 | 0.017 | 30% | |
3000 | 0.045 | 0.057 | 0.012 | 21% | |
10,000 | 0.044 | 0.053 | 0.007 | 12% | |
20,000 | 0.045 | 0.049 | 0.002 | 3% | |
MSE | 0.000104 | 0.000136 | 0.0000289 | ||
80 bar | 100 | 0.009 | 0.012 | 0.002 | 17% |
1000 | 0.035 | 0.064 | 0.034 | 53% | |
3000 | 0.066 | 0.067 | 0.022 | 34% | |
10,000 | 0.058 | 0.058 | 0.009 | 15% | |
20,000 | 0.054 | 0.055 | 0.003 | 6% | |
MSE | 0.00016 | 0.00084 | 0.00014 | ||
100 bar | 100 | 0.006 | 0.008 | 0.003 | 34% |
1000 | 0.060 | 0.060 | 0.034 | 56% | |
3000 | 0.064 | 0.066 | 0.028 | 42% | |
10,000 | 0.059 | 0.059 | 0.011 | 19% | |
20,000 | 0.056 | 0.056 | 0.004 | 7% | |
MSE | 0.000273 | 0.00085 | 0.000192 |
Pressure | Concentration | ΔnCH4(Hb) | ME | ΔnCH4(Re) | ME | R |
---|---|---|---|---|---|---|
60 bar | 100 | 0.018 | 0.004 | 0.009 | - | 47% |
1000 | 0.057 | 0.005 | 0.018 | - | 31% | |
3000 | 0.058 | 0.006 | 0.022 | - | 38% | |
10,000 | 0.054 | 0.007 | 0.018 | - | 33% | |
20,000 | 0.050 | 0.007 | 0.012 | - | 24% | |
MSE | 0.000149 | 0.000342 | ||||
80 bar | 100 | 0.020 | 0.005 | 0.002 | - | 12% |
1000 | 0.067 | 0.023 | 0.032 | 0.013 | 47% | |
3000 | 0.069 | 0.013 | 0.021 | 0.009 | 30% | |
10,000 | 0.062 | 0.025 | 0.010 | 0.004 | 16% | |
20,000 * | 0.055 | - | 0.003 | - | 6% | |
MSE | 0.000238 | 0.000123 | ||||
100 bar | 100 | 0.009 | 0.003 | 0.003 | - | 29% |
1000 | 0.064 | 0.025 | 0.034 | - | 52% | |
3000 | 0.066 | 0.006 | 0.027 | 0.004 | 40% | |
10,000 | 0.061 | 0.008 | 0.010 | 0.004 | 17% | |
20,000 * | 0.056 | 0.004 | 0.004 | 0.040 | 7% | |
MSE | 0.000291 | 0.000149 |
Appendix B
Appendix B.1. Experimental Data Processing
Appendix C
S. No | Proposed Role | Conc. | Experimental Conditions | Key Results | |
---|---|---|---|---|---|
Methionine | |||||
1.1 | KHP | 0.5 wt% | [20] | P = 33–53 bar, T = 273–275 K, non-stirred conditions | L-methionine shows efficient promotion for CH4 hydrates. |
1.2 | KHP | 0.5 wt% | [36] | P = 95 bar, T = 273 K, non-stirred. | Able to promote hydrate formation kinetics with decreasing stability. |
Histidine | |||||
2.1 | KHP | 0.1, 1 wt% | [37] | P = 50 bar, T= 274.15 K, Stirred = 150 rpm | Show promotion effect and increase with concentration increase, reduce induction time compared to water, but slower gas uptake than 1 wt% SDS. |
2.2 | KHP | 0.3 and 1 wt% | [35] | P = 100 bar, T = 275.2 K, stirred and unstirred reactor. Stirred = 500 rpm | Histidine shows a similar gas uptake profile in stirred and unstirred reactor. At 1 wt%, the promotion rate for CH4 hydrate is 2–3 times greater than at a concentration of 0.3 wt%. |
2.3 | KHP | 0.5 wt% | [36] | P = 95 bar, T = 273 K, non-stirred. | Able to promote hydrate formation kinetics with decreasing stability. |
2.4 | KHI | 1 wt% | [21] | P = 24.5 bar, T = 275.15 K | The mixture of CH4 + C3H8 was tested using different impeller systems. Histidine was shown to behave as a kinetic inhibitor in terms of hydrate growth rate. |
References
- Ibrahim, I.A.; Ötvös, T.; Gilmanova, A.; Rocca, E.; Ghanem, C.; Wanat, M. International Energy Agency; Kluwer Law International BV: Alphen aan den Rijn, ZUID-HOLLAND, The Netherlands, 2021; ISBN 9403529539. [Google Scholar]
- Veluswamy, H.P.; Kumar, A.; Seo, Y.; Lee, J.D.; Linga, P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Appl. Energy 2018, 216, 262–285. [Google Scholar] [CrossRef]
- Sadeq, D.; Iglauer, S.; Lebedev, M.; Smith, C.; Barifcani, A. Experimental determination of hydrate phase equilibrium for different gas mixtures containing methane, carbon dioxide and nitrogen with motor current measurements. J. Nat. Gas Sci. Eng. 2017, 38, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Pandey, J.S.; Ouyang, Q.; Solms, N. von New insights into the dissociation of mixed CH4/CO2 hydrates for CH4 production and CO2 storage. Chem. Eng. J. 2022, 427, 131915. [Google Scholar] [CrossRef]
- Pandey, J.S.; Karantonidis, C.; Ouyang, Q.; von Solms, N. Cyclic Depressurization-Driven Enhanced CH4 Recovery after CH4–CO2 Hydrate Swapping. Energy Fuels 2021, 35, 9521–9537. [Google Scholar] [CrossRef]
- Pandey, J.S.; Almenningen, S.; von Solms, N.; Ersland, G. Pore-Scale Visualization of CH4 Gas Hydrate Dissociation under Permafrost Conditions. Energy Fuel 2021, 35, 1178–1196. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, Z.; Zhang, Z.; Shang, L.; Ma, S. Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. J. Nat. Gas Sci. Eng. 2018, 56, 266–280. [Google Scholar] [CrossRef]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X. Sen Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Pandey, J.; Solms, N. Hydrate Stability and Methane Recovery from Gas Hydrate through CH4–CO2 Replacement in Different Mass Transfer Scenarios. Energies 2019, 12, 2309. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.D.; Taylor, C.E.; Bernardo, M.P. Rapid Gas Hydrate Formation Processes: Will They Work? Energies 2010, 3, 1154–1175. [Google Scholar] [CrossRef] [Green Version]
- Sadeq, D.; Alef, K.; Iglauer, S.; Lebedev, M.; Barifcani, A. Compressional wave velocity of hydrate-bearing bentheimer sediments with varying pore fillings. Int. J. Hydrog. Energy 2018, 43, 23193–23200. [Google Scholar] [CrossRef]
- Okutani, K.; Kuwabara, Y.; Mori, Y.H. Surfactant effects on hydrate formation in an unstirred gas / liquid system: An experimental study using methane and sodium alkyl sulfates. Chem. Eng. Sci. 2008, 63, 183–194. [Google Scholar] [CrossRef]
- Zhong, Y.; Rogers, R.E. Surfactant effects on gas hydrate formation. Chem. Eng. Sci. 2000, 55, 4175–4187. [Google Scholar] [CrossRef]
- Mimachi, H.; Takahashi, M.; Takeya, S.; Gotoh, Y.; Yoneyama, A.; Hyodo, K.; Takeda, T.; Murayama, T. Effect of Long-Term Storage and Thermal History on the Gas Content of Natural Gas Hydrate Pellets under Ambient Pressure. Energy Fuels 2015, 29, 4827–4834. [Google Scholar] [CrossRef]
- Zhang, G.; Rogers, R.E. Ultra-stability of gas hydrates at 1 atm and 268.2 K. Chem. Eng. Sci. 2008, 63, 2066–2074. [Google Scholar] [CrossRef]
- Hachikubo, A.; Takeya, S.; Chuvilin, E.; Istomin, V. Preservation phenomena of methane hydrate in pore spaces. Phys. Chem. Chem. Phys. 2011, 13, 17449. [Google Scholar] [CrossRef]
- Mel’nikov, V.P.; Podenko, L.S.; Nesterov, A.N.; Drachuk, A.O.; Molokitina, N.S.; Reshetnikov, A.M. Self-preservation of methane hydrates produced in “dry water”. Dokl. Chem. 2016, 466, 53–56. [Google Scholar] [CrossRef]
- Sato, H.; Sakamoto, H.; Ogino, S.; Mimachi, H.; Kinoshita, T.; Iwasaki, T.; Sano, K.; Ohgaki, K. Self-preservation of methane hydrate revealed immediately below the eutectic temperature of the mother electrolyte solution. Chem. Eng. Sci. 2013, 91, 86–89. [Google Scholar] [CrossRef]
- Takeya, S.; Mimachi, H.; Murayama, T. Methane storage in water frameworks: Self-preservation of methane hydrate pellets formed from NaCl solutions. Appl. Energy 2018, 230, 86–93. [Google Scholar] [CrossRef]
- Prasad, P.S.R.; Sai Kiran, B. Clathrate Hydrates of Greenhouse Gases in the Presence of Natural Amino Acids: Storage, Transportation and Separation Applications. Sci. Rep. 2018, 8, 8560. [Google Scholar] [CrossRef]
- Pandey, J.S.; Daas, Y.J.; von Solms, N. Methane hydrate formation, storage and dissociation behavior in unconsolidated sediments in the presence of environment-friendly promoters. In Proceedings of the SPE Europec Conference, Virtual, 1–3 December 2020. [Google Scholar]
- Bai, D.; Zhang, D.; Zhang, X.; Chen, G. Origin of Self-preservation Effect for Hydrate Decomposition: Coupling of Mass and Heat Transfer Resistances. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schramm, L.L.; Stasiuk, E.N.; Marangoni, D.G. Surfactants and their applications. Annu. Rep. Prog. Chem.-Sect. C 2003, 99, 3–48. [Google Scholar] [CrossRef]
- Zhang, J.S.; Lee, S.; Lee, J.W. Solubility of sodium dodecyl sulfate near propane and carbon dioxide hydrate-forming conditions. J. Chem. Eng. Data 2007, 52, 2480–2483. [Google Scholar] [CrossRef]
- Demissie, H.; Duraisamy, R. Effects of electrolytes on the surface and micellar characteristics of Sodium dodecyl sulphate surfactant solution. J. Sci. Innov. Res. 2016, 5, 208–214. [Google Scholar]
- Lal, B.; Mukhtar, H.; Bavoh, C.B.; Osei, H.; Sabil, K.M.; Lal, B.; Osei, H.; Sabil, K.M.; Mukhtar, H.; Bavoh, C.B.; et al. A Review on the Role of Amino Acids in Gas Hydrate Inhibition, CO2 Capture and Sequestration, and Natural Gas Storage. J. Nat. Gas Sci. Eng. 2019, 64, 52–71. [Google Scholar]
- Nasir, Q.; Suleman, H.; Elsheikh, Y.A. A review on the role and impact of various additives as promoters/ inhibitors for gas hydrate formation. J. Nat. Gas Sci. Eng. 2020, 76, 103211. [Google Scholar] [CrossRef]
- Prasad, P.S.R.; Kiran, B.S. Are the amino acids thermodynamic inhibitors or kinetic promoters for carbon dioxide hydrates? J. Nat. Gas Sci. Eng. 2018, 52, 461–466. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Pandey, J.S.; Daas, Y.J.; von Solms, N. Screening of amino acids and surfactant as hydrate promoter for CO2 capture from flue gas. Processes 2020, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Sa, J.H.; Kwak, G.H.; Han, K.; Ahn, D.; Lee, K.H. Gas hydrate inhibition by perturbation of liquid water structure. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ide, M.; Maeda, Y.; Kitano, H. Effect of hydrophobicity of amino acids on the structure of water. J. Phys. Chem. B 1997, 101, 7022–7026. [Google Scholar] [CrossRef]
- Sa, J.H.; Kwak, G.H.; Lee, B.R.; Park, D.H.; Han, K.; Lee, K.H. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Sci. Rep. 2013, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Alireza Bagherzadeh, S.; Alavi, S.; Ripmeester, J.A.; Englezos, P. Why ice-binding type i antifreeze protein acts as a gas hydrate crystal inhibitor. Phys. Chem. Chem. Phys. 2015, 17, 9984–9990. [Google Scholar] [CrossRef] [PubMed]
- Veluswamy, H.P.; Lee, P.Y.; Premasinghe, K.; Linga, P. Effect of Biofriendly Amino Acids on the Kinetics of Methane Hydrate Formation and Dissociation. Ind. Eng. Chem. Res. 2017, 56, 6145–6154. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, B.; Chen, Y.; Zhang, S.; Guo, W.; Cai, Y.; Tan, B.; Wang, W. Methane Storage in a Hydrated Form as Promoted by Leucines for Possible Application to Natural Gas Transportation and Storage. Energy Technol. 2015, 3, 815–819. [Google Scholar] [CrossRef]
- Bhattacharjee, G.; Choudhary, N.; Kumar, A.; Chakrabarty, S.; Kumar, R. Effect of the amino acid L-histidine on methane hydrate growth kinetics. J. Nat. Gas Sci. Eng. 2016, 35, 1453–1462. [Google Scholar] [CrossRef]
- Borchardt, L.; Casco, M.E.; Silvestre-Albero, J. Methane Hydrate in Confined Spaces: An Alternative Storage System. ChemPhysChem 2018, 19, 1298–1314. [Google Scholar] [CrossRef] [Green Version]
- Takeya, S.; Ripmeester, J.A. Dissociation behavior of clathrate hydrates to ice and dependence on guest molecules. Angew. Chemie-Int. Ed. 2008, 47, 1276–1279. [Google Scholar] [CrossRef] [PubMed]
- Falenty, A.; Kuhs, W.F.; Glockzin, M.; Rehder, G. “self-preservation” of CH4 hydrates for gas transport technology: Pressure-temperature dependence and ice microstructures. Energy Fuels 2014, 28, 6275–6283. [Google Scholar] [CrossRef]
- Bhattacharjee, G.; Goh, M.N.; Arumuganainar, S.E.K.K.; Zhang, Y.; Linga, P. Ultra-rapid uptake and the highly stable storage of methane as combustible ice. Energy Environ. Sci. 2020, 13, 4946–4961. [Google Scholar] [CrossRef]
- Sato, H.; Tsuji, T.; Nakamura, T.; Uesugi, K.; Kinoshita, T.; Takahashi, M.; Mimachi, H.; Iwasaki, T.; Ohgaki, K. Preservation of Methane Hydrates Prepared from Dilute Electrolyte Solutions. Int. J. Chem. Eng. 2009, 2009, 843274. [Google Scholar] [CrossRef]
- Mimachi, H.; Takeya, S.; Gotoh, Y.; Yoneyama, A.; Hyodo, K.; Takeda, T.; Murayama, T. Dissociation behaviors of methane hydrate formed from NaCl solutions. Fluid Phase Equilib. 2016, 413, 22–27. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Zhang, P.; Chen, W.; Wu, Q.; Zhan, J.; Wang, Y. Promoted Disappearance of CO2 Hydrate Self-Preservation Effect by Surfactant SDS. Energies 2021, 14, 3909. [Google Scholar] [CrossRef]
- Ohno, H.; Narita, H.; Nagao, J. Different Modes of Gas Hydrate Dissociation to Ice Observed by Microfocus X-ray Computed Tomography. J. Phys. Chem. Lett. 2011, 2, 201–205. [Google Scholar] [CrossRef]
- Naeiji, P.; Varaminian, F. Differential scanning calorimetry measurements and modeling of methane + THF hydrate growth kinetics based on non-equilibrium thermodynamics. J. Mol. Liq. 2018, 263, 22–30. [Google Scholar] [CrossRef]
- Mcnamee, K.P. Evaluation of Kinetic Hydrate Inhibitor Performance by High-Pressure Differential Scanning Calorimetry; Offshore Technology Conference: Houston, TX, USA, 2011. [Google Scholar]
- Lone, A.; Kelland, M.A. Exploring kinetic hydrate inhibitor test methods and conditions using a multicell steel rocker rig. Energy Fuels 2013, 27, 2536–2547. [Google Scholar] [CrossRef]
- Sa, J.-H.; Melchuna, A.; Zhang, X.; Morales, R.E.M.; Cameirão, A.; Herri, J.-M.; Sum, A.K. Rock-Flow Cell: An Innovative Benchtop Testing Tool for Flow Assurance Studies. Ind. Eng. Chem. Res. 2019, 58, 8544–8552. [Google Scholar] [CrossRef]
- Shanker Pandey, J.; Jouljamal Daas, Y.; Paul Karcz, A.; von Solms, N. Methane Hydrate Formation Behavior in the Presence of Selected Amino Acids. J. Phys. Conf. Ser. 2020, 1580, 012003. [Google Scholar] [CrossRef]
- Pandey, J.S.; Daas, Y.J.; Karcz, A.P.; von Solms, N. Enhanced Hydrate-Based Geological CO2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change. Energies 2020, 13, 5661. [Google Scholar] [CrossRef]
- Qureshi, M.F.; Khraisheh, M.; Almomani, F. Doping amino acids with classical gas hydrate inhibitors to facilitate the hydrate inhibition effect at low dosages. Greenh. Gases Sci. Technol. 2020, 10, 783–794. [Google Scholar] [CrossRef]
- Bell, S. Good Practice Guide No. 11—Introductory Guide to Uncertainty of Measurement; National Physical Laboratory: Teddington, UK, 2001; p. 41. [Google Scholar]
- Daraboina, N.; Pachitsas, S.; von Solms, N. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation. Fuel 2015, 139, 554–560. [Google Scholar] [CrossRef]
- Daraboina, N.; von Solms, N. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation. J. Chem. Eng. Data 2015, 60, 247–251. [Google Scholar] [CrossRef]
- Qureshi, M.F.; Atilhan, M.; Altamash, T.; Tariq, M.; Khraisheh, M.; Aparicio, S.; Tohidi, B. Gas Hydrate Prevention and Flow Assurance by Using Mixtures of Ionic Liquids and Synergent Compounds: Combined Kinetics and Thermodynamic Approach. Energy Fuels 2016, 30, 3541–3548. [Google Scholar] [CrossRef]
- Pandey, J.S.; Daas, Y.J.; von Solms, N. Insights into Kinetics of Methane Hydrate Formation in the Presence of Surfactants. Processes 2019, 7, 598. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; von Solms, N. Inhibition of natural gas hydrate in the system containing salts and crude oil. J. Pet. Sci. Eng. 2020, 188, 106940. [Google Scholar] [CrossRef]
- Lee, D.; Go, W.; Seo, Y. Experimental and computational investigation of methane hydrate inhibition in the presence of amino acids and ionic liquids. Energy 2019, 182, 632–640. [Google Scholar] [CrossRef]
- Roosta, H.; Dashti, A.; Mazloumi, S.H.; Varaminian, F. The dual effect of amino acids on the nucleation and growth rate of gas hydrate in ethane + water, methane + propane + water and methane + THF + water systems. Fuel 2018, 212, 151–161. [Google Scholar] [CrossRef]
- Longinos, S.N.; Parlaktuna, M. Kinetic study of the effect of amino acids on methane (95%)–propane (5%) hydrate formation. React. Kinet. Mech. Catal. 2021, 133, 753–763. [Google Scholar] [CrossRef]
- Jensen, L.; Thomsen, K.; von Solms, N.; Wierzchowski, S.; Walsh, M.R.; Koh, C.A.; Sloan, E.D.; Wu, D.T.; Sum, A.K. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations. J. Phys. Chem. B 2010, 114, 5775–5782. [Google Scholar] [CrossRef]
- Koh, C.A.; Sloan, E.D.; Sum, A.K.; Wu, D.T. Fundamentals and applications of gas hydrates. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 237–257. [Google Scholar] [CrossRef]
- Longinos, S.N.; Parlaktuna, M. Are the amino acids inhibitors or promoters on methane (95%)–propane (5%) hydrate formation? React. Kinet. Mech. Catal. 2021, 132, 795–809. [Google Scholar] [CrossRef]
- Chen, X.; Espinoza, D.N. Surface area controls gas hydrate dissociation kinetics in porous media. Fuel 2018, 234, 358–363. [Google Scholar] [CrossRef]
- Pandey, J.S.; Strand, Ø.; von Solms, N.; Ersland, G.; Almenningen, S. Direct Visualization of CH4/CO2 Hydrate Phase Transitions in Sandstone Pores. Cryst. Growth Des. 2021, 21, 2793–2806. [Google Scholar] [CrossRef]
- Mimachi, H.; Takeya, S.; Yoneyama, A.; Hyodo, K.; Takeda, T.; Gotoh, Y.; Murayama, T. Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate. Chem. Eng. Sci. 2014, 118, 208–213. [Google Scholar] [CrossRef]
- Kelland, M.A.; Abrahamsen, E.; Ajiro, H.; Akashi, M. Kinetic Hydrate Inhibition with N-Alkyl-N-vinylformamide Polymers: Comparison of Polymers to n-Propyl and Isopropyl Groups. Energy Fuels 2015, 29, 4941–4946. [Google Scholar] [CrossRef]
- Kelland, M.A. History of the development of low dosage hydrate inhibitors. Energy Fuels 2006, 20, 825–847. [Google Scholar] [CrossRef]
- Sloan, E.D., Jr.; Koh, C.A.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780429129148. [Google Scholar]
- Sloan, E.D.; Subramanian, S.; Matthews, P.N.; Lederhos, J.P.; Khokhar, A.A. Quantifying hydrate formation and kinetic inhibition. Ind. Eng. Chem. Res. 1998, 37, 3124–3132. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, J.S.; Khan, S.; von Solms, N. Chemically Influenced Self-Preservation Kinetics of CH4 Hydrates below the Sub-Zero Temperature. Energies 2021, 14, 6765. https://doi.org/10.3390/en14206765
Pandey JS, Khan S, von Solms N. Chemically Influenced Self-Preservation Kinetics of CH4 Hydrates below the Sub-Zero Temperature. Energies. 2021; 14(20):6765. https://doi.org/10.3390/en14206765
Chicago/Turabian StylePandey, Jyoti Shanker, Saad Khan, and Nicolas von Solms. 2021. "Chemically Influenced Self-Preservation Kinetics of CH4 Hydrates below the Sub-Zero Temperature" Energies 14, no. 20: 6765. https://doi.org/10.3390/en14206765
APA StylePandey, J. S., Khan, S., & von Solms, N. (2021). Chemically Influenced Self-Preservation Kinetics of CH4 Hydrates below the Sub-Zero Temperature. Energies, 14(20), 6765. https://doi.org/10.3390/en14206765